

Problem 1: Expectation and variance

For the following distributions write down their density function and their support. Express $\mathbb{E}[X]$ and $\text{Var}[X]$ as integrals and evaluate them.

a) $X \sim \text{Uniform}[-3, 5]$

b) $X \sim \mathcal{N}(m, s^2)$

Problem 2: Gradients and score function trick

Given a family of densities $p_\theta(x)$, depending on a parameter θ , and functions $f(x, \varphi)$ and $g(x, \theta)$:

1. Write as an expectation over p_θ : $\frac{\partial}{\partial \varphi} \mathbb{E}_{x \sim p_\theta(x)} [f(x, \varphi)] = \mathbb{E}_{x \sim p_\theta(x)} [\dots]$.
2. Show that $\frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p(x, \theta)} [f(x, \varphi)] = \mathbb{E}_{x \sim p_\theta(x)} \left[\frac{\partial}{\partial \theta} \log p_\theta(x) f(x, \varphi) \right]$ (hint: you will need the fact that $\frac{\partial}{\partial \theta} \log h(\theta) = \frac{1}{h(\theta)} \frac{\partial}{\partial \theta} h(\theta)$). This is known as the **score function trick**.
3. Write as an expectation over p_θ : $\frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_\theta(x)} [g(x, \theta)] = \mathbb{E}_{x \sim p_\theta(x)} [\dots]$.

How can each of these gradients be approximated using the Monte Carlo method?

Problem 3: Reparametrisation trick

1. If $\epsilon \sim \mathcal{N}(0, 1)$, what is the distribution of $X = a + b\epsilon$, where $a, b \in \mathbb{R}$?
2. Use Part 1 to rewrite as an expectation over $\mathcal{N}(\mu, \sigma^2)$ as an expectation over $\mathcal{N}(0, 1)$:

$$\mathbb{E}_{X \sim \mathcal{N}(\mu, \sigma^2)} [f(X)] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, 1)} [\dots].$$
3. Rewrite as an expectation over $\mathcal{N}(0, 1)$: $\frac{\partial}{\partial \mu} \mathbb{E}_{X \sim \mathcal{N}(\mu, \sigma^2)} [f(X)] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, 1)} [\dots]$. This is known as the **reparametrisation trick**.
4. Use Problem 2.2 to rewrite the expression in Part 3 as an expectation over $\mathcal{N}(\mu, \sigma^2)$ instead, then rewrite it as an expectation over $\mathcal{N}(0, 1)$ using Part 2:

$$\frac{\partial}{\partial \mu} \mathbb{E}_{X \sim \mathcal{N}(\mu, \sigma^2)} [f(X)] = \mathbb{E}_{X \sim \mathcal{N}(\mu, \sigma^2)} [\dots] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, 1)} [\dots]$$

Which expression – this one or the one in Part 3 – is better suited for Monte Carlo estimation?

Problem 4: KL divergence

Recall that the KL divergence between two distributions over \mathbb{R}^d with densities p and q is defined as follows: $\text{KL}(p \parallel q) = \int_{\mathbb{R}^d} \log \left(\frac{p(x)}{q(x)} \right) p(x) dx$.

1. Compute the divergence between two Gaussian distributions, $\text{KL}(\mathcal{N}(\mu_1, \sigma_1^2) \parallel \mathcal{N}(\mu_2, \sigma_2^2))$.
2. Show that for three full-support distributions with densities p_1, p_2, q ,

$$\begin{aligned} \text{KL} \left(\frac{p_1 + p_2}{2} \parallel q \right) &\leq \frac{1}{2} \text{KL}(p_1 \parallel q) + \frac{1}{2} \text{KL}(p_2 \parallel q), \\ \text{KL} \left(q \parallel \frac{p_1 + p_2}{2} \right) &\leq \frac{1}{2} \text{KL}(q \parallel p_1) + \frac{1}{2} \text{KL}(q \parallel p_2). \end{aligned}$$

This property is called **convexity** of the KL divergence.