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Outline of Lecture 3

Autoencoders and friends:

I Some notes and leftovers from Lecture 2

I Two ingredients for VAEs
I Autoencoders

I Latent variable models

I Variational autoencoders
I Basic VAE

I The aggregate posterior problem and solutions
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I Some notes and leftovers from Lecture 2

I Two ingredients for VAEs
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I Basic VAE
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Admin notes

I A more engaging tutorial format: come with questions

I This week’s tutorial materials published by Thursday
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Lecture 2 review

Setting:

I We have a data distribution πdata over Rd (from which we can sample,
but we do not know its density function)
I It could be the empirical distribution of a dataset

I We have a class of model distributions {πθ} (with densities pθ)
I θ are the parameters of the model (e.g., neural network weights, Gaussian mixture

parameters)
I Note that we do not necessarily know the density functions pθ

I We seek θ such that πθ approximates πdata well:

θ∗ = argmin
θ

D(πθ, πdata)
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Lecture 2 review

The KL divergence

KL(p‖q) = EX∼p

[

log
p(X )

q(X )

]

=

∫

Rd

p(x) log
p(x)

q(x)
dx

I Interesting properties studied in last week’s tutorial sheet
I Minimising KL(πdata‖πθ) ≡ maximising sample log-likelihood

EX∼πdata
[log pθ(X )]

I Algorithm to fit θ using stochastic gradient descent:
I Sample a minibatch x1, . . . , xm ∼ πdata

I Compute gradient estimate:

g =
1

m

m
∑

i=1

∇θ[− log pθ(xi )]

I Update parameters: θ ← θ − ηg (or using your favourite optimiser)
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Lecture 2 loose ends

KL(πdata‖πθ) (forward)
KL(pdata || p ) = 0.854
KL(p || pdata) = 2.509
JS(pdata, p ) = 0.211

KL(pdata || p ) = 0.225
KL(p || pdata) = 0.425
JS(pdata, p ) = 0.058

KL(pdata || p ) = 0.036
KL(p || pdata) = 0.043
JS(pdata, p ) = 0.009

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

KL(πθ‖πdata) (reverse)
KL(pdata || p ) = 6.589
KL(p || pdata) = 0.709
JS(pdata, p ) = 0.193

KL(pdata || p ) = 0.359
KL(p || pdata) = 0.215
JS(pdata, p ) = 0.055

KL(pdata || p ) = 0.040
KL(p || pdata) = 0.041
JS(pdata, p ) = 0.009

KL(pdata || p ) = 0.000
KL(p || pdata) = 0.000
JS(pdata, p ) = 0.000

πdata
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I Forward KL / MLE: mode-covering (high diversity, low fidelity)
I Reverse KL: mode-seeking (high fidelity, low diversity)
I JSD: balance between the two (more in a few weeks)
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I Some notes and leftovers from Lecture 2

I Two ingredients for VAEs
I Autoencoders

I Latent variable models

I Variational autoencoders
I Basic VAE

I The aggregate posterior problem and solutions



Autoencoders

Train a neural network fθ to predict x from x itself

`(θ; x) = ‖x−fθ(x)‖
2

[

D = {x1, . . . , xn}, minimise
n

∑

i=1

`(θ, xi)

]

dinput dinput

fθ
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Autoencoders

Train a neural network fθ to predict x from x itself

`(θ; x) = ‖x − fθ(x)‖
2
 `(θ, φ; x) = ‖x − Dθ(Eφ(x))‖

2

Using a bottleneck layer induces a compressed representation z = Eφ(x) (a
latent variable): (visualisation)

dinput dinput

dlatent

z

encoder
Eφ

decoder
Dθ
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Autoencoders

Train a neural network fθ to predict x from x itself

`(θ; x) = ‖x − fθ(x)‖
2
 `(θ, φ; x) = ‖x − Dθ(Eφ(x))‖

2

Using a bottleneck layer induces a compressed representation z = Eφ(x) (a
latent variable): (visualisation)

dinput dinput

dlatent

z

encoder
Eφ

decoder
Dθ

Can we use this to generate new data by sampling z and decoding it to
x = Dθ(z)?
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Autoencoders

Train a neural network fθ to predict x from x itself

`(θ; x) = ‖x − fθ(x)‖
2
 `(θ, φ; x) = ‖x − Dθ(Eφ(x))‖

2

Using a bottleneck layer induces a compressed representation z = Eφ(x) (a
latent variable): (visualisation)

dinput dinput

dlatent

z

encoder
Eφ

decoder
Dθ

Can we use this to generate new data by sampling z and decoding it to
x = Dθ(z)? No, because distribution from which to sample z not known.
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Latent variable models

Generative models with latent variables z : To approximate πdata by a model
p, model a joint distribution pθ(x , z) over observed x and latent z to satisfy

pθ(x) =

∫

z

pθ(x , z) dz ≈ πdata(x)
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Latent variable models

Generative models with latent variables z : To approximate πdata by a model
p, model a joint distribution pθ(x , z) over observed x and latent z

z
pθ(x |z)

// x pθ(x) =

∫

z

pθ(z)pθ(x | z) dz

‘Ancestral’ sampling of x :

I Sample the latent z from a distribution pθ(z).

I Sample x from pθ(x | z).
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Latent variable models

Generative models with latent variables z : To approximate πdata by a model
p, model a joint distribution pθ(x , z) over observed x and latent z

z
pθ(x |z)

// x

qφ(z|x)

ff pθ(x) =

∫

z

pθ(z)pθ(x | z) dz

‘Ancestral’ sampling of x :

I Sample the latent z from a distribution pθ(z).

I Sample x from pθ(x | z).

The posterior over z , by Bayes’ rule (we often approximate it by a qφ(z | x)):

pθ(z | x) =
pθ(z)pθ(x | z)

pθ(x)
∝ pθ(z)pθ(x | z)
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Examples of latent variable models

I Mixture model (e.g., GMM): `→ x
I ` ∈ {1, 2, . . . , ncomponents} is a mixture index, categorical p(`)
I For each value of `, p(x | `) is a distribution in a chosen family (e.g., Gaussian)
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Examples of latent variable models

I Mixture model (e.g., GMM): `→ x
I ` ∈ {1, 2, . . . , ncomponents} is a mixture index, categorical p(`)
I For each value of `, p(x | `) is a distribution in a chosen family (e.g., Gaussian)

I Topic model (e.g., LDA): θ → d (topic vector → document)
I θ ∈ ∆ntopics is a topic vector, Dirichlet p(θ)
I θ determines a multinomial distribution p(d | θ) over word count vectors d via the

topic-word matrix
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Examples of latent variable models

I Bayesian neural network (conditional): θ, x → y (thought of as
θ → (x → y), parameters → outputs given x)
I θ are parameters of a neural net
I y are the outputs of a neural net p(y | x ; θ) with some inputs x
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Examples of latent variable models

I Bayesian neural network (conditional): θ, x → y (thought of as
θ → (x → y), parameters → outputs given x)
I θ are parameters of a neural net
I y are the outputs of a neural net p(y | x ; θ) with some inputs x

I Probabilistic grammar (e.g., PCFG): τ → s (syntax tree → sequence)
I p(τ): τ is generated hierarchically by applying probabilistic replacement rules (S →

NP VP, VP → V N, . . . )
I s is a sequence of leaves (terminal symbols)
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Latent variables ‘encode’ the data

I The posterior pθ(z | x) stochastically ‘encodes’ the
data x into a latent z
I An approximate posterior qφ performs dimensionality

reduction (topic representation of document, parse tree
of text, compressed code of image)

z
pθ(x |z)

// x

qφ(z|x)

ff
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Latent variables ‘encode’ the data
I The posterior pθ(z | x) stochastically ‘encodes’ the

data x into a latent z
I An approximate posterior qφ performs dimensionality

reduction (topic representation of document, parse tree
of text, compressed code of image)

I From now on, we consider data in R
ddata, encoded

into latents in R
dlatent with dlatent � ddata

z
pθ(x |z)

// x

qφ(z|x)

ff

qφ(z|x)
−−−−→
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MLE training of latent variable models

Given a dataset {xi}
N
i=1, we want to maximise

∑

i

log pθ(xi)

w.r.t. parameters of pθ(z) and pθ(x | z).
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MLE training of latent variable models

Given a dataset {xi}
N
i=1, we want to maximise

∑

i

log pθ(xi) =
∑

i

log

∫

z

pθ(z)pθ(xi | z) dz

w.r.t. parameters of pθ(z) and pθ(x | z).
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MLE training of latent variable models

Given a dataset {xi}
N
i=1, we want to maximise

∑

i

log pθ(xi) =
∑

i

log

∫

z

pθ(z)pθ(xi | z) dz

w.r.t. parameters of pθ(z) and pθ(x | z).
I Gibbs’ inequality: for any distribution qi(z),

log pθ(xi) = log

∫

z

pθ(z)pθ(xi | z) dz ≥

∫

z

qi(z) log
pθ(z)pθ(xi | z)

qi(z)
dz

evidence lower bound (ELBO)

with equality when qi(z) = pθ(z | xi) ∝ pθ(z)pθ(xi | z) (true posterior)
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Given a dataset {xi}
N
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∫

z

pθ(z)pθ(xi | z) dz ≥

∫

z

qi(z) log
pθ(z)pθ(xi | z)

qi(z)
dz

evidence lower bound (ELBO)

= log pθ(x)− KL(qi ‖ pθ(z |xi)))

with equality when qi(z) = pθ(z | xi) ∝ pθ(z)pθ(xi | z) (true posterior)
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MLE training of latent variable models

Given a dataset {xi}
N
i=1, we want to maximise

∑

i

log pθ(xi) =
∑

i

log

∫

z

pθ(z)pθ(xi | z) dz

w.r.t. parameters of pθ(z) and pθ(x | z).
I Gibbs’ inequality: for any distribution qi(z),

log pθ(xi) = log

∫

z

pθ(z)pθ(xi | z) dz ≥

∫

z

qi(z) log
pθ(z)pθ(xi | z)

qi(z)
dz

evidence lower bound (ELBO)

= log pθ(x)− KL(qi ‖ pθ(z |xi)))

with equality when qi(z) = pθ(z | xi) ∝ pθ(z)pθ(xi | z) (true posterior)
I Idea: to maximise log p(x t), maximise the ELBO
I  EM alg. (“Maximum likelihood from incomplete data” [Dempster et al., 1977])
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Gradient-based EM

Idea: to maximise log pθ(xi), maximise the ELBO

∫

z

qi(z) log
pθ(z)pθ(xi | z)

qi(z)
= Ez∼qi

[

log
pθ(z)pθ(xi | z)

qi(z)

]
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Gradient-based EM

Idea: to maximise log pθ(xi), maximise the ELBO

∫

z

qi(z) log
pθ(z)pθ(xi | z)

qi(z)
= Ez∼qi

[

log
pθ(z)pθ(xi | z)

qi(z)

]

I (Amortised) variational EM: approximate qi with a model qφ(z | xi) and
train it to approximate the true posterior pθ(z | xi) (E-step)
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∫

z

qi(z) log
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= Ez∼qi
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log
pθ(z)pθ(xi | z)

qi(z)

]

I (Amortised) variational EM: approximate qi with a model qφ(z | xi) and
train it to approximate the true posterior pθ(z | xi) (E-step)

I (Gradient-based) M-step: sample z ∼ qφ(z | xi) and maximise
log pθ(z)pθ(xi | z) w.r.t. parameters of pθ(z) and pθ(x | z)
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Gradient-based EM

Idea: to maximise log pθ(xi), maximise the ELBO

∫

z

qi(z) log
pθ(z)pθ(xi | z)

qi(z)
= Ez∼qi

[

log
pθ(z)pθ(xi | z)

qi(z)

]

I (Amortised) variational EM: approximate qi with a model qφ(z | xi) and
train it to approximate the true posterior pθ(z | xi) (E-step)

I (Gradient-based) M-step: sample z ∼ qφ(z | xi) and maximise
log pθ(z)pθ(xi | z) w.r.t. parameters of pθ(z) and pθ(x | z)

I Intuitively:
I E-step: learn to encode x into z that explains it well
I M-step: for data x , sample explanation z and learn to recover x from z
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I Some notes and leftovers from Lecture 2

I Two ingredients for VAEs
I Autoencoders

I Latent variable models

I Variational autoencoders
I Basic VAE

I The aggregate posterior problem and solutions



Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N (0, Id) in R

d)?
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Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N (0, Id) in R

d)?
I Make the encoder Eφ stochastic: z ∼ qφ(z | x) = N (z ;µφ(x)σ

2
φ(x))

I Reparametrisation: z = µφ(x) + σφ(x)� ε, ε ∼ N (0, Id)

dinput 2 · dlatent

encoder
Eφ

µφ(x)

logσφ(x)

z ∼ N (µφ(x), σφ(x)
2)
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Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N (0, Id) in R

d)?
I Make the encoder Eφ stochastic: z ∼ qφ(z | x) = N (z ;µφ(x)σ

2
φ(x))

I Reparametrisation: z = µφ(x) + σφ(x)� ε, ε ∼ N (0, Id)

I Objective (derived on next slide): reconstruct x from z while matching
qφ(z | x) to N (0, Id):

`(θ, φ; x) = Ez∼qφ(z|x)‖x − Dθ(z)‖
2

autoencoder / reconstruction loss
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Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N (0, Id) in R

d)?
I Make the encoder Eφ stochastic: z ∼ qφ(z | x) = N (z ;µφ(x)σ

2
φ(x))

I Reparametrisation: z = µφ(x) + σφ(x)� ε, ε ∼ N (0, Id)

I Objective (derived on next slide): reconstruct x from z while matching
qφ(z | x) to N (0, Id):

`(θ, φ; x) = Ez∼qφ(z|x)‖x − Dθ(z)‖
2

autoencoder / reconstruction loss

+ KL(qφ(z | x) ‖ p(z))

prior-matching loss
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Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N (0, Id) in R

d)?
I Make the encoder Eφ stochastic: z ∼ qφ(z | x) = N (z ;µφ(x)σ

2
φ(x))

I Reparametrisation: z = µφ(x) + σφ(x)� ε, ε ∼ N (0, Id)

I Objective (derived on next slide): reconstruct x from z while matching
qφ(z | x) to N (0, Id):

`(θ, φ; x) = Ez∼qφ(z|x)‖x − Dθ(z)‖
2

autoencoder / reconstruction loss

+ KL(qφ(z | x) ‖ p(z))

prior-matching loss

I The KL for Gaussians (tutorial exercise):

KL(N (µφ(x), σ
2
φ(x))‖N (0, Id)) =

1

2

(

‖σφ(x)‖
2 + ‖µφ(x)‖

2 − dlatent − log ‖σφ(x)‖
2
)
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Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N (0, Id) in R

d)?
I Make the encoder Eφ stochastic: z ∼ qφ(z | x) = N (z ;µφ(x)σ

2
φ(x))

I Reparametrisation: z = µφ(x) + σφ(x)� ε, ε ∼ N (0, Id)

I Objective (derived on next slide): reconstruct x from z while matching
qφ(z | x) to N (0, Id):

`(θ, φ; x) = Ez∼qφ(z|x)‖x − Dθ(z)‖
2

autoencoder / reconstruction loss

+ KL(qφ(z | x) ‖ p(z))

prior-matching loss

I The KL for Gaussians (tutorial exercise):

KL(N (µφ(x), σ
2
φ(x))‖N (0, Id)) =

1

2

(

‖σφ(x)‖
2 + ‖µφ(x)‖

2 − dlatent − log ‖σφ(x)‖
2
)

Which parts of the loss depend on θ and on φ?
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Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N (0, Id) in R

d)?
I Make the encoder Eφ stochastic: z ∼ qφ(z | x) = N (z ;µφ(x)σ

2
φ(x))

I Reparametrisation: z = µφ(x) + σφ(x)� ε, ε ∼ N (0, Id)

I Objective (derived on next slide): reconstruct x from z while matching
qφ(z | x) to N (0, Id):

`(θ, φ; x) = Ez∼qφ(z|x)‖x − Dθ(z)‖
2

autoencoder / reconstruction loss

+ KL(qφ(z | x) ‖ p(z))

prior-matching loss

I The KL for Gaussians (tutorial exercise):

KL(N (µφ(x), σ
2
φ(x))‖N (0, Id)) =

1

2

(

‖σφ(x)‖
2 + ‖µφ(x)‖

2 − dlatent − log ‖σφ(x)‖
2
)

Which parts of the loss depend on θ and on φ? φ: both. θ: only second term.
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A closer look at the VAE objective

`(θ, φ; x) = Ez∼qφ(z|x)‖x − Dθ(z)‖
2

autoencoder / reconstruction loss

+KL(qφ(z | x) ‖ p(z))

prior-matching loss

I View the reconstruction term as a negative log-likelihood − log pθ(x | z),
where x = Dθ(z) + (Gaussian noise of fixed variance), up to constant
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A closer look at the VAE objective

`(θ, φ; x) = Ez∼qφ(z|x)‖x − Dθ(z)‖
2

autoencoder / reconstruction loss

+KL(qφ(z | x) ‖ p(z))

prior-matching loss

I View the reconstruction term as a negative log-likelihood − log pθ(x | z),
where x = Dθ(z) + (Gaussian noise of fixed variance), up to constant

I View qφ as an amortised variational posterior
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prior-matching loss

I View the reconstruction term as a negative log-likelihood − log pθ(x | z),
where x = Dθ(z) + (Gaussian noise of fixed variance), up to constant

I View qφ as an amortised variational posterior
I The ELBO:

log pθ(x) ≥ Ez∼qφ(z|x)

[

log
pθ(x | z)p(z)

qφ(z | x)

]

= log pθ(x)− KL(qφ(z | x) ‖ pθ(z | x))
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I View the reconstruction term as a negative log-likelihood − log pθ(x | z),
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[

log
pθ(x | z)p(z)

qφ(z | x)

]

= log pθ(x)− KL(qφ(z | x) ‖ pθ(z | x))

= Ez∼qφ(z|x)[log pθ(x | z)]− KL(qφ(z | x) ‖ p(z))
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A closer look at the VAE objective

`(θ, φ; x) = Ez∼qφ(z|x)‖x − Dθ(z)‖
2

autoencoder / reconstruction loss

+KL(qφ(z | x) ‖ p(z))

prior-matching loss

I View the reconstruction term as a negative log-likelihood − log pθ(x | z),
where x = Dθ(z) + (Gaussian noise of fixed variance), up to constant

I View qφ as an amortised variational posterior
I The ELBO:

log pθ(x) ≥ Ez∼qφ(z|x)

[

log
pθ(x | z)p(z)

qφ(z | x)

]

= log pθ(x)− KL(qφ(z | x) ‖ pθ(z | x))

= Ez∼qφ(z|x)[log pθ(x | z)]− KL(qφ(z | x) ‖ p(z))

“ELBO surgery”  VAE is performing variational EM!
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Likelihood estimation with VAEs

I Once qφ and pθ are trained, we can
estimate the log-likelihood of new
data x using the ELBO

log pθ(x) ≥ Ez∼qφ(z|x)

[

log
pθ(x | z)p(z)

qφ(z | x)

]
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Likelihood estimation with VAEs

I Once qφ and pθ are trained, we can
estimate the log-likelihood of new
data x using the ELBO

log pθ(x) ≥ Ez∼qφ(z|x)

[

log
pθ(x | z)p(z)

qφ(z | x)

]

I Not always a good estimate for
anomaly detection. . .
I Train a VAE on MNIST, evaluate on

Fashion-MNIST, get a higher
log-likelihood!

I Related to zero-avoiding behaviour of
forward KL and the aggregate posterior
problem (this next)
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What’s wrong with VAEs?

I The prior p(z) is not ‘filled out’ well by the posteriors qφ(z | x) over
x ∼ πdata

I Samples from p(z) are not encoded to by any x in the data distribution
and thus decode poorly (recall the visualisation)
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What’s wrong with VAEs?

I The prior p(z) is not ‘filled out’ well by the posteriors qφ(z | x) over
x ∼ πdata

I Samples from p(z) are not encoded to by any x in the data distribution
and thus decode poorly (recall the visualisation)

Possible solutions (gallery):
I Improved posterior estimation (importance weighting, more expressive

posteriors)
I Refitting the prior pθ(z) after training (or jointly learning it)
I Auxiliary/modified losses
I Regularised VAEs (e.g., β-VAE, )
I Contrastive objectives (e.g., ‘Forget-me-not’ [Menon et al., 2022]), wake-sleep

training

I Hierarchical VAEs
I Discrete-latent VAEs (e.g., VQ-VAE, [Van den Oord et al., 2017])
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Improved priors and variational posteriors

I Importance-weighted autoencoder (IWAE; [Burda et al., 2016]): Instead of
the ELBO

log pθ(x) ≥ Ez∼qφ(z|x)

[

log
pθ(x | z)p(z)

qφ(z | x)

]

use a tighter bound

log pθ(x) ≥ Ez1,...,zK∼qφ(z|x)

[

log
1

K

K
∑

k=1

pθ(x | zk)p(zk)

qφ(zk | x)

]

(becomes tighter as K →∞ and approaches the true log pθ(x))
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Improved priors and variational posteriors

I Importance-weighted autoencoder (IWAE; [Burda et al., 2016])
I More expressive variational posteriors:
I GMM posterior (see “Cooperation in the latent space” [Kviman et al., 2023])

I More complex models or MCMC in latent space
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Improved priors and variational posteriors

I Importance-weighted autoencoder (IWAE; [Burda et al., 2016])
I More expressive variational posteriors:
I GMM posterior (see “Cooperation in the latent space” [Kviman et al., 2023])
I More complex models or MCMC in latent space

I Learning the prior:
I VampPrior ([Tomczak & Welling, 2018]):

prior is a mixture of variational posteriors
qφ(z | x) over a set of learnt fake inputs x

I Large text-to-image models (incl. Stable
Diffusion) train other types of models
(neural ODEs) to act as text-conditioned
priors in the latent space of a VAE
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Hierarchical VAE

Instead of z → x , have several layers of latent variables (or similar schemes):

zT
pθ(zT−1|zT )

// zT−1
//

qφ(zT |zT−1)

gg
· · · // z1

pθ(x |z1)
// x

qφ(z1|x)

ee

VAE
Hierarchical VAE
[‘NVAE’, Vahdat & Kautz, 2020]
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Conclusion and looking ahead

I VAEs as the simplest form of both dimensionality reduction and
generative modelling with latent variables
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Conclusion and looking ahead

I VAEs as the simplest form of both dimensionality reduction and
generative modelling with latent variables

I Design considerations not discussed in detail:
I Choice of neural architectures (usually, the decoder is much larger than the encoder)
I Choice of latent dimension
I Various ways to prevent posterior collapse and ensure latent space coverage

I Also not discussed: conditional VAEs (common in applications)
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Conclusion and looking ahead

I VAEs as the simplest form of both dimensionality reduction and
generative modelling with latent variables

I Design considerations not discussed in detail:
I Choice of neural architectures (usually, the decoder is much larger than the encoder)
I Choice of latent dimension
I Various ways to prevent posterior collapse and ensure latent space coverage

I Also not discussed: conditional VAEs (common in applications)

I Next time: models with exact likelihood and no latents
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