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Outline of Lecture 2

Maths review + generative modelling as optimisation:

» Some notes and review of Lecture 1
» Preliminaries
» Probability distributions and density functions

» Generative processes

» Generative modelling as an optimisation problem

» Divergence measures
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» Some notes and review of Lecture 1



Admin notes

» Sample exam available on website
» It is 45 marks, but the real exam will be 25

» Slides published the evening before each lecture
» Tutorial for this track: Mondays 13:10-14:00 (NM present) and
14:10-15:00 (KT present), Appleton Tower Teaching Studio M2

» Tutorial materials published at end of preceding week

» Sooner in future weeks
» Theory and programming parts; come prepared with questions!
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Lecture 1 review

Informally, generative modelling is the task of approximating the distribution
that produced some observed data. (Today, we make this formal.)

train sample
E—
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Lecture 1 review

» A generative model is a probability distribution, or generative process,
that is derived from data so as to approximate the distribution that
produced the data.

» A deep generative model is one that uses deep neural networks to
represent (components of)) the generative process.

» A deep generative modelling algorithm consists of: a choice of
generative process, a family of distributions parametrised by neural
networks to represent that process, and a learning algorithm to fit those
networks' parameters to data.
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Lecture 1 review

» A generative model is a probability distribution, or generative process,
that is derived from data so as to approximate the distribution that
produced the data.

» A deep generative model is one that uses deep neural networks to
represent (components of)) the generative process.

» A deep generative modelling algorithm consists of: a choice of
generative process, a family of distributions parametrised by neural
networks to represent that process, and a learning algorithm to fit those
networks' parameters to data.

The questions:

» How to represent the approximating distribution (i.e., the choice of
generative process and its parametrisation)

» How to fit it to data (the learning algorithm)
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Lecture 1 review

Desiderata for generative modelling:  » Fidelity (samples should look like
training data)

» The model should not produce
samples far from the training data
with high probability

» Diversity (samples should represent
the variation in the training data)

» The model should produce samples
close to all parts of the training data
with high probability

» Novelty (samples should not be
copies of training data)

» The modelled distribution should be
smooth to prevent memorisation
(overfitting)
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» Preliminaries
» Probability distributions and density functions

» Generative processes



Probability distributions

> A probability distribution ;. over R?
is a function that assigns a number
1(A) > 0 to every subset A
of RY, satisfying certain axioms
» Such subsets A are called events
> Axiom: p(R?) =1, u(0) =0
> Axiom: if A; N Ay, = (), then

(AL U Az) = p(Ar) + pi(A2)
» (We do not discuss the details here;
measure theory studies this in depth.)

» Meaning: u(A) is the probability that a
random sample X ~ p liesin A
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Probability distributions

> A probability distribution 1 over RY is a function that assigns a number
subset A of RY, satisfying certain axioms
» Meaning: u(A) is the probability that a random sample X ~ p lies in A

1(A) > 0 to every

» Some probability distributions can be
described by density functions
p:R? —[0,00); in this case:

() = [ podx= [ 16x e Alp(x) ox
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Probability distributions

> A probability distribution 1 over RY is a function that assigns a number
subset A of RY, satisfying certain axioms
» Meaning: u(A) is the probability that a random sample X ~ p lies in A

1(A) > 0 to every

» Some probability distributions can be
described by density functions
p:R? —[0,00); in this case:

() = [ podx= [ 16x e Alp(x) ox

What is p({(1,2)})?
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Probability distributions

> A probability distribution 1 over RY is a function that assigns a number
subset A of RY, satisfying certain axioms
» Meaning: u(A) is the probability that a random sample X ~ p lies in A

1(A) > 0 to every

» Some probability distributions can be
described by density functions
p:R? —[0,00); in this case:

() = [ podx= [ 16x e Alp(x) ox

What is p({(1,2)})? 0 (points have zero
probability mass under continuous distribu-

tions).

ATML / deep generative modelling / Lecture 2 / 20.01.2026

0.073

0.994 277

o

0.085

0.014

Distribution approximation

4/16



Probability distributions

> A probability distribution 1 over RY is a function that assigns a number
1(A) > 0 to every subset A of RY, satisfying certain axioms

» Meaning: u(A) is the probability that a random sample X ~ p lies in A

» Some probability distributions can be described by density functions
p:RY — [0,00); in this case:

u(A) = / p(x) dx = / A[x € Alp(x) dx

What is p({(1,2)})? 0 (points have zero probability mass under continuous
distributions).

For distributions that do have densities, we often use p (distribution) and p
(its density) interchangeably
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Density functions and delta distributions

Do all distributions have density functions?

ATML / deep generative modelling / Lecture 2 / 20.01.2026 Distribution approximation 5/16



Density functions and delta distributions

Do all distributions have density functions? No.
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Density functions and delta distributions

Do all distributions have density functions? No.
(Dirac) delta distribution, or point mass, at x: d,, defined by:

1, xeA

6X(A):{O xd A

» J, does not have a density function (why?)
» What does this distribution represent? (How do we sample from it?)
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Density functions and delta distributions

Do all distributions have density functions? No.
(Dirac) delta distribution, or point mass, at x: d,, defined by:

1, xeA

6X(A):{O xd A

» J, does not have a density function (why?)
» What does this distribution represent? (How do we sample from it?) The
random variable X ~ ¢, is always equal to x.
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Density functions and delta distributions

Do all distributions have density functions? No.
(Dirac) delta distribution, or point mass, at x: d,, defined by:

1, xeA

5X(A):{o xd A

» J, does not have a density function (why?)

» What does this distribution represent? (How do we sample from it?) The
random variable X ~ ¢, is always equal to x.
» How do we understand the empirical distribution

1
K= ;Z(SXH
i=1

where xq, ..., x, € R9?
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Density functions and delta distributions

Do all distributions have density functions? No.
(Dirac) delta distribution, or point mass, at x: d,, defined by:

1, xeA

6X(A):{O xd A

» J, does not have a density function (why?)

» What does this distribution represent? (How do we sample from it?) The
random variable X ~ ¢, is always equal to x.
» How do we understand the empirical distribution

1
K= ;Z(SXH
i=1

where xq, ..., x, € RI? (Sampling uniformly from {x, ..., x,}.)
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Support of a distribution

The support of a distribution p is the smallest set S such that

u(S) =1

» If i has continuous density p and p(x) > 0 for all x, what is the support of
e

> What is the support of an empirical distribution X 37 5,7

» If X ~ Uniform([0, 1]), what is the support of the distribution of
Y =(X,1-X)?
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Support of a distribution

The support of a distribution p is the smallest set S such that

u(s) =1

» If i has continuous density p and p(x) > 0 for all x, what is the support of
u? The entire R?. We say 1 has full support.

> What is the support of an empirical distribution X 37 5,7

» If X ~ Uniform([0, 1]), what is the support of the distribution of
Y =(X,1-X)?
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Support of a distribution

The support of a distribution p is the smallest set S such that

u(s) =1

» If i has continuous density p and p(x) > 0 for all x, what is the support of
u? The entire R?. We say 1 has full support.

> What is the support of an empirical distribution 237 5,7 {x1,...,x,}.

» If X ~ Uniform([0, 1]), what is the support of the distribution of
Y =(X,1-X)?
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Support of a distribution

The support of a distribution p is the smallest set S such that

u(s) =1

» If i has continuous density p and p(x) > 0 for all x, what is the support of
u? The entire R?. We say 1 has full support.

> What is the support of an empirical distribution 237 5,7 {x1,...,x,}.

n

» If X ~ Uniform([0, 1]), what is the support of the distribution of
Y =(X,1— X)? The segment from (0,1) to (1,0); note Y has no density
in R2.
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Expectation and Monte Carlo estimation

» For a distribution with density p, and a function f : RY 5 R, the
expectation of f(X) for X ~ p is:

Ex-olf(0] = [ | 7(x)p(x) dx

» Could be infinite or undefined for some f and p

p(x,y) fix, y) = sin(3x)cos(2y)
0.05 075
' 0.04 050
‘ 0.25
0.03
. 0.00
. 0.02 -0.25
-0.50
0.01
-0.75
0.00
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Expectation and Monte Carlo estimation

» For a distribution with density p, and a function f : RY 5 R, the
expectation of f(X) for X ~ p is:

Ex-olf(0] = [ | 7(x)p(x) dx

» Could be infinite or undefined for some f and p

px,y) f(x, y) = sin(3x)cos(2y) fix, y)p(x, y)
0.05 0.75
' 0.04 0.50 .
‘ 0.25
0.03
. 0.00 .
. 0.02 -0.25 .
—0.50
0.01
-0.75
0.00
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Expectation and Monte Carlo estimation

» For a distribution with density p, and a function f : RY 5 R, the
expectation of f(X) for X ~ p is:
Bxalf(X)] = [ F(x)p(x)dx
R
» Could be infinite or undefined for some f and p

» If we sample independently Xi,..., X, ~ p, then the Monte Carlo
estimator of the expectation is:

Bxepl (O] =~ 3 (X)

i=1

> This estimator is unbiased: E[IAEXNp[f(X)]] = Ex~p[f(X)]
> Law of large numbers: Ex.,[f(X)] 2= Exp[f(X)] (as m increases, the
estimate converges to the true value
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Expectation and Monte Carlo estimation

» If we sample independently Xi, ..., X, ~ p, then the Monte Carlo
estimator of the expectation is:

1 m
Ex~plf(X)] = — > (X))
p
m <
i=1
p(x,y) f(x, y) = sin(3x)cos(2y) O8]
0.05 0.75 dadedd
' 0.04 0.50
‘ 0.25 o4 . Wl =
0.03 - v/""ﬁﬁw———-———
. 0.00 il :,.’?\ﬂ_,_.f_u
' 0.02 -0.25 SR
0.01 7030 aof N
-0.75
0.00 10° 151 1w0# 17 104 0%

ATML / deep generative modelling / Lecture 2 / 20.01.2026 Distribution approximation 7/16



Expectation and Monte Carlo estimation

» For a distribution with density p, and a function f : RY 5 R, the
expectation of f(X) for X ~ p is:

Bxnlf00] = | 7(x)p(x) dx

» Could be infinite or undefined for some f and p
» If we sample independently Xi, ..., X, ~ p, then the Monte Carlo
estimator of the expectation is:

Bl F(X)] = - 3 F(X)

i=1
> Also for distributions without densities: what is Ex~s, [f(X)]?
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Expectation and Monte Carlo estimation

» For a distribution with density p, and a function f : RY 5 R, the
expectation of f(X) for X ~ p is:

Bxplf(0] = | Fx)plx) dx

» Could be infinite or undefined for some f and p
» If we sample independently Xi, ..., X, ~ p, then the Monte Carlo
estimator of the expectation is:

Bl F(X)] = - 3 F(X)

i=1
> Also for distributions without densities: what is Ex.s, [f(X)]? f(x0)-
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Expectation and Monte Carlo estimation

» For a distribution with density p, and a function f : RY 5 R, the
expectation of f(X) for X ~ p is:

Bxplf(0] = | Fx)plx) dx

» Could be infinite or undefined for some f and p
» If we sample independently Xi, ..., X, ~ p, then the Monte Carlo
estimator of the expectation is:

Bl F(X)] = - 3 F(X)

i=1
> Also for distributions without densities: what is Ex.s, [f(X)]? f(x0)-
> What should Ex 15 5 [f(X)] be?
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Expectation and Monte Carlo estimation

» For a distribution with density p, and a function f : RY 5 R, the
expectation of f(X) for X ~ p is:

Bxplf(0] = | Fx)plx) dx

» Could be infinite or undefined for some f and p
» If we sample independently Xi, ..., X, ~ p, then the Monte Carlo
estimator of the expectation is:

Bl F(X)] = - 3 F(X)

i=1
> Also for distributions without densities: what is Ex.s, [f(X)]? f(x0)-
> What should Ex 15~ 4 [f(X)] be? LS ().
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Generative processes as distributions

Two questions to ask about a distribution used in modelling:

» How to sample from it? (Generative processes are sampling procedures!)
» How to evaluate its density at a given point?

For which of these processes can we evaluate the density?
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Generative processes as distributions

For which of these processes can we evaluate the density?
» Sample from a Gaussian mixture with known parameters.
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Generative processes as distributions

For which of these processes can we evaluate the density?
» Sample from a Gaussian mixture with known parameters. Yes.
» Sample a random point from the dataset.
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Generative processes as distributions

For which of these processes can we evaluate the density?

» Sample from a Gaussian mixture with known parameters. Yes.

» Sample a random point from the dataset. No density.

» Begin with an empty sequence. Pass the sequence through a neural
network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence.

neural network next word  compute |
(Transformer, RNN, SSM) dance mEE
I O O I felp -
| am arobot. | like to :
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Generative processes as distributions

For which of these processes can we evaluate the density?

» Sample from a Gaussian mixture with known parameters. Yes.

» Sample a random point from the dataset. No density.

» Begin with an empty sequence. Pass the sequence through a neural
network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence. Not a
distribution over R?, but mass function by autoregressive factorisation.

» Sample z ~ N(0, /), then output G(z), where G is a neural network.

P X
Q) £}
o Q
L]
- "~
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Generative processes as distributions

For which of these processes can we evaluate the density?

» Sample from a Gaussian mixture with known parameters. Yes.

» Sample a random point from the dataset. No density.

» Begin with an empty sequence. Pass the sequence through a neural
network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence. Not a
distribution over R?, but mass function by autoregressive factorisation.

» Sample z ~ N(0, /), then output G(z), where G is a neural network. No
(in general), but more in two weeks.

» Sample a random point cloud and run a physics simulation for a fixed time
horizon. Output the resulting point cloud.
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Generative processes as distributions

For which of these processes can we evaluate the density?

» Sample from a Gaussian mixture with known parameters. Yes.

» Sample a random point from the dataset. No density.

» Begin with an empty sequence. Pass the sequence through a neural
network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence. Not a
distribution over R?, but mass function by autoregressive factorisation.

» Sample z ~ N(0, /), then output G(z), where G is a neural network. No
(in general), but more in two weeks.

» Sample a random point cloud and run a physics simulation for a fixed time
horizon. Output the resulting point cloud. No (in general), but more at the
end of the track.
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Generative processes as distributions

For which of these processes can we evaluate the density?

» Sample from a Gaussian mixture with known parameters. Yes.

» Sample a random point from the dataset. No density.

» Begin with an empty sequence. Pass the sequence through a neural
network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence. Not a
distribution over R?, but mass function by autoregressive factorisation.

» Sample z ~ N(0, /), then output G(z), where G is a neural network. No
(in general), but more in two weeks.

» Sample a random point cloud and run a physics simulation for a fixed time
horizon. Output the resulting point cloud. No (in general), but more at the
end of the track.

Are there distributions for which we can evaluate the density, but not (easily)

sample from them?
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Generative processes as distributions

For which of these processes can we evaluate the density?
» Sample from a Gaussian mixture with known parameters.
» Sample a random point from the dataset.

» Begin with an empty sequence. Pass the sequence through a neural
network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence.

» Sample z ~ N(0, /), then output G(z), where G is a neural network.

» Sample a random point cloud and run a physics simulation for a fixed time
horizon. Output the resulting point cloud.

Are there distributions for which we can evaluate the density, but not (easily)

sample from them? Yes: Bayesian posteriors p(x | y) o< p(x)p(y | x), for

example. Many methods exist to sample approximately.
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» Generative modelling as an optimisation problem
» Divergence measures



Generative modelling as distribution approximation

Setting:

» We have a data distribution 74,., over R (from which we can sample,
but we do not know its density function)
» It could be the empirical distribution of a dataset

» We have a class of model distributions {7y} (with densities py)

> O are the parameters of the model (e.g., neural network weights, Gaussian mixture
parameters)

» Note that we do not necessarily know the density functions pyg

» We seek 6 such that 7y approximates mq,ta well:
0* = arg min D(7g, Tdata)
0

» Next: What is D?
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» Generative modelling as an optimisation problem
» Divergence measures



What should a divergence measure be?

Some desirable properties:
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What should a divergence measure be?

Some desirable properties:

» Nonnegativity: D(7data; Tmodel) = 0, with equality only if Tgata = Tmodel
» Easy estimation from samples
» Optimisation tractability

» Some measures (e.g., transport—based) are good for model evaluation, but not for
training (more on this in a few weeks)
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Kullback-Leibler divergence

If p and g are (densities of ) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

00

KL(pllq) = Ex~p [Iog
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Kullback-Leibler divergence

If p and g are (densities of ) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

KL(pla) = Bxvp 108 20| = [ p(x)1o 20 0x
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Kullback-Leibler divergence

If p and g are (densities of ) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

KL(pla) = Bxvp 108 20| = [ p(x)1o 20 0x

» Gibbs’ inequality: KL(p||q) > 0, equality only if p = ¢
» Importantly, KL(p||q) # KL(q||p) in general
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Kullback-Leibler divergence

If p and g are (densities of ) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

KL(pla) = Bxvp 108 20| = [ p(x)1o 20 0x

» Gibbs’ inequality: KL(p||q) > 0, equality only if p = ¢
» Importantly, KL(p||q) # KL(q||p) in general
» When/how can the KL be estimated using samples?
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Kullback-Leibler divergence

If p and g are (densities of ) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

KL(pla) = Bxvp 108 20| = [ p(x)1o 20 0x

» Gibbs’ inequality: KL(p||q) > 0, equality only if p = ¢
» Importantly, KL(p||q) # KL(q||p) in general

» When/how can the KL be estimated using samples? If we can sample from
p and evaluate both densities, use Monte Carlo.
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from myata)?

“forward” KL “reverse” KL

1 | —
0" = arg min KL(7gata||m9) or 6% = arg min KL(7g||7data)?
0 0
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from myata)?

“forward” KL “reverse” KL

1 | —
0" = arg min KL(7gata||m9) or 6% = arg min KL(7g||7data)?
0 0

If we do not have the density of m4ata, We can compute neither directly!
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from myata)?

“forward” KL “reverse” KL

1 | —
0" = arg min KL(7gata||m9) or 6% = arg min KL(7g||7data)?
0 0

If we do not have the density of m4ata, We can compute neither directly!
However, KL(7gata||7g) is more suitable, because:

KL(7data||70) = Exr~ry.. |10
(ol 70) = Exr, [l0g 22202
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from myata)?

“forward” KL “reverse” KL

1 | —
0" = arg min KL(7gata||m9) or 6% = arg min KL(7g||7data)?
0 0

If we do not have the density of m4ata, We can compute neither directly!
However, KL(7gata||7g) is more suitable, because:

pdata(X)]
Po(X)
= Exorg[108 paata(X)] = Extomy,, [log po(X)]

KI—(7Tdata”7T6) - IE)<""7'|'data [log
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from myata)?

“forward” KL “reverse” KL

1 | —
0" = arg min KL(7gata||m9) or 6% = arg min KL(7g||7data)?
0 0

If we do not have the density of m4ata, We can compute neither directly!
However, KL(7gata||7g) is more suitable, because:

pdata(X)]
Po(X)
= Exorg[108 paata(X)] = Extomy,, [log po(X)]

some unknown constant

KI—(7Tdata”7T6) - IE)<""7'|'data [log

(negative entropy)
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from myata)?

“forward” KL “reverse” KL

1 | —
0" = arg min KL(7gata||m9) or 6% = arg min KL(7g||7data)?
0 0

If we do not have the density of m4ata, We can compute neither directly!
However, KL(7gata||7g) is more suitable, because:

pdata(X)
KL 7d Tg) = EXNTF ata ['Og —]
( ata” ) d PG(X)
- IIEX’\’Wdata [log pdata (X)]I - }Exwﬂ'data [Iog p@(X)]I
some unknown constant can be estimated from samples

(negative entropy)
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from myata)?

“forward” KL “reverse” KL

1 | —
0" = arg min KL(7gata||m9) or 6% = arg min KL(7g||7data)?
0 0

If we do not have the density of m4ata, We can compute neither directly!
However, KL(7gata||7g) is more suitable, because:

pdata(X)
KL 7d Tg) = Exwﬂ- ata ['Og —]
( ata” ) d PG(X)
= IEX~7rdata [log pyata (X)]. - I]EXNﬂ'data [log PG(X)]I
some unknown constant can be estimated from samples

(negative entropy)

Minimising KL(7data||79) = maximising sample log-likelihood Ex.r....[log pe(X)]
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Maximum likelihood estimation

Minimising KL(7datal|m9) = maximising sample log-likelihood Exr,...[log ps(X)]
» Recovers maximum likelihood estimation (MLE)
> Maximising joint probability log [ [, cqataset Po(Xi)
P Assumes Tryata IS the distribution of independent samples from an underlying
distribution
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Maximum likelihood estimation

Minimising KL(7datal|m9) = maximising sample log-likelihood Exr,...[log ps(X)]
» Recovers maximum likelihood estimation (MLE)
> Maximising joint probability log [ [, cqataset Po(Xi)
P Assumes Tryata IS the distribution of independent samples from an underlying
distribution

» If we can compute py(x) for any x, and draw samples x ~ Trgata, We can
estimate this expectation using Monte Carlo:

~ 1
EX’\’TFdata [log pQ(X)] = E Z |Og pe(xl)7 XI ~ 7Tdata
i=1
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Maximum likelihood estimation

Minimising KL(7datal|m9) = maximising sample log-likelihood Exr,...[log ps(X)]
» If we can compute py(x) for any x, and draw samples x ~ Tyata, We can
estimate this expectation using Monte Carlo:

~ 1 <
Ex~rgns[log Po(X)] = — ; log po(xi),  Xi ~ Tdata
» Algorithm to fit 6 using stochastic gradient descent

» Sample a minibatch xq,..., X, ~ Tdata
> Compute gradient estimate:

1 m
g=— 2; Vo[~ log py ()]
=
» Update parameters: 6 < 0 — ng (or using your favourite optimiser)
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Maximum likelihood estimation

Minimising KL(7data||79) = maximising sample log-likelihood Ex.r....[log ps(X)]
» Algorithm to fit 6 using stochastic gradient descent

» Sample a minibatch xq,..., Xm ~ Tdata
» Compute gradient estimate:

g % > Vo[- log po(xi)]
i=1

> Update parameters: 6 < 6 — ng (or using your favourite optimiser)

» What does this algorithm require?
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Maximum likelihood estimation

Minimising KL(7data||79) = maximising sample log-likelihood Ex.r....[log ps(X)]
» Algorithm to fit 6 using stochastic gradient descent

» Sample a minibatch xq,..., Xm ~ Tdata
» Compute gradient estimate:

g % > Vo[- log po(xi)]
i=1

> Update parameters: 6 < 6 — ng (or using your favourite optimiser)

» What does this algorithm require? py known and differentiable w.r.t. 6.
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Jensen-Shannon divergence

A compromise: the Jensen—Shannon (JS) divergence

JS(p,q) = %KL (,;H%) N %KL ("H%)

» JS(p,q) > 0, with equality only if p = ¢

> JS(p,q) = JS(q, p)
» 0 <JS(p,q) <log2 (or <1, if using base-2 log)
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Summary of three divergences considered

Which divergence to use for generative modelling, if all are possible?
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Summary of three divergences considered

Which divergence to use for generative modelling, if all are possible?

KL(7data||™e) (forward) KL(7g||mdata) (reverse) JS(Tdata, mo)

KL(pgata || pe) = 0.854 KL(pgata || pe) = 0.225 KL(pgata || pe) = 6.589 KL(Pgata || pe) = 0.359 KL(Pgata || pe) = 4.611 KL(Pgata || pe) = 0.272

KL(pe | paats) = 2.509 KL(p | paats) = 0425 KL(Pe || Paata) = 0.709 KL(Po || Paata) = 0215 KL(Pe || Paora) = 0.899 KL(Pe || Paora) = 0.464 Tdata
JS(paata, o) = 0.211 JS(paata, o) = 0.058 JS(pgata: pe) = 0.193 JS(Paata: po) = 0.055 JS(Paata, Po) = 0.182 JS(Paata, Po) = 0.071

' ’
. - - ~

KL(pgata || pe) = 0.036 KL(pgata || pe) = 0.000 KL(pgata || pe) = 0.040 KL(pgata || pe) = 0.000 KL(Pgata || pe) = 0.040 KL(paata || pe) = 0.000
KL(pg || Paate) = 0.043 KL(pg || Paata) = 0.000 KL(pe || Pgata) = 0.041 KL(pe || Pgata) = 0.000 KL(pe || paata) = 0.047 KL(pe || Pgata) = 0.000
JS(Paata, Pe) = 0.009 JS(Pgata, Pe) = 0.000 JS(Paata: Pe) = 0.009 JS(Paata: Pe) = 0.000 JS(Paata; Pe) = 0.011 JS(Paata, Pe) = 0.000 ‘

’ ’ ’ ’ ’ ’ -
- - -
» . - . » . '
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Summary of three divergences considered

KL(7ata||mg) (forward)

KL(pgata || pe) = 0.854
KL(pg || Paata) = 2.509
J5(Paata, Po) = 0.211

KL(pgata || pe) = 0.225
KL(pg || Paata) = 0.425
JS(Paata, Po) = 0.058

KL(7g||7data) (reverse)

KL(Pgata || pe) = 6.589
KL(pg || Paata) = 0.709
JS(Paata, Po) = 0.193

KL(Pgata || pe) = 0.359
KL(pe || Poata) = 0.215
JS(Paata, Po) = 0.055

JS(ﬂ'data s 776’)

KL(pdata || ps) = 4.611
KL(pe || Pata) = 0.899
JS(Paata, Pe) = 0.182

KL(Paata || pe) = 0.272
KL(pe || Pata) = 0.464
JS(Paata; Po) = 0.071

Tldata

4
~

-

’
-

-

~/

KL(Pdata || o) = 0.036
KL(pg || Paata) = 0.043
JS(Paata, Po) = 0.009

KL(pgata || Po) = 0.000
KL(pe || Paata) = 0.000
JS(pgata, Po) = 0.000

KL(Pgata || pg) = 0.040
KL(pe || Paata) = 0.041
JS(paata, Po) = 0.009

KL(pgata || pe) = 0.000
KL(pg || Poata) = 0.000
JS(Paata, ps) = 0.000

KL(Pgata || Pg) = 0.040
KL(pg || pata) = 0.047
JS(pgata, po) = 0.011

KL(pdata || ps) = 0.000
KL(pg || pata) = 0.000
JS(Paata, Pe) = 0.000

”
-

~

»
-
!

»
-

~

L
-
!

»
~

»
!

-
.

» Forward KL / MLE: mode-covering (high diversity, low fidelity)

» Reverse KL: mode-seeking (high fidelity, low diversity)
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Conclusion and looking ahead

» Generative modelling can be formulated as optimisation of a divergence
between the data distribution and model distribution

» Forward KL divergence minimisation = maximum likelihood estimation

» Tutorial: exploring choices of divergence for fitting simple models

» Next time: latent variable models (when py not available in closed form)
and autoencoders

P Suggestion to review variational inference from PMR course or Probabilistic ML
book (Advanced Topics, §10.1-2) for advanced reading
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