

Introduction

ATML track 1: Optimization and Neural Networks

Rik Sarkar

Overview of the track

- ML Theory Basics
 - The elements of a general ML system – Hypothesis classes, Domains, generalization
- Linear classifiers and Convex optimization
 - Convexity and convex optimization
 - GD and SGD, convergence rates
- Neural nets
 - ReLU vs other activations — what makes ReLU successful?
 - Why are deep networks better than shallow networks?
 - Cross entropy loss and loss landscapes – why neural networks overfit
- Why does SGD work?
 - Randomness
 - Sharp and flat minima
 - Fractal Dimensions and generalization

Overview of the track

- What we know about neural networks
 - Neural collapse
 - Overparameterization and Pruning
 - Double descent
- Additional topics:
 - Fairness – definitions, impossibility, why fairness is hard
 - Explainability – what does it mean to explain model behaviour?

Today

- Elements of machine learning: definitions and notations
 - Data, algorithms, sampling
- Empirical risk minimisation
- Generalization

Data domain \mathcal{X}

- We assume that all the input data comes from some known set \mathcal{X}
- Examples
- If input is a single number: distance
 - Then the domain can be real numbers: \mathbb{R}
 - Or more restrictive, positive real numbers: \mathbb{R}^+
- If input is two real numbers (e.g. age, income)
 - Then $\mathcal{X} = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ is two dimensional
- What is the domain if the inputs are images?

Labels \mathcal{Y}

- The labels are outputs of the model from a set \mathcal{Y}
- Examples
- For classification, $\mathcal{Y} = \{0,1\}$ or sometimes $\mathcal{Y} = \{-1,1\}$
- Question, what are label sets for:
 - Multiclass classifiers
 - Regression
 - Image generative models

Model or hypothesis h

- A model or hypothesis is:
 - A map $h: \mathcal{X} \rightarrow \mathcal{Y}$

Hypothesis class \mathcal{H}

- A set of hypothesis or models under consideration
 - We will try to find the best model from this set
- Example:
- A type of model – SVM, decision tree..
- A neural network with a particular architecture
 - Then \mathcal{H} is all possible assignments of values to parameters (edge weights)

Question: Why do we need an \mathcal{H} ?

- What restricts our choice of models? Can we apply any neural network to any problem?
 - We are restricted at least by \mathcal{X} and \mathcal{Y}
 - The model has to be compatible with input and output
- Can we search for the best over all neural network architectures?
 - No, because we don't even know what all possible architectures are

Data generating distribution \mathcal{D}

- How will we get our training data?
- We usually can't get all of \mathcal{X}
- We can get a small sample from it

- There is some process that we use to get data
 - Question: what are examples of such processes?
- The abstract mathematical way of saying this is that data comes from a probability distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
 - And we have some way of getting a sample data $s \sim \mathcal{D}$ (s is drawn from \mathcal{D})

Training sample set S

- The training sample set is m samples from \mathcal{D}
- Written as $S \sim \mathcal{D}^m$
 - (Question: why is it reasonable to write it like this?)
- The m samples are assumed to be i.i.d
 - Independent: Sampling of one data point has no causal impact on the sampling of another
 - Identically distributed: they are all drawn according to the same distribution (\mathcal{D})

Algorithm A

- Using S , finds and returns an $h \in \mathcal{H}$
 - $h = A(S)$

Loss or risk

- Consider a classifier
- Supposer for $x \in \mathcal{X}$,
 - The true label is y
 - And the computed label is $\hat{y} = h(x)$
- Let us define the error or risk or loss as
 - $\ell(\hat{y}, y) = \begin{cases} 1 & \text{if } \hat{y} \neq y \\ 0 & \text{if } \hat{y} = y \end{cases}$

Empirical risk minimization

- The empirical risk or loss of the model h over the whole set S is
 - $L_S(h) = \frac{1}{m} \sum_i^m \ell(h(x_i), y_i)$
- The best possible model within \mathcal{H} is one that achieves the smallest empirical loss:
- $h^* = \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$

Discussion

- Does h^* have zero loss?
 - No, because h^* is restricted to \mathcal{H}
 - May be no model in \mathcal{H} achieves perfect classification
- Can we always find $h^* \in \mathcal{H}$?
 - Often not. The useful classes are frequently too large (e.g. real valued parameters, infinite number of models)
- What is a case for a finite \mathcal{H} ?
 - Can you think of a situation where we are trying to choose from a few (e.g. 5) possible models?