

Introduction to Hidden Markov Models

Peter Bell

Automatic Speech Recognition— ASR Lecture 4
22 January 2026

HMMs

- Introduction to hidden Markov models
- HMMs for ASR
- Likelihood computation with the forward algorithm

Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence W^* is given by

$$W^* = \arg \max_W P(W | X)$$

Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence W^* is given by

$$W^* = \arg \max_W P(W | X)$$

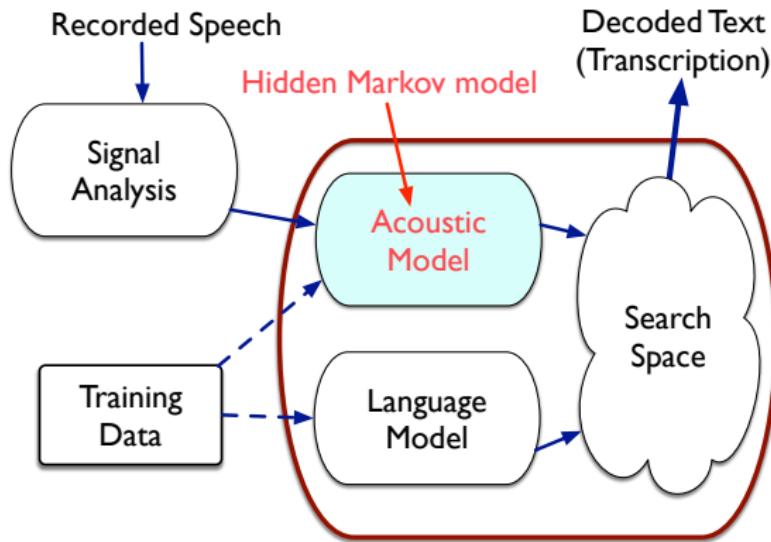
Applying Bayes' Theorem:

$$P(W | X) = \frac{p(X | W)P(W)}{p(X)}$$

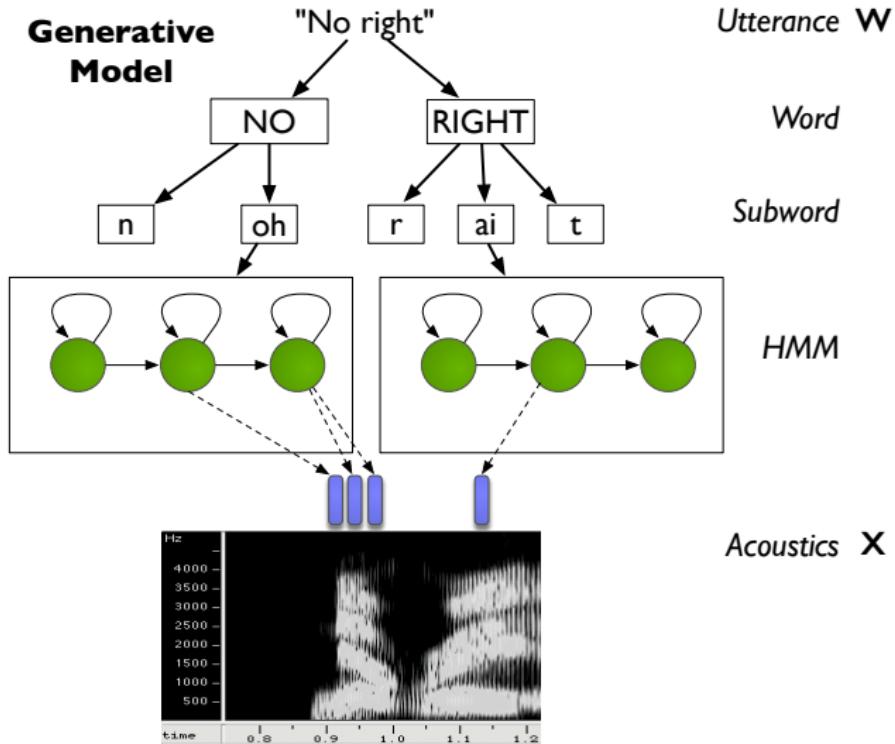
$$\propto p(X | W)P(W)$$

$$W^* = \arg \max_W \underbrace{p(X | W)}_{\text{Acoustic model}} \underbrace{P(W)}_{\text{Language model}}$$

Acoustic Modelling



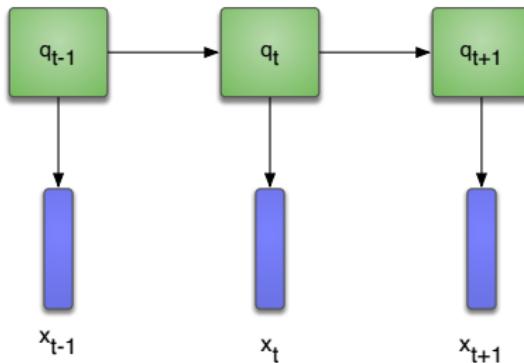
Hierarchical modelling of speech



The Hidden Markov model

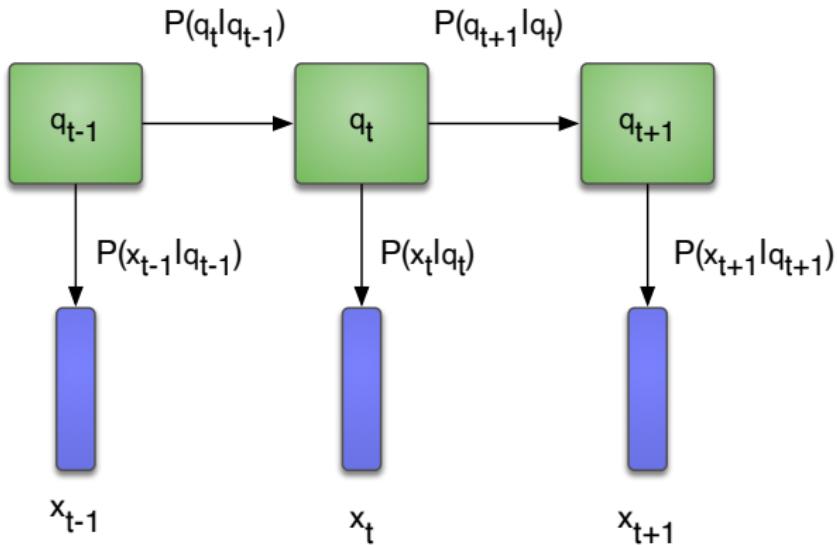
- A statistical model for time series data with a set of **discrete** states $\{1, \dots, J\}$ (we index them by j or k)
- At each time step t :
 - the model is in a fixed state q_t .
 - the model generates an observation, x_t , according to a probability distribution that is specific to the state
- We don't actually observe which state the model is in at each time step – hence "**hidden**".
- Observations can be either continuous or discrete (usually the former)

HMM probabilities



- Imagine we know the state at a given time step t , $q_t = k$
- Then the probability of being in a new state, j at the next time step, is dependent only on q_t . This is the **Markov** assumption.
- Alternatively: q_{t+1} is *conditionally independent* of q_1, \dots, q_{t-1} , given q_t .

HMM assumptions



Observation x_t is *conditionally independent* of other observations, given the state that generated it, q_t

HMM parameters

The parameters of the model, λ , are given by:

- Transition probabilities $a_{kj} = P(q_{t+1} = j | q_t = k)$
- Observation probabilities $b_j(x) = P(x | q = j)$

HMM topologies

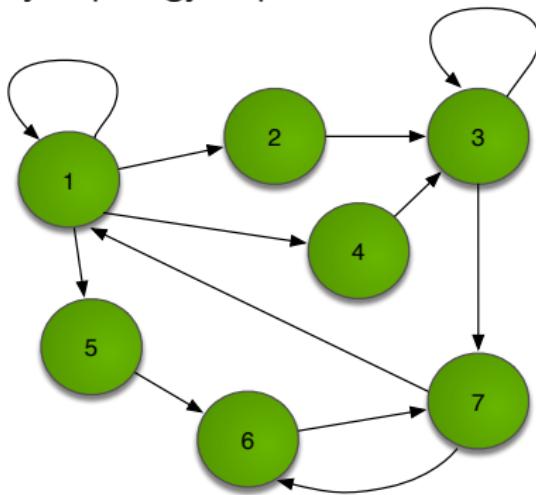
- The HMM topology determines the set of allowed transitions between states

HMM topologies

- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible

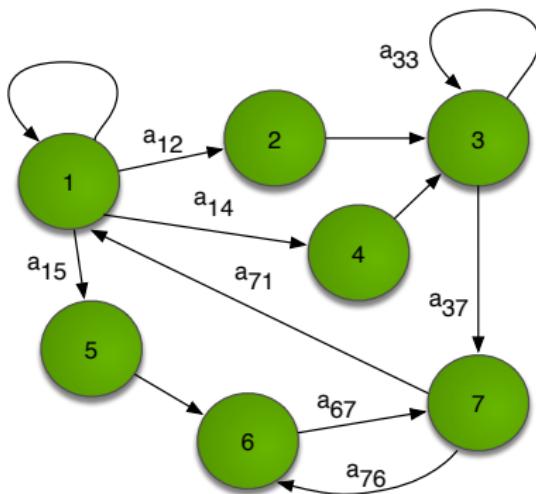
HMM topologies

- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible



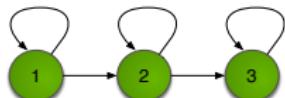
HMM topologies

- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible



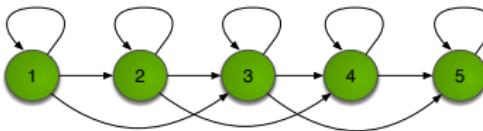
Not all transition probabilities are shown

Example topologies



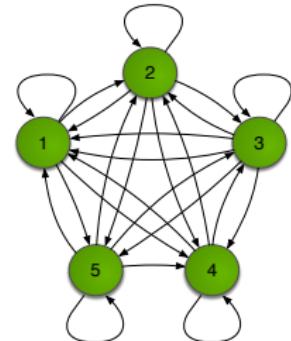
left-to-right model

$$\begin{pmatrix} a_{11} & a_{12} & 0 \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$$



parallel path left-to-right model

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 & 0 \\ 0 & a_{22} & a_{23} & a_{24} & 0 \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{pmatrix}$$



ergodic model

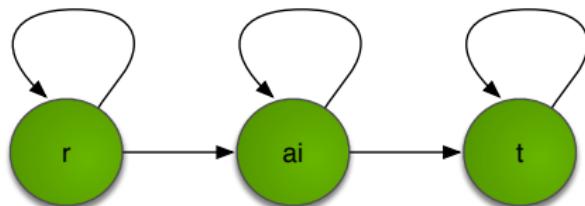
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{pmatrix}$$

Traditional speech recognition:
Speaker recognition:

left-to-right HMM with $3 \sim 5$ states
ergodic HMM

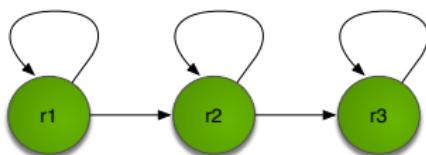
HMMs for ASR

We generally model words or phones with a left-to-right topology with self loops.



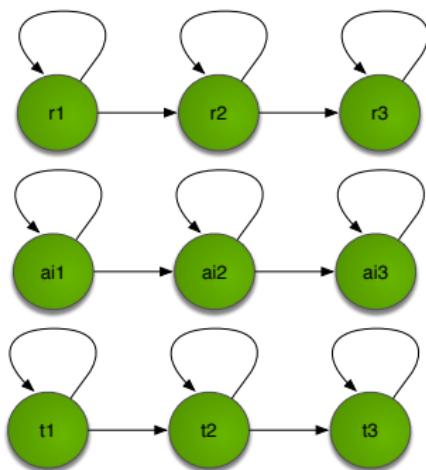
HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)



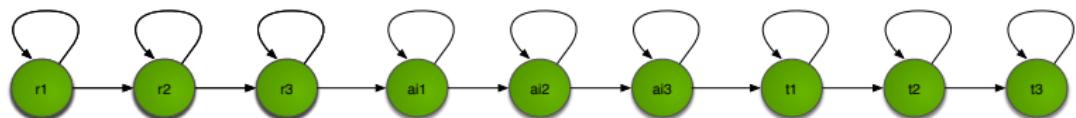
HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)



HMMs for ASR

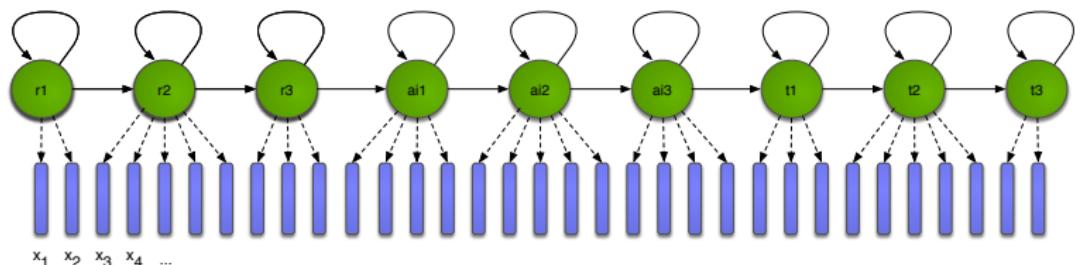
Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)



The phone model topologies can be concatenated to form a HMM for the whole word

HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)



This model naturally generates an alignment between states and observations (and hence words/phones).

Computing likelihoods with the HMM

Suppose we have a sequence of observations of length T , $X = (x_1, \dots, x_T)$, and Q is a known state sequence, (q_1, \dots, q_T) . Then we can use the HMM to compute the joint likelihood of X and Q :

$$P(X, Q; \lambda) = P(q_1)P(x_1|q_1)P(q_2|q_1)P(x_2|q_2) \dots \quad (1)$$

$$= P(q_1)P(x_1|q_1) \prod_{t=2}^T P(q_t|q_{t-1})P(x_t|q_t) \quad (2)$$

$P(q_1)$ denotes the initial occupancy probability of each state

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- ➊ **Likelihood** Determine the overall likelihood of an observation sequence $X = (x_1, \dots, x_t, \dots, x_T)$ being generated by a known HMM topology, \mathcal{M} .

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- ① **Likelihood** Determine the overall likelihood of an observation sequence $X = (x_1, \dots, x_t, \dots, x_T)$ being generated by a known HMM topology, \mathcal{M} .
- ② **Decoding and alignment** Given an observation sequence and an HMM, determine the most probable hidden state sequence

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- ① **Likelihood** Determine the overall likelihood of an observation sequence $X = (x_1, \dots, x_t, \dots, x_T)$ being generated by a known HMM topology, \mathcal{M} .
- ② **Decoding and alignment** Given an observation sequence and an HMM, determine the most probable hidden state sequence
- ③ **Training** Given an observation sequence and an HMM, find the state occupation probabilities

Computing likelihood

- ➊ **Likelihood** Determine the overall likelihood of an observation sequence $X = (x_1, \dots, x_t, \dots, x_T)$ being generated by a known HMM topology, \mathcal{M} .
→ the *forward algorithm*

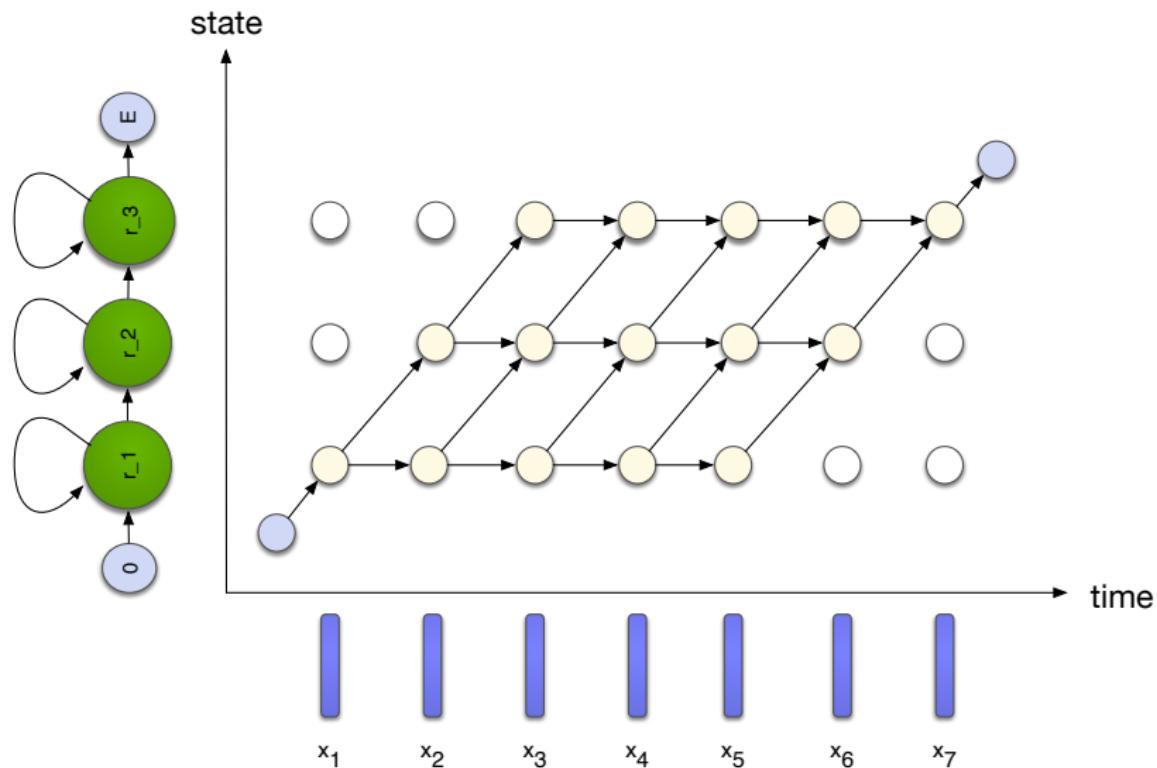
NB. We do **not** know the state sequence!

Notes on the HMM topology

By talking about HMM topologies in the context of speech recognition, \mathcal{M} , we can mean:

- A restricted left-to-right topology based on a known word/sentence, leading to a “trellis-like” structure over time
- A much less restricted topology based on a grammar or language model – or something in between
- Some algorithms are not (generally) suitable for unrestricted topologies

Example: trellis for a 3-state left-to-right phone HMM



Likelihood

- Goal: determine $p(X|\mathcal{M})$

Likelihood

- Goal: determine $p(\mathbf{X} | \mathcal{M})$
- Sum over all possible state sequences $Q = (q_1, \dots, q_T)$ that could result in the observation sequence \mathbf{X}

$$\begin{aligned} p(\mathbf{X} | \mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathbf{X}, Q | \mathcal{M}) \\ &= \sum_{Q \in \mathcal{Q}} P(q_1) P(x_1 | q_1) \prod_{t=2}^T P(q_t | q_{t-1}) P(x_t | q_t) \end{aligned}$$

Likelihood

- Goal: determine $p(\mathbf{X}|\mathcal{M})$
- Sum over all possible state sequences $Q = (q_1, \dots, q_T)$ that could result in the observation sequence \mathbf{X}

$$\begin{aligned} p(\mathbf{X}|\mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathbf{X}, Q|\mathcal{M}) \\ &= \sum_{Q \in \mathcal{Q}} P(q_1) P(x_1|q_1) \prod_{t=2}^T P(q_t|q_{t-1}) P(x_t|q_t) \end{aligned}$$

- How many paths Q do we have to calculate?

$$\sim \underbrace{N \times N \times \cdots N}_{T \text{ times}} = N^T \quad \begin{aligned} N &: \text{number of HMM states} \\ T &: \text{length of observation} \end{aligned}$$

e.g. $N^T \approx 10^{10}$ for $N=3, T=20$

Likelihood

- Goal: determine $p(\mathbf{X}|\mathcal{M})$
- Sum over all possible state sequences $Q = (q_1, \dots, q_T)$ that could result in the observation sequence \mathbf{X}

$$\begin{aligned} p(\mathbf{X}|\mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathbf{X}, Q|\mathcal{M}) \\ &= \sum_{Q \in \mathcal{Q}} P(q_1) P(x_1|q_1) \prod_{t=2}^T P(q_t|q_{t-1}) P(x_t|q_t) \end{aligned}$$

- How many paths Q do we have to calculate?

$$\sim \underbrace{N \times N \times \cdots N}_{T \text{ times}} = N^T \quad \begin{aligned} N &: \text{number of HMM states} \\ T &: \text{length of observation} \end{aligned}$$

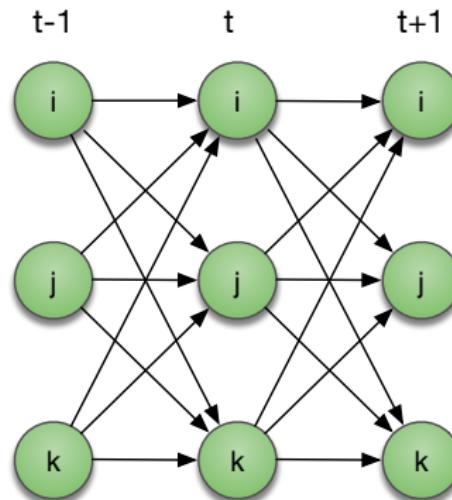
e.g. $N^T \approx 10^{10}$ for $N=3$, $T=20$

- Computation complexity of multiplication: $O(2TN^T)$

Likelihood: The Forward algorithm

The **Forward** algorithm:

- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Reduces the computational complexity to $O(TJ^2)$
- State time trellis for an arbitrary HMM topology



The forward probability

Define the *Forward probability*, $\alpha_j(t)$: the probability of observing the observation sequence $x_1 \dots x_t$ and being in state j at time t :

$$\alpha_j(t) = p(x_1, \dots, x_t, q_t = j \mid \mathcal{M})$$

We can *recursively* compute this probability

Initial and final state probabilities

It what follows it is convenient to define:

- an additional single initial state $S_I = 0$, with transition probabilities

$$a_{0j} = P(q_1 = j)$$

denoting the probability of starting in state j

- a single final state, S_E , with transition probabilities a_{jE} denoting the probability of the model terminating in state j .
- S_I and S_E are both *non-emitting*

Likelihood: The Forward recursion

- Initialisation

$$\begin{aligned}\alpha_j(0) &= 1 & j &= 0 \\ \alpha_j(0) &= 0 & j &\neq 0\end{aligned}$$

- Recursion

$$\alpha_j(t) = \sum_{i=0}^J \alpha_i(t-1) a_{ij} b_j(x_t) \quad 1 \leq j \leq J, 1 \leq t \leq T$$

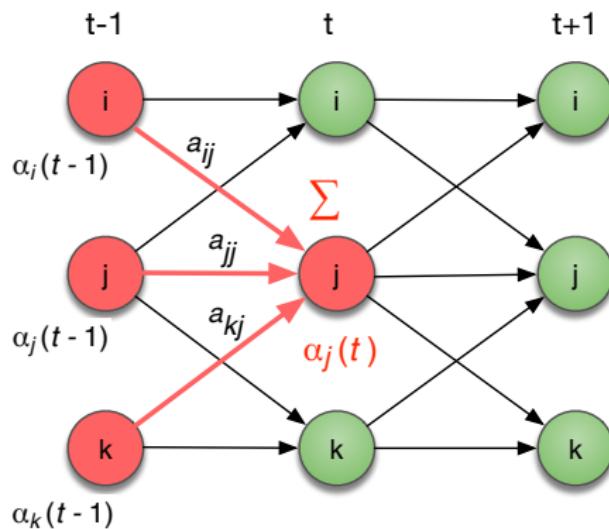
- Termination

$$p(X | \mathcal{M}) = \alpha_E = \sum_{i=1}^J \alpha_i(T) a_{iE}$$

s_I : initial state, s_E : final state

Likelihood: Forward Recursion

$$\alpha_j(t) = p(x_1, \dots, x_t, q_t = j | \mathcal{M}) = \sum_{i=1}^J \alpha_i(t-1) a_{ij} b_j(x_t)$$



More HMM algorithms

- Finding the most likely path with the Viterbi algorithm
- Parameter estimation:
 - the Forward-Backward algorithm
 - the Expectation-Maximisation algorithm

References: HMMs

- * Rabiner and Juang (1986). “An introduction to hidden Markov models”, *IEEE ASSP Magazine*, 3 (1), 4–16.
- Jurafsky and Martin (2008). *Speech and Language Processing* (2nd ed.): sections 6.1–6.5; 9.2; 9.4.
- Renals and Hain (2010). “Speech Recognition”, *Computational Linguistics and Natural Language Processing Handbook*, Clark, Fox and Lappin (eds.), Blackwells: sections 2.1 and 2.2.