Advanced Topics in Machine Learning
(deep generative modelling)

Lecture 3: Latent variable models and autoencoders

Nikolay Malkin

27 January 2026

Outline of Lecture 3

Autoencoders and friends:

» Some notes and leftovers from Lecture 2

» Two ingredients for VAEs
» Autoencoders
» Latent variable models

» Variational autoencoders
» Basic VAE

» The aggregate posterior problem and solutions

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

1/18

» Some notes and leftovers from Lecture 2

Admin notes

» A more engaging tutorial format: come with questions
» This week's tutorial materials published by Thursday

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 2/18

Lecture 2 review

Setting:

» We have a data distribution 74, over RY (from which we can sample,
but we do not know its density function)
» It could be the empirical distribution of a dataset

» We have a class of model distributions {7y} (with densities py)

> O are the parameters of the model (e.g., neural network weights, Gaussian mixture
parameters)

» Note that we do not necessarily know the density functions py

» We seek 0 such that 7y approximates 7y, well:

0" = arg min D(7p, Tdata)
0

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 3/18

Lecture 2 review

The KL divergence
_ o PX _ og PX)
KL(pllg) = Ex~p [l gq(X)] —/Rd p(x)1 gq()d

» Interesting properties studied in last week's tutorial sheet
» Minimising KL(7gata||m9) = maximising sample log-likelihood

EX’\’W_data [log pH(X)] i . .
» Algorithm to fit 6 using stochastic gradient descent:
» Sample a minibatch xq,..., X, ~ Tdata

» Compute gradient estimate:
1 m
= Z; Vo[~ log po(xi)]
=

> Update parameters: 6 < 6 — ng (or using your favourite optimiser)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

3/18

Lecture 2 loose ends

KL(7datal|7g) (forward)

KL(pgata || po) = 0.854
KL(pg || Pdata) = 2.509
JS(pdata: Pg) = 0.211

KL(pgata || pe) = 0.225
KL(pe || Paata) = 0.425
JS(pdata: Pg) = 0.058

KL(7g||7data) (reverse)

KL(pdata || pe) = 6.589
KL(pg || Paata) = 0.709
JS(pdata, Pg) = 0.193

KL(pgata || pe) = 0.359
KL(pg || pdata) = 0.215
JS(pdata: Pe) = 0.055

Tdata

’
-

-

’
-

KL(pgata || po) = 0.036
KL(pe || Pdata) = 0.043
JS(Pdata, Pe) = 0.009

KL(pata || pe) = 0.000
KL(pe || Pgata) = 0.000
JS(pdata; Pg) = 0.000

KL(pdata || pe) = 0.040
KL(pe || Pgata) = 0.041
JS(pdata, Pg) = 0.009

KL(pgata || po) = 0.000
KL(pe || Pdata) = 0.000
JS(Pdata Pe) = 0.000

,
'

~

,
'

-
-

’
|

-

,
'

-
-

ATML / deep generative modelling / Lecture 3 / 27.01.2026

Latent variable models and autoencoders

Lecture 2 loose ends

KL(7gatal|mg) (forward) KL(7g]||Tdata) (reverse)

KL(Ppgata || po) = 0.854 KL(paata || pe) = 0.225 KL(Pgata || Po) = 6.589 KL(Pgata || Po) = 0.359

KL(pg || Poata) = 2.509 KL(ps || poata) = 0.425 KL(ps || poata) = 0.709 KL(ps || pgata) = 0215 Wdata
JS(Pgara, Pe) = 0211 JS(Peata, Pe) = 0.058 JS(Paata, po) = 0.193 JS(Pgata, Pe) = 0.055

KL(Paata || pe) = 0.036 KL(pdata || p) = 0.000 KL(pgata || pe) = 0.040 KL(pgata || Pe) = 0.000

KL(pe || poata) = 0.043 KL(ps || poata) = 0.000 KL(pe | Paata) = 0.041 KL(pe | pgata) = 0.000

)S(Paata: Po) = 0.009 JS(Pdata, Pe) = 0.000 JS(Pdata, po) = 0.009 JS(Pdata: Pg) = 0.000 '

.
L » . . .
. S - - '
: “\ ' .

» Forward KL / MLE: mode-covering (high diversity, low fidelity)
> Reverse KL: mode-seeking (high fidelity, low diversity)
» JSD: balance between the two (more in a few weeks)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 4/18

» Two ingredients for VAEs
» Autoencoders
» Latent variable models

Autoencoders

Train a neural network fy to predict x from x itself

00;x) = ||x=f(X)|? | D= {x1,...,X}, minimise ZE(G,X,-)

i=1

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 5/18

Autoencoders

Train a neural network fy to predict x from x itself
08 x) = lIx = RHO)N? ~ €8, ¢ x) = |x = Da(Es(x))]1?

Using a bottleneck layer induces a compressed representation z = E4(x) (a
latent variable): (visualisation)
dinput dinput

dlatent

E, Dy

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 5/18

https://tayden.github.io/VAE-Latent-Space-Explorer/

Autoencoders

Train a neural network fy to predict x from x itself
08 x) = lIx = RHO)N? ~ €8, ¢ x) = |x = Da(Es(x))]1?

Using a bottleneck layer induces a compressed representation z = E4(x) (a
latent variable): (visualisation)
dinput dinput

dlatent

encoder decoder
E, De
Can we use this to generate new data by sampling z and decoding it to
x = Dy(z)?

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 5/18

https://tayden.github.io/VAE-Latent-Space-Explorer/

Autoencoders

Train a neural network fy to predict x from x itself
08 x) = lIx = RHO)N? ~ €8, ¢ x) = |x = Da(Es(x))]1?

Using a bottleneck layer induces a compressed representation z = E4(x) (a
latent variable): (visualisation)
dinput dinput

dlatent

encoder decoder
E, De
Can we use this to generate new data by sampling z and decoding it to
x = Dy(z)? No, because distribution from which to sample z not known.

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 5/18

https://tayden.github.io/VAE-Latent-Space-Explorer/

Latent variable models

Generative models with latent variables z: To approximate myata by a model
p, model a joint distribution py(x, z) over observed x and latent z to satisfy

= /pg(x7 7) dz & Tgata(X)

z

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 6/18

Latent variable models

Generative models with latent variables z: To approximate myata by a model
p, model a joint distribution py(x, z) over observed x and latent z

) — [pulputx | 2) o2

z

‘Ancestral’ sampling of x:
» Sample the latent z from a distribution pg(z).
» Sample x from py(x | z).

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 6/18

|atent variable models
Generative models with latent variables z: To approximate myata by a model
p, model a joint distribution py(x, z) over observed x and latent z

P — [(put | 2) ¢z

~ -
—

~

as(21x)
‘Ancestral’ sampling of x:
» Sample the latent z from a distribution py(z).

» Sample x from py(x | z).
The posterior over z, by Bayes' rule (we often approximate it by a g(z | x)):

_ Po(2)pelx | 2) o po(z)pa(x | z)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 6/18

Examples of latent variable models
» Mixture model (e.g.,, GMM): ¢ — x

» e {1,2,..., Ncomponents} iS @ mixture index, categorical p(¥)
> For each value of ¢, p(x | £) is a distribution in a chosen family (e.g., Gaussian)

p(x)a

x

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 7/18

Examples of latent variable models

» Mixture model (e.g.,, GMM): ¢ — x
» e {1,2,..., Ncomponents} iS @ mixture index, categorical p(¥)
> For each value of ¢, p(x | £) is a distribution in a chosen family (e.g., Gaussian)
» Topic model (e.g., LDA): § — d (topic vector — document)
» 0 € A" s a topic vector, Dirichlet p(0)
» O determines a multinomial distribution p(d | 8) over word count vectors d via the
topic-word matrix

p(x)a

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 7/18

Examples of latent variable models

» Bayesian neural network (conditional): 6, x — y (thought of as
0 — (x — y), parameters — outputs given x)
» @ are parameters of a neural net
> y are the outputs of a neural net p(y | x; #) with some inputs x

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

8/18

Examples of latent variable models

» Bayesian neural network (conditional): 6, x — y (thought of as
0 — (x — y), parameters — outputs given x)
» @ are parameters of a neural net
> y are the outputs of a neural net p(y | x; #) with some inputs x
» Probabilistic grammar (e.g., PCFG): 7 — s (syntax tree — sequence)
» p(7): T is generated hierarchically by applying probabilistic replacement rules (S —
NP VP, VP - VN, ...)
> s is a sequence of leaves (terminal symbols)

7 s
’}\r{f‘ /\
", : NP VP
(M)) " P
g Det N' A% N
the /\ drinks tea
Adj N
fat cat

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 8/18

Latent variables ‘encode’ the data

» The posterior stochastically ‘encodes’ the
data x into a latent z

> An approximate posterior g4 performs dimensionality

reduction (topic representation of document, parse tree z ﬂ.x
of text, compressed code of image) S~__-7
qs(z|x)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 9/18

Latent variables ‘encode’ the data

» The posterior stochastically ‘encodes’ the
data x into a latent z

> An approximate posterior g4 performs dimensionality
reduction (topic representation of document, parse tree
of text, compressed code of image)

po(x|2)

» From now on, we consider data in R%:t encoded
into latents in R%tent with dlatent << Gdata

]
m«
]

6

s

BN NEEMNEE N
=]
E.
V|

qs(21x)

NESENEEN
B S ES Y ES N ENES -

[[[A [

]9 [[% | [on] o]
faJs[ololwlsal0]

NEEEEEEER
RN
DY e A

SSNSINSEN
=i

9/18

Latent variables ‘encode’ the data

» The posterior

stochastically ‘encodes’ the
data x into a latent z

> An approximate posterior g4 performs dimensionality
reduction (topic representation of document, parse tree

po(x|z)
Z—=X
of text, compressed code of image) ~ o)/
. . qplZ|X
» From now on, we consider data in R%:t encoded

into latents in R%atent with iatent < dgata

o~ .
RN '."‘2
i £3
:]
’A’o. L I q¢(Z|X)
S R ; '
rd I
...a."'".'.' ‘-Z‘ " ‘

ATML / deep generative modelling / Lecture 3 / 27.01.2026

Latent variable models and autoencoders

9/18

MLE training of latent variable models

Given a dataset {x;}"_;, we want to maximise
e
i

w.r.t. parameters of py(z) and py(x | z).

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 10/18

MLE training of latent variable models

Given a dataset {x;}"_;, we want to maximise

S tog i) = 3 log [pu(zps | 2) dz

w.r.t. parameters of py(z) and py(x | z).

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

10/18

MLE training of latent variable models

Given a dataset {x;}"_;, we want to maximise

S tog i) = 3 log [pu(zps | 2) dz

w.r.t. parameters of py(z) and pg(x | z).
» Gibbs’ inequality: for any distribution g;(z),

qi(2)

log = Iog/pg(z)pg(x,- | z) dz > /q,-(z) log po(2)po(xi | 2) dz

evidence lower bound (ELBO)

with equality when g;(z) = x pg(z)po(x; | z) (true posterior)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

10/18

MLE training of latent variable models

Given a dataset {x;}"_;, we want to maximise

S tog i) = 3 log [pu(zps | 2) dz

w.r.t. parameters of py(z) and pg(x | z).
» Gibbs’ inequality: for any distribution g;(z),

08 71(+) = 1og [pa(@)putoi | 2)dz > [al2)log ”G(Z)pi(j’ =) g,
z z gi\z
evidence lower bound (ELBO)
= log py(x) — KL(a; |)
with equality when g;(z) = x pg(z)po(x; | z) (true posterior)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

10/18

MLE training of latent variable models

Given a dataset {x;}"_;, we want to maximise

S tog i) = 3 log [pu(zps | 2) dz

w.r.t. parameters of py(z) and pg(x | z).
» Gibbs’ inequality: for any distribution g;(z),

08 71(+) = 1og [pa(@)putoi | 2)dz > [al2)log ”G(Z)pi(j’ =) g,
z z gi\z
evidence lower bound (ELBO)
= log py(x) — KL(a; |)
with equality when g;(z) = x pg(z)po(x; | z) (true posterior)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

10/18

MLE training of latent variable models

Given a dataset {x;}"_;, we want to maximise

S tog i) = 3 log [pu(zps | 2) dz

w.r.t. parameters of py(z) and pg(x | z).
» Gibbs’ inequality: for any distribution g;(z),

log = Iog/pg(z)pg(x,- | z) dz > /q,-(z) log po(2)po(xi | 2) dz

qi(2)
evidence lower bound (ELBO)

= log py(x) — KL(a; |)
with equality when g;(z) = x pg(z)po(x; | z) (true posterior)
» Idea: to maximise log , maximise the ELBO

» ~» EM alg. ("Maximum likelihood from incomplete data” [Dempster et al., 1977])

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 10/18

Gradient-based EM

Idea: to maximise log , maximise the ELBO

(N log PEEP(Xi | 2) og PO(Z)Po(xi | 2)
/qu()I g qi(z) EZNQ; I C/i(Z)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 11/18

Gradient-based EM

Idea: to maximise log , maximise the ELBO

(N log PEEP(Xi | 2) og PO(Z)Po(xi | 2)
/qu()I g qi(z) EZNQ; I C/i(Z)

» (Amortised) variational EM: approximate g; with a model g4(z | x;) and
train it to approximate the true posterior (E-step)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 11/18

Gradient-based EM

Idea: to maximise log , maximise the ELBO

(N log PEEP(Xi | 2) og PO(Z)Po(xi | 2)
/qu()I g qi(z) EZNQ; I C/i(Z)

» (Amortised) variational EM: approximate g; with a model g4(z | x;) and
train it to approximate the true posterior (E-step)

> (Gradient-based) M-step: sample z ~ g4(z | x;) and maximise
log pg(z)pe(x; | z) w.r.t. parameters of py(z) and py(x | z)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 11/18

Gradient-based EM

Idea: to maximise log , maximise the ELBO

(N log PEEP(Xi | 2) og PO(Z)Po(xi | 2)
/qu()I g qi(z) EZNQ; I C/i(Z)

» (Amortised) variational EM: approximate g; with a model g4(z | x;) and
train it to approximate the true posterior (E-step)

> (Gradient-based) M-step: sample z ~ g4(z | x;) and maximise
log pg(z)pe(x; | z) w.r.t. parameters of py(z) and py(x | z)

» Intuitively:

P> E-step: learn to encode x into z that explains it well
> M-step: for data x, sample explanation z and learn to recover x from z

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 11/18

» Variational autoencoders
» Basic VAE
» The aggregate posterior problem and solutions

Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N(0, I4) in R9)?

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 12/18

Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N(0, I4) in R9)?
> Make the encoder E, stochastic: z ~ qy(z | x) = N(z; 114(x)03(x))

> Reparametrisation: z = pi4(x) 4+ 04(x) ® €, € ~ N (0, ly)

dinput 2- dlatent
. 2
\\ @ /’l’(b(X)
: e 2 ~ N (%), 09(x)?)
8 7 8 log op(x)
O ©
encoder

Eg

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 12/18

Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N(0, I4) in R9)?
> Make the encoder E, stochastic: z ~ qy(z | x) = N(z; 114(x)03(x))
> Reparametrisation: z = pi4(x) 4+ 04(x) ® €, € ~ N (0, ly)
» Objective (derived on next slide): reconstruct x from z while matching

gs(z | x) to N(0, Iy):
U0, 6;x) = Ezg, (211X — Da(2)I?

autoencoder / reconstruction loss

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 12/18

Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N(0, I4) in R9)?
> Make the encoder E, stochastic: z ~ qy(z | x) = N(z; 114(x)03(x))
> Reparametrisation: z = pi4(x) 4+ 04(x) ® €, € ~ N (0, ly)
» Objective (derived on next slide): reconstruct x from z while matching

gs(z | x) to N(0, Iy):
U0,0:x) = Esug,(z0llx — De(z)||2l + KL(g0(z | %) | p(2))

autoencoder / reconstruction loss prior-matching loss

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 12/18

Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N(0, I4) in R9)?
> Make the encoder E, stochastic: z ~ qy(z | x) = N(z; 114(x)03(x))
> Reparametrisation: z = pi4(x) 4+ 04(x) ® €, € ~ N (0, ly)
» Objective (derived on next slide): reconstruct x from z while matching

gs(z | x) to N(0, Iy):
U0 91 x) = Barsg (e llx = Da(2)” + KL(as(z |) [l p(2))

autoencoder / reconstruction loss prior-matching loss

» The KL for Gaussians (tutorial exercise):

KL (116(x), 75 ())IN(0, L)) = % (loa G + s (I* = dhatent — log [l (x)1|%)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 12/18

Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N(0, I4) in R9)?
> Make the encoder E, stochastic: z ~ qy(z | x) = N(z; 114(x)03(x))
> Reparametrisation: z = pi4(x) 4+ 04(x) ® €, € ~ N (0, ly)
» Objective (derived on next slide): reconstruct x from z while matching

gs(z | x) to N(0, Iy):
U0 91 x) = Barsg (e llx = Da(2)” + KL(as(z |) [l p(2))

autoencoder / reconstruction loss prior-matching loss

» The KL for Gaussians (tutorial exercise):
1
KL (11(x), a5 (IN(O0, L)) = 5 (los (NI + 126G * = datent — log [l (x)]°)

Which parts of the loss depend on # and on ¢?

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 12/18

Variational autoencoders

How can we force the latent variable z in an autoencoder to follow a known
distribution p(z) (such as Gaussian N(0, I4) in R9)?
> Make the encoder E, stochastic: z ~ qy(z | x) = N(z; 114(x)03(x))
> Reparametrisation: z = pi4(x) 4+ 04(x) ® €, € ~ N (0, ly)
» Objective (derived on next slide): reconstruct x from z while matching

gs(z | x) to N(0, Iy):
(0,6 %) = Eavg,allx = Do(2)I? +KL(as(z | %) || p(2))

autoencoder / reconstruction loss prior-matching loss

» The KL for Gaussians (tutorial exercise):
1
KL (11(x), a5 (IN(O0, L)) = 5 (los (NI + 126G * = datent — log [l (x)]°)

Which parts of the loss depend on # and on ¢? ¢: both. #: only second term.

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 12/18

A closer look at the VAE objective

U091 x) = Borsg e lx = Da(2)II” +KL(gs(z |) [l p(2))

autoencoder / reconstruction loss prior-matching loss

» View the reconstruction term as a negative log-likelihood — log py(x | z),
where x = Dy(z) + (Gaussian noise of fixed variance), up to constant

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 13/18

A closer look at the VAE objective

U091 x) = Borsg e lx = Da(2)II” +KL(gs(z |) [l p(2))

autoencoder / reconstruction loss prior-matching loss

» View the reconstruction term as a negative log-likelihood — log py(x | z),
where x = Dy(z) + (Gaussian noise of fixed variance), up to constant
» View g, as an amortised variational posterior

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 13/18

A closer look at the VAE objective

U091 x) = Borsg e lx = Da(2)II” +KL(gs(z |) [l p(2))

autoencoder / reconstruction loss prior-matching loss

» View the reconstruction term as a negative log-likelihood — log py(x | z),
where x = Dy(z) + (Gaussian noise of fixed variance), up to constant
» View g, as an amortised variational posterior

» The ELBO:
po(x | Z)P(Z)]
lo >]Ezw (z|x log ——————
= log pg(x) — KL(q4(z | x) ||)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

13/18

A closer look at the VAE objective

U091 x) = Borsg e lx = Da(2)II” +KL(gs(z |) [l p(2))

autoencoder / reconstruction loss prior-matching loss

» View the reconstruction term as a negative log-likelihood — log py(x | z),
where x = Dy(z) + (Gaussian noise of fixed variance), up to constant
» View g, as an amortised variational posterior

» The ELBO:
po(x | Z)P(Z)]
lo >]Ezw (z|x log ——————
= log pg(x) — KL(q4(z | x) ||)

=E,q,(zpllog po(x | 2)] = KL(gs(z |) || p(2))

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders

13/18

A closer look at the VAE objective

U091 x) = Borsg e lx = Da(2)II” +KL(gs(z |) [l p(2))

autoencoder / reconstruction loss prior-matching loss

» View the reconstruction term as a negative log-likelihood — log py(x | z),
where x = Dy(z) + (Gaussian noise of fixed variance), up to constant
» View g, as an amortised variational posterior

» The ELBO:
po(x | Z)P(Z)]
lo >]Ezw (z|x log ——————
= log pg(x) — KL(q4(z | x) ||)

= Ezq,(zixllog po(x | 2)] = KL(gs(z | x) || p(2))
“ELBO surgery” ~~ VAE is performing variational EM!

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 13/18

Likelihood estimation with VAEs

» Once g, and pyg are trained, we can
estimate the log-likelihood of new
data x using the ELBO

po(x | Z)p(Z)]

log > E g, (z1x llog
CEITE a2 10

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 14 /18

Likelihood estimation with VAEs

» Once g, and pyg are trained, we can
estimate the log-likelihood of new
data x using the ELBO

Ol /1= 1Y 1> e[7L s |7 QL
(x| 20y EHEEEBEABER
og Z&Wﬁ@%g_____]mnzgnggmﬁﬂ_
aw(z1x) | AARBEEAAHEA |
. ENBEZERVEE p
» Not always a ggod estimate for o[z l4l5[6]7]2]5
anomaly detection. .. RHAABRBAEER
» Train a VAE on MNIST, evaluate on RNBEBEAEHAVIEA
Fashion-MNIST, get a higher Enm
log-likelihood! EE NGOV ER sreverer

P> Related to zero-avoiding behaviour of
forward KL and the aggregate posterior
problem (this next)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 14 /18

What's wrong with VAEs?

» The prior p(z) is not ‘filled out’ well by the posteriors gy(z | x) over
X ~ Tdata

» Samples from p(z) are not encoded to by any x in the data distribution
and thus decode poorly (recall the visualisation)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 15/18

https://tayden.github.io/VAE-Latent-Space-Explorer/

What's wrong with VAEs?

» The prior p(z) is not ‘filled out’ well by the posteriors g,(z | x) over
X ~ Tdata

» Samples from p(z) are not encoded to by any x in the data distribution
and thus decode poorly (recall the visualisation)

Possible solutions (gallery):

» Improved posterior estimation (importance weighting, more expressive
posteriors)

> Refitting the prior py(z) after training (or jointly learning it)

» Auxiliary/modified losses
» Regularised VAEs (e.g., 8-VAE,)
» Contrastive objectives (e.g., ‘Forget-me-not’ [Menon et al., 2022]), wake-sleep

training
» Hierarchical VAEs
» Discrete-latent VAEs (e.g., VQ-VAE, [Van den Oord et al., 2017])

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 15/18

https://tayden.github.io/VAE-Latent-Space-Explorer/
https://github.com/AntixK/PyTorch-VAE

Improved priors and variational posteriors
» Importance-weighted autoencoder (IWAE; [Burda et al., 2016]): Instead of

the ELBO
po(x | Z)P(Z)l

log > E g, (z1x [log
qg(2]x) %(Z | X)

use a tighter bound

o8 po(x) > E og L i polx | zi)p(zi)
Z Bz, 2k~ (2|x) K — %(Zk | X)
(becomes tighter as K — oo and approaches the true log)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 16 /18

Improved priors and variational posteriors

» Importance-weighted autoencoder (IWAE; [Burda et al., 2016])
» More expressive variational posteriors:
> GMM posterior (see “Cooperation in the latent space” [Kviman et al., 2023])

X z

/
1 polzse, @)
) § 378 s o [} 3 et

a=1 _1{{: { \t|

> More complex models or MCMC in latent space

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 16 /18

Improved priors and variational posteriors

» Importance-weighted autoencoder (IWAE; [Burda et al., 2016])
» More expressive variational posteriors:

» GMM posterior (see “Cooperation in the latent space” [Kviman et al., 2023])
» More complex models or MCMC in latent space

» Learning the prior:

» VampPrior ([Tomczak & Welling, 2018]):
prior is a mixture of variational posteriors

IO/

.‘_- - "

qs(z | x) over a set of learnt fake inputs x -.-
> Large text-to-image models (incl. Stable ' -

Diffusion) train other types of models . -.

»)

(neural ODEs) to act as text-conditioned
priors in the latent space of a VAE

r --
3
* — .
-
L .I

Latent variable models and autoencoders

ATML / deep generative modelling / Lecture 3 / 27.01.2026 16 /18

Hierarchical VAE

Instead of z — x, have several layers of latent variables (or similar schemes):

pe(zr—1|zT) pe(x|z1)

zr ZT-1
A} —

-~

q¢>(ZT|ZT71)

Hierarchical VAE
VAE ['NVAE', Vahdat & Kautz, 2020]

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 17/18

Conclusion and looking ahead

» VAEs as the simplest form of both dimensionality reduction and
generative modelling with latent variables

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 18/18

Conclusion and looking ahead

» VAEs as the simplest form of both dimensionality reduction and
generative modelling with latent variables
» Design considerations not discussed in detail:

» Choice of neural architectures (usually, the decoder is much larger than the encoder)
» Choice of latent dimension
» Various ways to prevent posterior collapse and ensure latent space coverage

» Also not discussed: conditional VAEs (common in applications)

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 18/18

Conclusion and looking ahead

» VAEs as the simplest form of both dimensionality reduction and
generative modelling with latent variables
» Design considerations not discussed in detail:

» Choice of neural architectures (usually, the decoder is much larger than the encoder)
» Choice of latent dimension
» Various ways to prevent posterior collapse and ensure latent space coverage

» Also not discussed: conditional VAEs (common in applications)
» Next time: models with exact likelihood and no latents

ATML / deep generative modelling / Lecture 3 / 27.01.2026 Latent variable models and autoencoders 18/18

	 Some notes and leftovers from Lecture 2
	 Two ingredients for VAEs
	 Variational autoencoders

