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Outline of Lecture 2

Maths review + generative modelling as optimisation:

I Some notes and review of Lecture 1

I Preliminaries
I Probability distributions and density functions

I Generative processes

I Generative modelling as an optimisation problem
I Divergence measures
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I Some notes and review of Lecture 1

I Preliminaries
I Probability distributions and density functions

I Generative processes

I Generative modelling as an optimisation problem
I Divergence measures



Admin notes

I Sample exam available on website
I It is 45 marks, but the real exam will be 25

I Slides published the evening before each lecture

I Tutorial for this track: Mondays 13:10-14:00 (NM present) and
14:10–15:00 (KT present), Appleton Tower Teaching Studio M2

I Tutorial materials published at end of preceding week
I Sooner in future weeks
I Theory and programming parts; come prepared with questions!
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Lecture 1 review

Informally, generative modelling is the task of approximating the distribution
that produced some observed data. (Today, we make this formal.)

train
−−→

sample
−−−−→
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Lecture 1 review

I A generative model is a probability distribution, or generative process,
that is derived from data so as to approximate the distribution that
produced the data.

I A deep generative model is one that uses deep neural networks to
represent (components of) the generative process.

I A deep generative modelling algorithm consists of: a choice of
generative process, a family of distributions parametrised by neural
networks to represent that process, and a learning algorithm to fit those
networks’ parameters to data.

ATML / deep generative modelling / Lecture 2 / 20.01.2026 Distribution approximation 3 / 16



Lecture 1 review

I A generative model is a probability distribution, or generative process,
that is derived from data so as to approximate the distribution that
produced the data.

I A deep generative model is one that uses deep neural networks to
represent (components of) the generative process.

I A deep generative modelling algorithm consists of: a choice of
generative process, a family of distributions parametrised by neural
networks to represent that process, and a learning algorithm to fit those
networks’ parameters to data.

The questions:
I How to represent the approximating distribution (i.e., the choice of

generative process and its parametrisation)
I How to fit it to data (the learning algorithm)
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Lecture 1 review

Desiderata for generative modelling: I Fidelity (samples should look like
training data)
I The model should not produce

samples far from the training data
with high probability

I Diversity (samples should represent
the variation in the training data)
I The model should produce samples

close to all parts of the training data
with high probability

I Novelty (samples should not be
copies of training data)
I The modelled distribution should be

smooth to prevent memorisation
(overfitting)
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I Some notes and review of Lecture 1

I Preliminaries
I Probability distributions and density functions

I Generative processes

I Generative modelling as an optimisation problem
I Divergence measures



Probability distributions

I A probability distribution µ over Rd

is a function that assigns a number
µ(A) ≥ 0 to every measurable subset A
of Rd , satisfying certain axioms
I Such subsets A are called events
I Axiom: µ(Rd) = 1, µ(∅) = 0
I Axiom: if A1 ∩ A2 = ∅, then

µ(A1 ∪ A2) = µ(A1) + µ(A2)
I (We do not discuss the details here;

measure theory studies this in depth.)

I Meaning: µ(A) is the probability that a
random sample X ∼ µ lies in A

0.277

0.014

0.073

0.085

0.994

(1,2)
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Probability distributions

I A probability distribution µ over Rd is a function that assigns a number
µ(A) ≥ 0 to every measurable subset A of Rd , satisfying certain axioms

I Meaning: µ(A) is the probability that a random sample X ∼ µ lies in A

I Some probability distributions can be
described by density functions
p : Rd → [0,∞); in this case:

µ(A) =

∫

A

p(x) dx =

∫

Rd

1[x ∈ A]p(x) dx
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Probability distributions

I A probability distribution µ over Rd is a function that assigns a number
µ(A) ≥ 0 to every measurable subset A of Rd , satisfying certain axioms

I Meaning: µ(A) is the probability that a random sample X ∼ µ lies in A

I Some probability distributions can be
described by density functions
p : Rd → [0,∞); in this case:

µ(A) =

∫

A

p(x) dx =

∫

Rd

1[x ∈ A]p(x) dx

What is p({(1, 2)})?

0.277

0.014

0.073

0.085

0.994

(1,2)

ATML / deep generative modelling / Lecture 2 / 20.01.2026 Distribution approximation 4 / 16



Probability distributions

I A probability distribution µ over Rd is a function that assigns a number
µ(A) ≥ 0 to every measurable subset A of Rd , satisfying certain axioms

I Meaning: µ(A) is the probability that a random sample X ∼ µ lies in A

I Some probability distributions can be
described by density functions
p : Rd → [0,∞); in this case:

µ(A) =

∫

A

p(x) dx =

∫

Rd

1[x ∈ A]p(x) dx

What is p({(1, 2)})? 0 (points have zero
probability mass under continuous distribu-
tions).

0.277

0.014

0.073

0.085

0.994

(1,2)
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Probability distributions

I A probability distribution µ over Rd is a function that assigns a number
µ(A) ≥ 0 to every measurable subset A of Rd , satisfying certain axioms

I Meaning: µ(A) is the probability that a random sample X ∼ µ lies in A
I Some probability distributions can be described by density functions

p : Rd → [0,∞); in this case:

µ(A) =

∫

A

p(x) dx =

∫

Rd

1[x ∈ A]p(x) dx

What is p({(1, 2)})? 0 (points have zero probability mass under continuous
distributions).
For distributions that do have densities, we often use µ (distribution) and p

(its density) interchangeably
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Density functions and delta distributions

Do all distributions have density functions?
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Density functions and delta distributions

Do all distributions have density functions? No.
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Density functions and delta distributions

Do all distributions have density functions? No.
(Dirac) delta distribution, or point mass, at x : δx , defined by:

δx(A) =

{
1, x ∈ A

0, x /∈ A
.

I δx does not have a density function (why?)
I What does this distribution represent? (How do we sample from it?)
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0, x /∈ A
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Density functions and delta distributions

Do all distributions have density functions? No.
(Dirac) delta distribution, or point mass, at x : δx , defined by:

δx(A) =

{
1, x ∈ A

0, x /∈ A
.

I δx does not have a density function (why?)
I What does this distribution represent? (How do we sample from it?) The

random variable X ∼ δx is always equal to x .
I How do we understand the empirical distribution

µ =
1

n

n∑

i=1

δxi ,

where x1, . . . , xn ∈ R
d?
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Density functions and delta distributions

Do all distributions have density functions? No.
(Dirac) delta distribution, or point mass, at x : δx , defined by:

δx(A) =

{
1, x ∈ A

0, x /∈ A
.

I δx does not have a density function (why?)
I What does this distribution represent? (How do we sample from it?) The

random variable X ∼ δx is always equal to x .
I How do we understand the empirical distribution

µ =
1

n

n∑

i=1

δxi ,

where x1, . . . , xn ∈ R
d? (Sampling uniformly from {x1, . . . , xn}.)
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Support of a distribution

The support of a distribution µ is the smallest closed set S such that
µ(S) = 1

I If µ has continuous density p and p(x) > 0 for all x , what is the support of
µ?

I What is the support of an empirical distribution 1
n

∑n
i=1 δxi?

I If X ∼ Uniform([0, 1]), what is the support of the distribution of
Y = (X , 1− X )?
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Support of a distribution

The support of a distribution µ is the smallest closed set S such that
µ(S) = 1

I If µ has continuous density p and p(x) > 0 for all x , what is the support of
µ? The entire R

d . We say µ has full support.

I What is the support of an empirical distribution 1
n

∑n
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I If X ∼ Uniform([0, 1]), what is the support of the distribution of
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Support of a distribution

The support of a distribution µ is the smallest closed set S such that
µ(S) = 1

I If µ has continuous density p and p(x) > 0 for all x , what is the support of
µ? The entire R

d . We say µ has full support.

I What is the support of an empirical distribution 1
n

∑n
i=1 δxi? {x1, . . . , xn}.

I If X ∼ Uniform([0, 1]), what is the support of the distribution of
Y = (X , 1− X )? The segment from (0, 1) to (1, 0); note Y has no density
in R

2.
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Expectation and Monte Carlo estimation

I For a distribution with density p, and a function f : Rd → R, the
expectation of f (X ) for X ∼ p is:

EX∼p[f (X )] =

∫

Rd

f (x)p(x) dx

I Could be infinite or undefined for some f and p
p(x, y)

0.00

0.01

0.02

0.03

0.04

0.05

f(x, y) = sin(3x)cos(2y)

0.75
0.50
0.25

0.00
0.25
0.50
0.75

f(x, y)p(x, y)

0.000

0.005

0.010

0.015

0.020
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Expectation and Monte Carlo estimation

I For a distribution with density p, and a function f : Rd → R, the
expectation of f (X ) for X ∼ p is:

EX∼p[f (X )] =

∫

Rd

f (x)p(x) dx

I Could be infinite or undefined for some f and p

I If we sample independently X1, . . . ,Xm ∼ p, then the Monte Carlo
estimator of the expectation is:

ÊX∼p[f (X )] =
1

m

m∑

i=1

f (Xi)

I This estimator is unbiased: E[ÊX∼p[f (X )]] = EX∼p[f (X )]
I Law of large numbers: ÊX∼p[f (X )]

m→∞
−−−−→ EX∼p[f (X )] (as m increases, the

estimate converges to the true value almost surely
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Expectation and Monte Carlo estimation

I For a distribution with density p, and a function f : Rd → R, the
expectation of f (X ) for X ∼ p is:

EX∼p[f (X )] =

∫

Rd

f (x)p(x) dx

I Could be infinite or undefined for some f and p

I If we sample independently X1, . . . ,Xm ∼ p, then the Monte Carlo
estimator of the expectation is:

ÊX∼p[f (X )] =
1

m

m∑

i=1

f (Xi)

I Also for distributions without densities: what is EX∼δx0
[f (X )]?
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Expectation and Monte Carlo estimation

I For a distribution with density p, and a function f : Rd → R, the
expectation of f (X ) for X ∼ p is:

EX∼p[f (X )] =

∫

Rd

f (x)p(x) dx

I Could be infinite or undefined for some f and p

I If we sample independently X1, . . . ,Xm ∼ p, then the Monte Carlo
estimator of the expectation is:

ÊX∼p[f (X )] =
1

m

m∑

i=1

f (Xi)

I Also for distributions without densities: what is EX∼δx0
[f (X )]? f (x0).

I What should EX∼
1
n

∑n
i=1 δxi

[f (X )] be? 1
n

∑n
i=1 f (xi).
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Generative processes as distributions

Two questions to ask about a distribution used in modelling:
I How to sample from it? (Generative processes are sampling procedures!)
I How to evaluate its density at a given point?
For which of these processes can we evaluate the density?
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Generative processes as distributions

For which of these processes can we evaluate the density?
I Sample from a Gaussian mixture with known parameters.
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Generative processes as distributions

For which of these processes can we evaluate the density?

I Sample from a Gaussian mixture with known parameters. Yes.

I Sample a random point from the dataset.
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Generative processes as distributions

For which of these processes can we evaluate the density?
I Sample from a Gaussian mixture with known parameters. Yes.
I Sample a random point from the dataset. No density.
I Begin with an empty sequence. Pass the sequence through a neural

network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence.

I am a robot . I like to

neural network
(Transformer, RNN, SSM)

compute
dance
help

...

next word
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Generative processes as distributions

For which of these processes can we evaluate the density?
I Sample from a Gaussian mixture with known parameters. Yes.
I Sample a random point from the dataset. No density.
I Begin with an empty sequence. Pass the sequence through a neural

network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence. Not a
distribution over Rd , but mass function by autoregressive factorisation.

I Sample z ∼ N (0, I ), then output G (z), where G is a neural network.
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Generative processes as distributions

For which of these processes can we evaluate the density?
I Sample from a Gaussian mixture with known parameters. Yes.
I Sample a random point from the dataset. No density.
I Begin with an empty sequence. Pass the sequence through a neural

network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence. Not a
distribution over Rd , but mass function by autoregressive factorisation.

I Sample z ∼ N (0, I ), then output G (z), where G is a neural network. No
(in general), but more in two weeks.

I Sample a random point cloud and run a physics simulation for a fixed time
horizon. Output the resulting point cloud.
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Generative processes as distributions

For which of these processes can we evaluate the density?
I Sample from a Gaussian mixture with known parameters. Yes.
I Sample a random point from the dataset. No density.
I Begin with an empty sequence. Pass the sequence through a neural

network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence. Not a
distribution over Rd , but mass function by autoregressive factorisation.

I Sample z ∼ N (0, I ), then output G (z), where G is a neural network. No
(in general), but more in two weeks.

I Sample a random point cloud and run a physics simulation for a fixed time
horizon. Output the resulting point cloud. No (in general), but more at the
end of the track.

Are there distributions for which we can evaluate the density, but not (easily)
sample from them?
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Generative processes as distributions

For which of these processes can we evaluate the density?

I Sample from a Gaussian mixture with known parameters.

I Sample a random point from the dataset.

I Begin with an empty sequence. Pass the sequence through a neural
network to get a distribution over the next symbol, sample from it, and
append. Repeat until <end> is produced; output the sequence.

I Sample z ∼ N (0, I ), then output G (z), where G is a neural network.

I Sample a random point cloud and run a physics simulation for a fixed time
horizon. Output the resulting point cloud.

Are there distributions for which we can evaluate the density, but not (easily)
sample from them? Yes: Bayesian posteriors p(x | y) ∝ p(x)p(y | x), for
example. Many methods exist to sample approximately.
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I Some notes and review of Lecture 1

I Preliminaries
I Probability distributions and density functions

I Generative processes

I Generative modelling as an optimisation problem
I Divergence measures



Generative modelling as distribution approximation

Setting:

I We have a data distribution πdata over Rd (from which we can sample,
but we do not know its density function)
I It could be the empirical distribution of a dataset

I We have a class of model distributions {πθ} (with densities pθ)
I θ are the parameters of the model (e.g., neural network weights, Gaussian mixture

parameters)
I Note that we do not necessarily know the density functions pθ

I We seek θ such that πθ approximates πdata well:

θ∗ = argmin
θ

D(πθ, πdata)

I Next: What is D?
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I Some notes and review of Lecture 1

I Preliminaries
I Probability distributions and density functions

I Generative processes

I Generative modelling as an optimisation problem
I Divergence measures



What should a divergence measure be?

Some desirable properties:
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What should a divergence measure be?

Some desirable properties:

I Nonnegativity: D(πdata, πmodel) ≥ 0, with equality only if πdata = πmodel

I Easy estimation from samples
I Optimisation tractability

I Some measures (e.g., transport-based) are good for model evaluation, but not for
training (more on this in a few weeks)
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Kullback-Leibler divergence

If p and q are (densities of) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

KL(p‖q) = EX∼p

[
log

p(X )

q(X )

]
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If p and q are (densities of) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

KL(p‖q) = EX∼p

[
log

p(X )

q(X )

]
=

∫

Rd

p(x) log
p(x)

q(x)
dx
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Kullback-Leibler divergence

If p and q are (densities of) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

KL(p‖q) = EX∼p

[
log

p(X )

q(X )

]
=

∫

Rd

p(x) log
p(x)

q(x)
dx

I Gibbs’ inequality: KL(p‖q) ≥ 0, equality only if p = q as distributions

I Importantly, KL(p‖q) 6= KL(q‖p) in general
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I When/how can the KL be estimated using samples?
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Kullback-Leibler divergence

If p and q are (densities of) two distributions, the Kullback-Leibler (KL)
divergence from p to q is defined as:

KL(p‖q) = EX∼p

[
log

p(X )

q(X )

]
=

∫

Rd

p(x) log
p(x)

q(x)
dx

I Gibbs’ inequality: KL(p‖q) ≥ 0, equality only if p = q as distributions

I Importantly, KL(p‖q) 6= KL(q‖p) in general

I When/how can the KL be estimated using samples? If we can sample from
p and evaluate both densities, use Monte Carlo.
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from πdata)?

θ∗ = argmin
θ

“forward” KL

KL(πdata‖πθ) or θ∗ = argmin
θ

“reverse” KL

KL(πθ‖πdata)?
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KL(πdata‖πθ) or θ∗ = argmin
θ

“reverse” KL

KL(πθ‖πdata)?

If we do not have the density of πdata, we can compute neither directly!
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from πdata)?

θ∗ = argmin
θ

“forward” KL

KL(πdata‖πθ) or θ∗ = argmin
θ

“reverse” KL

KL(πθ‖πdata)?

If we do not have the density of πdata, we can compute neither directly!
However, KL(πdata‖πθ) is more suitable, because:

KL(πdata‖πθ) = EX∼πdata

[
log

pdata(X )

pθ(X )

]
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from πdata)?

θ∗ = argmin
θ

“forward” KL

KL(πdata‖πθ) or θ∗ = argmin
θ

“reverse” KL

KL(πθ‖πdata)?

If we do not have the density of πdata, we can compute neither directly!
However, KL(πdata‖πθ) is more suitable, because:

KL(πdata‖πθ) = EX∼πdata

[
log

pdata(X )

pθ(X )

]

= EX∼πdata
[log pdata(X )] − EX∼πdata

[log pθ(X )]
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from πdata)?

θ∗ = argmin
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KL(πdata‖πθ) or θ∗ = argmin
θ

“reverse” KL

KL(πθ‖πdata)?

If we do not have the density of πdata, we can compute neither directly!
However, KL(πdata‖πθ) is more suitable, because:

KL(πdata‖πθ) = EX∼πdata

[
log

pdata(X )

pθ(X )

]

= EX∼πdata
[log pdata(X )]

some unknown constant

(negative entropy)

− EX∼πdata
[log pθ(X )]
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If we do not have the density of πdata, we can compute neither directly!
However, KL(πdata‖πθ) is more suitable, because:

KL(πdata‖πθ) = EX∼πdata

[
log

pdata(X )

pθ(X )

]

= EX∼πdata
[log pdata(X )]

some unknown constant

(negative entropy)

− EX∼πdata
[log pθ(X )]

can be estimated from samples
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Using KL divergence for generative modelling

Which direction to use for generative modelling (given samples from πdata)?

θ∗ = argmin
θ

“forward” KL

KL(πdata‖πθ) or θ∗ = argmin
θ

“reverse” KL

KL(πθ‖πdata)?

If we do not have the density of πdata, we can compute neither directly!
However, KL(πdata‖πθ) is more suitable, because:

KL(πdata‖πθ) = EX∼πdata

[
log

pdata(X )

pθ(X )

]

= EX∼πdata
[log pdata(X )]

some unknown constant

(negative entropy)

− EX∼πdata
[log pθ(X )]

can be estimated from samples

Minimising KL(πdata‖πθ) ≡ maximising sample log-likelihood EX∼πdata
[log pθ(X )]
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Maximum likelihood estimation

Minimising KL(πdata‖πθ) ≡ maximising sample log-likelihood EX∼πdata
[log pθ(X )]

I Recovers maximum likelihood estimation (MLE)
I Maximising joint probability log

∏
xi∈dataset pθ(xi )

I Assumes πdata is the distribution of independent samples from an underlying
distribution
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Maximum likelihood estimation

Minimising KL(πdata‖πθ) ≡ maximising sample log-likelihood EX∼πdata
[log pθ(X )]

I Recovers maximum likelihood estimation (MLE)
I Maximising joint probability log

∏
xi∈dataset pθ(xi )

I Assumes πdata is the distribution of independent samples from an underlying
distribution

I If we can compute pθ(x) for any x , and draw samples x ∼ πdata, we can
estimate this expectation using Monte Carlo:

ÊX∼πdata
[log pθ(X )] =

1

n

n∑

i=1

log pθ(xi), xi ∼ πdata
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Maximum likelihood estimation

Minimising KL(πdata‖πθ) ≡ maximising sample log-likelihood EX∼πdata
[log pθ(X )]

I If we can compute pθ(x) for any x , and draw samples x ∼ πdata, we can
estimate this expectation using Monte Carlo:

ÊX∼πdata
[log pθ(X )] =

1

n

n∑

i=1

log pθ(xi), xi ∼ πdata

I Algorithm to fit θ using stochastic gradient descent
I Sample a minibatch x1, . . . , xm ∼ πdata

I Compute gradient estimate:

g =
1

m

m∑

i=1

∇θ[− log pθ(xi )]

I Update parameters: θ ← θ − ηg (or using your favourite optimiser)
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Maximum likelihood estimation

Minimising KL(πdata‖πθ) ≡ maximising sample log-likelihood EX∼πdata
[log pθ(X )]

I Algorithm to fit θ using stochastic gradient descent
I Sample a minibatch x1, . . . , xm ∼ πdata

I Compute gradient estimate:

g =
1

m

m∑

i=1

∇θ[− log pθ(xi )]

I Update parameters: θ ← θ − ηg (or using your favourite optimiser)

I What does this algorithm require?
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Maximum likelihood estimation

Minimising KL(πdata‖πθ) ≡ maximising sample log-likelihood EX∼πdata
[log pθ(X )]

I Algorithm to fit θ using stochastic gradient descent
I Sample a minibatch x1, . . . , xm ∼ πdata

I Compute gradient estimate:

g =
1

m

m∑

i=1

∇θ[− log pθ(xi )]

I Update parameters: θ ← θ − ηg (or using your favourite optimiser)

I What does this algorithm require? pθ known and differentiable w.r.t. θ.
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Jensen-Shannon divergence

A compromise: the Jensen–Shannon (JS) divergence

JS(p, q) =
1

2
KL

(
p

∥∥∥p + q

2

)
+

1

2
KL

(
q

∥∥∥p + q

2

)

I JS(p, q) ≥ 0, with equality only if p = q as distributions

I JS(p, q) = JS(q, p)

I 0 ≤ JS(p, q) ≤ log 2 (or ≤ 1, if using base-2 log)
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Summary of three divergences considered

Which divergence to use for generative modelling, if all are possible?

KL(pdata || p ) = 0.854
KL(p || pdata) = 2.509
JS(pdata, p ) = 0.211

KL(pdata || p ) = 0.225
KL(p || pdata) = 0.425
JS(pdata, p ) = 0.058

KL(pdata || p ) = 0.036
KL(p || pdata) = 0.043
JS(pdata, p ) = 0.009

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

KL(pdata || p ) = 6.589
KL(p || pdata) = 0.709
JS(pdata, p ) = 0.193

KL(pdata || p ) = 0.359
KL(p || pdata) = 0.215
JS(pdata, p ) = 0.055

KL(pdata || p ) = 0.040
KL(p || pdata) = 0.041
JS(pdata, p ) = 0.009

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

KL(pdata || p ) = 4.611
KL(p || pdata) = 0.899
JS(pdata, p ) = 0.182

KL(pdata || p ) = 0.272
KL(p || pdata) = 0.464
JS(pdata, p ) = 0.071

KL(pdata || p ) = 0.040
KL(p || pdata) = 0.047
JS(pdata, p ) = 0.011

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000
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Summary of three divergences considered

Which divergence to use for generative modelling, if all are possible?
KL(πdata‖πθ) (forward)

KL(pdata || p ) = 0.854
KL(p || pdata) = 2.509
JS(pdata, p ) = 0.211

KL(pdata || p ) = 0.225
KL(p || pdata) = 0.425
JS(pdata, p ) = 0.058

KL(pdata || p ) = 0.036
KL(p || pdata) = 0.043
JS(pdata, p ) = 0.009

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

KL(πθ‖πdata) (reverse)
KL(pdata || p ) = 6.589
KL(p || pdata) = 0.709
JS(pdata, p ) = 0.193

KL(pdata || p ) = 0.359
KL(p || pdata) = 0.215
JS(pdata, p ) = 0.055

KL(pdata || p ) = 0.040
KL(p || pdata) = 0.041
JS(pdata, p ) = 0.009

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

JS(πdata, πθ)
KL(pdata || p ) = 4.611
KL(p || pdata) = 0.899
JS(pdata, p ) = 0.182

KL(pdata || p ) = 0.272
KL(p || pdata) = 0.464
JS(pdata, p ) = 0.071

KL(pdata || p ) = 0.040
KL(p || pdata) = 0.047
JS(pdata, p ) = 0.011

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

πdata
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Summary of three divergences considered
KL(πdata‖πθ) (forward)

KL(pdata || p ) = 0.854
KL(p || pdata) = 2.509
JS(pdata, p ) = 0.211

KL(pdata || p ) = 0.225
KL(p || pdata) = 0.425
JS(pdata, p ) = 0.058

KL(pdata || p ) = 0.036
KL(p || pdata) = 0.043
JS(pdata, p ) = 0.009

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

KL(πθ‖πdata) (reverse)
KL(pdata || p ) = 6.589
KL(p || pdata) = 0.709
JS(pdata, p ) = 0.193

KL(pdata || p ) = 0.359
KL(p || pdata) = 0.215
JS(pdata, p ) = 0.055

KL(pdata || p ) = 0.040
KL(p || pdata) = 0.041
JS(pdata, p ) = 0.009

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

JS(πdata, πθ)
KL(pdata || p ) = 4.611
KL(p || pdata) = 0.899
JS(pdata, p ) = 0.182

KL(pdata || p ) = 0.272
KL(p || pdata) = 0.464
JS(pdata, p ) = 0.071

KL(pdata || p ) = 0.040
KL(p || pdata) = 0.047
JS(pdata, p ) = 0.011

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

πdata

I Forward KL / MLE: mode-covering (high diversity, low fidelity)
I Reverse KL: mode-seeking (high fidelity, low diversity)
I JS: balance between the two (more in a few weeks)ATML / deep generative modelling / Lecture 2 / 20.01.2026 Distribution approximation 15 / 16



Conclusion and looking ahead

I Generative modelling can be formulated as optimisation of a divergence
between the data distribution and model distribution

I Forward KL divergence minimisation ≡ maximum likelihood estimation

I Tutorial: exploring choices of divergence for fitting simple models
I Next time: latent variable models (when pθ not available in closed form)

and autoencoders
I Suggestion to review variational inference from PMR course or Probabilistic ML

book (Advanced Topics, §10.1-2) for advanced reading
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