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Overview

Univariate and multivariate Gaussians

GMM estimation with the EM algorithm

°

@ Gaussian mixture models
°

@ Using GMMs with HMMs
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Background: cdf

Consider a real valued random variable X
e Cumulative distribution function (cdf) F(x) for X:

F(x) = P(X < x)

@ To obtain the probability of falling in an interval we can do
the following:

Pla< X <b)=P(X <b)—P(X<a)
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Background: pdf

@ The rate of change of the cdf gives us the probability density
function (pdf), p(x):

px) = S F(x) = F'(x)

F(x) = / " p(x)dx

—00

@ p(x) is not the probability that X has value x. But the pdf is
proportional to the probability that X lies in a small interval
centred on x.

@ Notation: p for pdf, P for probability
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The Gaussian distribution (univariate)

@ The Gaussian (or Normal) distribution is the most common
(and easily analysed) continuous distribution

@ It is also a reasonable model in many situations (the famous
“bell curve™)

o If a (scalar) variable has a Gaussian distribution, then it has a
probability density function with this form:

202

p(x|p, 02) = N(x; i, 0%) = 2102 exp (—(X - /1,)2>

@ The Gaussian is described by two parameters:

o the mean p (location)
o the variance o (dispersion)
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Plot of Gaussian distribution

@ Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

@ One-dimensional Gaussian with zero mean and unit variance
(p=0,0%=1):

pdf of Gaussian Distribution
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Properties of the Gaussian distribution
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Parameter estimation

@ Estimate mean and variance parameters of a Gaussian from
data xq,x0,..., Xy

@ Use the following as the estimates:
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Example: ML estimation of the mean

Consider the log likelihood of a set of N training data points
{x1,...,xn} being generated by a Gaussian with mean yx and
variance o2:

2

L=1Inp({x1,....,xn}|p,0%) = —EZ <(X"_“)

5—— —In o? - |n(27r)>
o

1 » N, N
502 Z(x,, ) 5 Ino* — ) In(27)

By maximising the the log likelihood function with respect to p we
can show that the maximum likelihood estimate for the mean is
indeed the sample mean:
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The multivariate Gaussian distribution

@ The D-dimensional vector x = (xq,...,xp)" follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

p(x|p, %) = (27r)D/12‘2|1/2€XP (—;(X - = (x - H))

The pdf is parameterised by the mean vector pu = (p1,...,up)"

o011 - o1D
and the covariance matrix X =
op1 ... ODD

@ The 1-dimensional Gaussian is a special case of this pdf

o ; The argument to the exponential 0.5(x — p) T =71 (x — )
is referred to as a quadratic form.
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Covariance matrix

@ The mean vector p is the expectation of x:

p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

% = El(x — u)(x — )]

@ Y isa D x D symmetric matrix:

o = E[(xi — i) (x5 — )] = E[(x — 1) (i — pi)] = o3

@ The sign of the covariance helps to determine the relationship
between two components:
o If x; is large when x; is large, then (x; — u;)(x; — ;) will tend
to be positive;
o If x;j is small when x; is large, then (x; — p;)(x; — p;) will tend
to be negative.
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Spherical Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4

0 10
(3) =(3) e

NB: Correlation coefficient p; = /. (—1<p;j<1)
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Diagonal Covariance Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4

0 10
(3) = (38) e

NB: Correlation coefficient p; = i (—1<p;j<1)
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Full covariance Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4
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NB: Correlation coefficient p; = /. (—1<p;j<1)
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Parameter estimation of a multivariate Gaussian

distribution

@ It is possible to show that the mean vector i and covariance
matrix 3 that maximise the likelihood of the training data are

given by:
1 N
p=x
N2 X
A .
= NZ (xn — 1) (xn — 1)
n=1
where x, = (Xp1,. .. 7x,,,D)T.
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Maximum likelihood fit to a Gaussian
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Data in clusters (example 1)
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Mixture model

@ A more powerful form of density estimation is to introduce
multiple components to the model, each with its own
probability density. This is called a mixture model or a
mixture density

@ Can view this as a generative model

@ Choose a random mixture component C based on a prior
probability P(C = m)

@ Generate a data point x from the chosen component using a
density function p(x| C = m)

**The component C is not observed**

@ We can calculate the probability density of x as

ZP )p(x| C = m)

@ We use shorthand notation P(m), p(x|m)
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Simple example

@ Suppose we have two identical bags, each containing a
different proportion of blue balls. In each trial, we randomly
chose a bag with probability 0.5 and pull out k balls (with
replacement).

@ What is the distribution of X, the number of blue balls
sampled?

1 1
P(X =1i)= EBin(k,al) + EBin(k,ag)

where aq, ap are the proportions of blue balls in the respective
bags
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Simple example
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Gaussian mixture model

@ The most important mixture model is the Gaussian Mixture
Model (GMM), where the component densities are Gaussians

M M
p(X):ZP(m (x| m) = ZP N(x; o, Xm)
m=1 m=1
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Estimating the parameters of a mixture model

@ Define the indicator variable z,,, = 1 if component m
generated data point x, (and 0 otherwise)

@ If z,,, wasn't hidden then we could count the number of
observed data points generated by m:

N
Ny = Z Zmn
n=1

@ And use the observations assigned to each component to
estimate the parameters using maximum likelihood estimation
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In our simple example

@ Suppose we repeat the experiment (trial) n times
@ zn,p indicates if bag m was chosen on the nth trial

o If x, is the number of blue balls drawn on the nth trial

N
2 n=1 ZmnXn
k x N,

am =
o If the bags were not chosen with identical probability, we

could estimate this probability with

N

. 1 .
P(m):Nszn = W
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GMM Parameter estimation when we know which

component generated the data

Estimate the mean, covariance and mixing parameters as:

N Z,, ZmnXn

I‘I'm_ Nm

$ :anmn(xn Am)(Xn Hm)T
m N,
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Parameter estimation when we don’t know which

component generated the data

@ Problem: we don't know zp,, - which mixture component a
data point comes from...

@ Instead we use the EM algorithm: estimate the posterior
probability P(m|x), which gives the probability that
component m was responsible for generating data point x,
using an initial set of parameters, Ag

@ At each iteration, we maximise

> P(mlx; Xo) log P(x, m; A)

oy PIM)P(m) _ p(x|m) P(m)
Pimbx o) p(x) M p(x|m)P(m)

(dropping the dependence on Aq for clarity)
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Soft assignment

@ We can view the EM algorithm as estimating “soft counts”
for the data points, based on the component occupation
probabilities P(m|x;,):

N
Ny, = Z P(m|xn)
n=1

@ We can imagine this as assigning data points to component m
weighted by the component occupation probability P(m|x,)

@ In the bag example: imagine estimating which bag has been
chosen at the nth trial, based on the number of blue balls
drawn (and our earlier estimates of the parameters)

@ It is possible to prove that the EM algorithm is guaranteed to
increase the likelihood at each iteration
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For the GMM

Estimate the mean, variance and prior probabilities as:
A o0 P(mlxn)xn >, P(m[xn)xn
Bm = "
>_p P(m|xn) N
_ 20 P(m[xn)(Xn — fim)(xn — ﬁm)T

m >, P(m[xs)
_ 2 P(mxn)(Xn — fom)(xn — fom) "
N,
P(m) = £ P(m|xp) =

ASR Lecture 6 29



Example 1 fit using a GMM
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Example 1 fit using a GMM

251

Fitted with a two component GMM using EM
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Peakily distributed data (Example 2)
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Example 2 fit by a Gaussian

p=p2=1[0 07 ;=01 Z,=2I
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Example 2 fit by a GMM
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Example 2 fit by a GMM

Fitted with a two component GMM using EM
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Example 2: component Gaussians
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Comments on GMMs

@ GMMs trained using the EM algorithm are able to self
organise to fit a data set

@ Individual components take responsibility for parts of the data
set (probabilistically)

@ Soft assignment to components not hard assignment — “soft
clustering”

o GMMs scale very well, e.g.: large GMM-based speech
recognition systems might have as many as 30,000 GMMs,
each with 32 components: sometimes 1 million Gaussian
components!! And the parameters all estimated from (a lot
of) data by EM
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HMMs with Gaussian observation probabilities

We can use a Gaussian distribution to model the observation
probability:
bj(x) = N(x; pj, %))

We need to estimate parameters fi;, EAJJ- for each state j. Use the
EM algorithm to weight each sample x; by the occupation
probability ~;(t):

-
a; = 2= 20Xt
g T
Zt:l 'Yj(t)
And likewise for the covariance matrices:
5 1 () (xe = i) (xe — )T
S T
Zt:l VJ(t)
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Extension to Gaussian mixture model (GMM)

@ The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

@ In this case an M-component Gaussian mixture model is an
appropriate density function:

bj(x) = p(x|q =) = Z Gjm N (X: Wjm, Zjm)

Given enough components, this family of functions can model
any distribution.

@ Train using the EM algorithm again, in which the component
occupation probabilities are estimated along with the state
occupation probabilities in the E-step
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EM training of HMM/GMM

@ Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities vjm(t): the probability of occupying
mixture component m of state j at time t.

(Eem(j) in Jurafsky and Martin’s SLP)

@ Re-estimate the parameters of component m of state j as

follows

N ZtT:l Yjm(t)X ¢

Jm T
thl ’ij(t)
S _ >y Ym () (Xt = fim) (X = fijm) "
Jm — T
thl ij(t)

@ The mixture coefficients are re-estimated in a similar way to
transition probabilities:
T .
A > =1 Ym(t)

Gm = &M T
D=1 2 t—1 'ij’(t)
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Doing the computation

@ The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

@ This can cause floating point underflow problems

@ In practice computations are performed in the log domain (in
which multiplies become adds)

@ Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians
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References: GMMs

* Renals and Hain (2010). “Speech Recognition”,
Computational Linguistics and Natural Language Processing
Handbook, Clark, Fox and Lappin (eds.), Blackwells: section
2.2.
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