

Generalisation and Optimisation

ATML track 1: Optimization and Neural Networks

Rik Sarkar

Recap

- We use \mathcal{H} for hypothesis or model class (e.g. NN architecture)
 - And each $h \in \mathcal{H}$ is a possible model (e.g. an assignment of weights to edges)
- On data point x
 - True label is y and label computed by model h is $\hat{y} = h(x)$
 - Error or risk or loss of model h :
 - $\ell(\hat{y}, y) = \begin{cases} 1 & \text{if } \hat{y} \neq y \\ 0 & \text{if } \hat{y} = y \end{cases}$
- Empirical (training) loss over training set S for a model h :
 - $L_S(h) = \frac{1}{m} \sum_{i=1}^m \ell(h(x_i), y_i)$
- The best possible model in \mathcal{H} is one that has lowest empirical loss:
 - $h^* = \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$

Today

- Generalisation
- Sample complexity
- Model complexity
- Linear classification and logistic regression
- Gradient descent

- Sample exam question online
- Exercises for week 1 & 2 will be put online (and posted on piazza)
 - For tutorials next week

Discussion

- What is a case for a finite \mathcal{H} ?
 - Can you think of a situation where we are trying to choose from a few (e.g. 5) possible models?

True loss

- When we use the model in a real situation it get inputs from the data generating distribution \mathcal{D}
- What we really want, is minimize the “True loss”:
 - Expected loss over the distribution \mathcal{D}
 - Written as $L_{\mathcal{D}}(h)$
- Problem: We do not know \mathcal{D}

Test sample T

- We do not have access to \mathcal{D}
- Thus we use a test set $T \sim \mathcal{D}^t$ with t samples
- Compute the average loss $L_T(h)$ as an estimate of $L_{\mathcal{D}}(h)$

Generalisation and generalisation gap

- We want the empirical loss of the model to be close to the true loss
- This is measured by the generalisation gap (sometimes confusingly also called generalisation loss)
 - $|L_S(h) - L_{\mathcal{D}}(h)|$
- Which term among $L_S(h)$ and $L_{\mathcal{D}}(h)$ do you think will be larger?

- If true loss is much larger than empirical (training) loss, what do you think has happened?

Decomposition of true loss

- True loss: $L_{\mathcal{D}}(h_S) = \epsilon_{app} + \epsilon_{est}$
- Approximation error $\epsilon_{app} = L_{\mathcal{D}}(h^*)$
 - Min true error in the hypothesis class
 - Limitation of the choice of hypothesis class
- Estimation error $\epsilon_{est} = L_{\mathcal{D}}(h_S) - L_{\mathcal{D}}(h^*)$:
 - Difference between approximation error and true error
 - Error due to sampling and choosing suboptimal h_S (overfitting, poor training etc)

Minimising only Empirical risk

- Suppose our sole objective was empirical risk
- That is, we want $L_S(h)$ to be as small
- You are given the training set S
- And you can choose any kind of model to get best performance on S
- How would you make your model?

Additional reason for choice of a specific \mathcal{H}

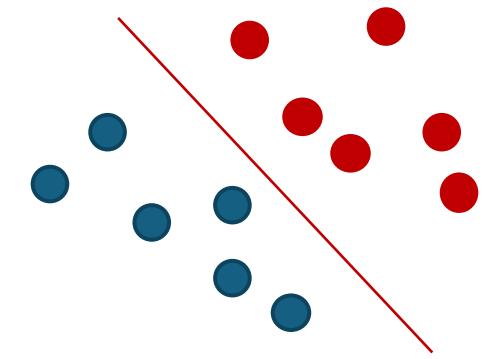
- Choice of \mathcal{H} represents our knowledge of what is generally good for the application and the real world
 - Not just what is good for the data
- E.g. specific architectures for specific applications in vision, NLP, audio, medical diagnostics etc.

What is a good enough model?

- We are always training with a random sample of data
- We hope the training data is good – similar to the real data
 - But there is always some chance that it is not.
 - Our definition of a good model based on the training data has to be probabilistic
- We use an (ϵ, δ) guarantee: model $h_S = A(S)$ is good if
 - $\mathbb{P}[L_{\mathcal{D}}(h_S) \leq \epsilon] \geq 1 - \delta$
 - The true loss of h is smaller than ϵ
 - With probability at least $1 - \delta$
 - For small positive (ϵ, δ)

Sample complexity: how much data does it take to find a good model?

- Sample S of size m
 - We will see how sample complexity changes with \mathcal{H}
- Assume
 - We have a finite \mathcal{H} , with $|\mathcal{H}|$ models
 - And $h^* \in \mathcal{H}$ has $L_{\mathcal{D}}(h^*) = 0$ (there is a perfect model)
 - Not realistic, but helps with the analysis
- Algorithm
 - Compute the training loss $L_S(h)$ of each $h \in \mathcal{H}$
 - Find a model h_S with loss = 0



Useful relations

- For $0 < p < 1$ (e.g. p is a probability)
- $(1 - p)^{\frac{1}{p}} \leq 1/e$
- Union bound:
 - If A and B are event, then: $P(A \text{ or } B) \leq P(A) + P(B)$
 - Writing A and B as sets: $P(A \cup B) \leq P(A) + P(B)$

- Theorem: If $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$ Then $\mathbb{P}[L_{\mathcal{D}}(h_S) \leq \epsilon] \geq 1 - \delta$

Proof

- Suppose $H_B \subset \mathcal{H}$ are the bad models (i.e with $L_{\mathcal{D}}(h) > \epsilon$)
 - They are incorrect on ϵ fraction of data
- We will show that the probability of selecting a model in H_B is small
- Suppose h_B is a bad model
- Probability that h_B gets a label wrong is $> \epsilon$
- Probability that h_B gets a label right is $\leq 1 - \epsilon$
- Probability that h_B gets all m labels right is $\leq (1 - \epsilon)^m \leq e^{-\epsilon m}$

- Probability that one bad model in H_B gets everything right is $\leq e^{-\epsilon m}$
- Probability one or more models in H_B get everything right is
 - $\leq |H_B|e^{-\epsilon m} \leq |\mathcal{H}|e^{-\epsilon m}$
 - Probability of selecting a bad model
- We want $|\mathcal{H}|e^{-\epsilon m} \leq \delta$
 - Probability of selecting a good model is $\geq 1 - \delta$
- Exercise: Solve for m to get $m \geq \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$

Discussion of sample complexity

- Sample complexity $m \geq \frac{\ln\left(\frac{|\mathcal{H}|}{\delta}\right)}{\epsilon}$ or, $m \geq \frac{\ln|\mathcal{H}| + \ln\frac{1}{\delta}}{\epsilon}$
- Suffices to get high probability $(1 - \delta)$ of high accuracy (small error ϵ)
 - Learning is possible from small amounts of data
- $\ln |\mathcal{H}|$: complexity to represent model class
 - what is $\log |\mathcal{H}|$?
 - Number of bits to identify a model in \mathcal{H}
- The proof is for finite \mathcal{H} and realizability assumption (there is a zero loss model)
 - But the form of the result holds in more general scenarios

Infinite hypothesis classes and model representation

- Suppose a model has one real valued parameter
 - Then \mathcal{H} is equivalent to \mathbb{R}
- If a model has n real valued parameters (e.g. NN with n edges)
- Then the model class is equivalent to \mathbb{R}^n
- That is, think of it as an n dimensional space
 - Where each point is a model
 - Each dimension is a parameter weight
- We write $\boldsymbol{\theta} = \{\theta_1, \theta_2, \dots, \theta_n\}$ to represent a model
 - Assuming that the class/architecture is known
 - Sometimes \mathbf{w} is used in place of $\boldsymbol{\theta}$

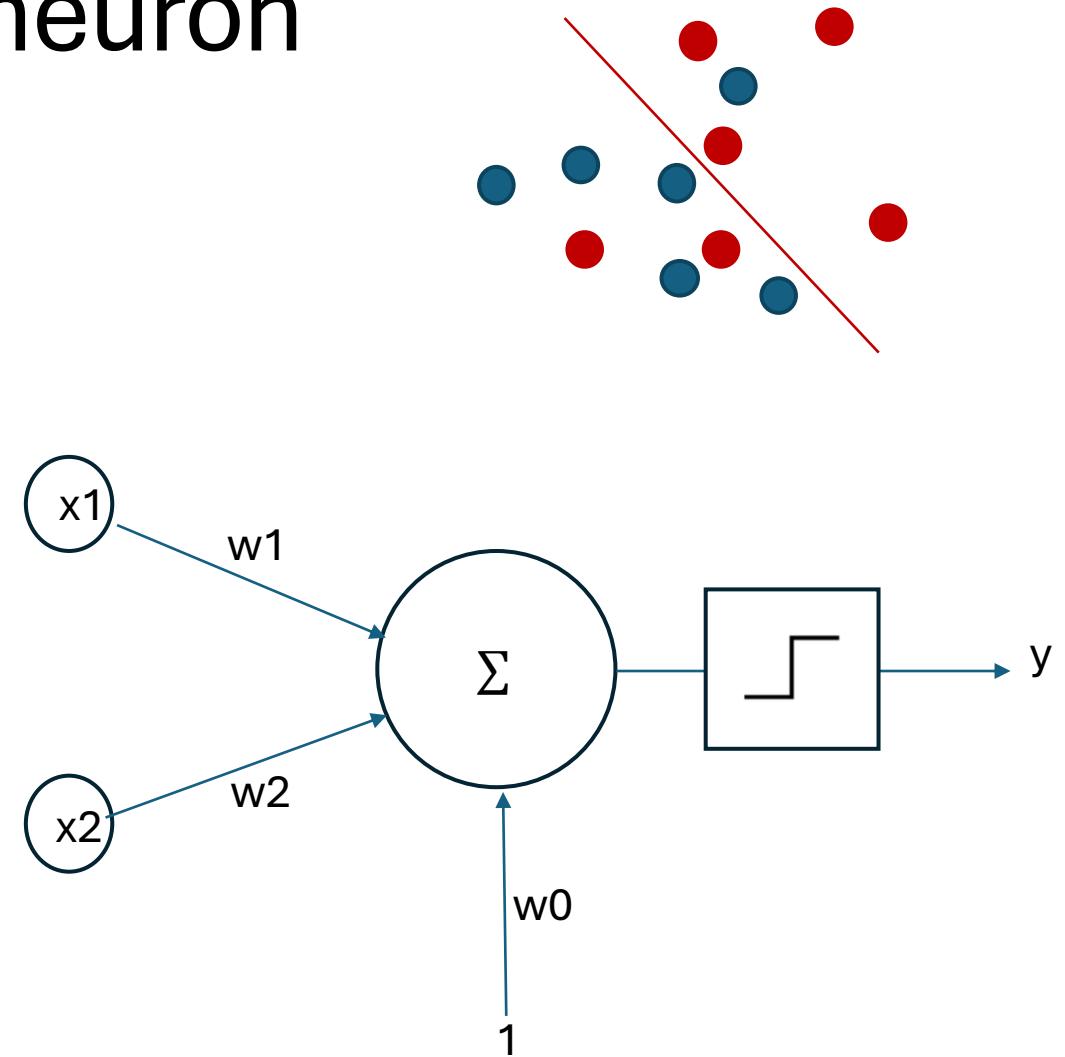
Model complexity

- A simple way of looking at model complexity is the number of parameters.
 - The number of values needed to identify a particular model within the model class
- More parameters: more expressivity/capacity of model
 - Capable of doing more things (complex classifications)
- Sample complexity increases with model complexity
- But model complexity or expressivity is a bit more complex than just number of parameters (we will discuss more later)

- Model space $\mathcal{H} \approx \mathbb{R}^n$
- Data space $\mathcal{X} \approx \mathbb{R}^F$
 - F is the number of features

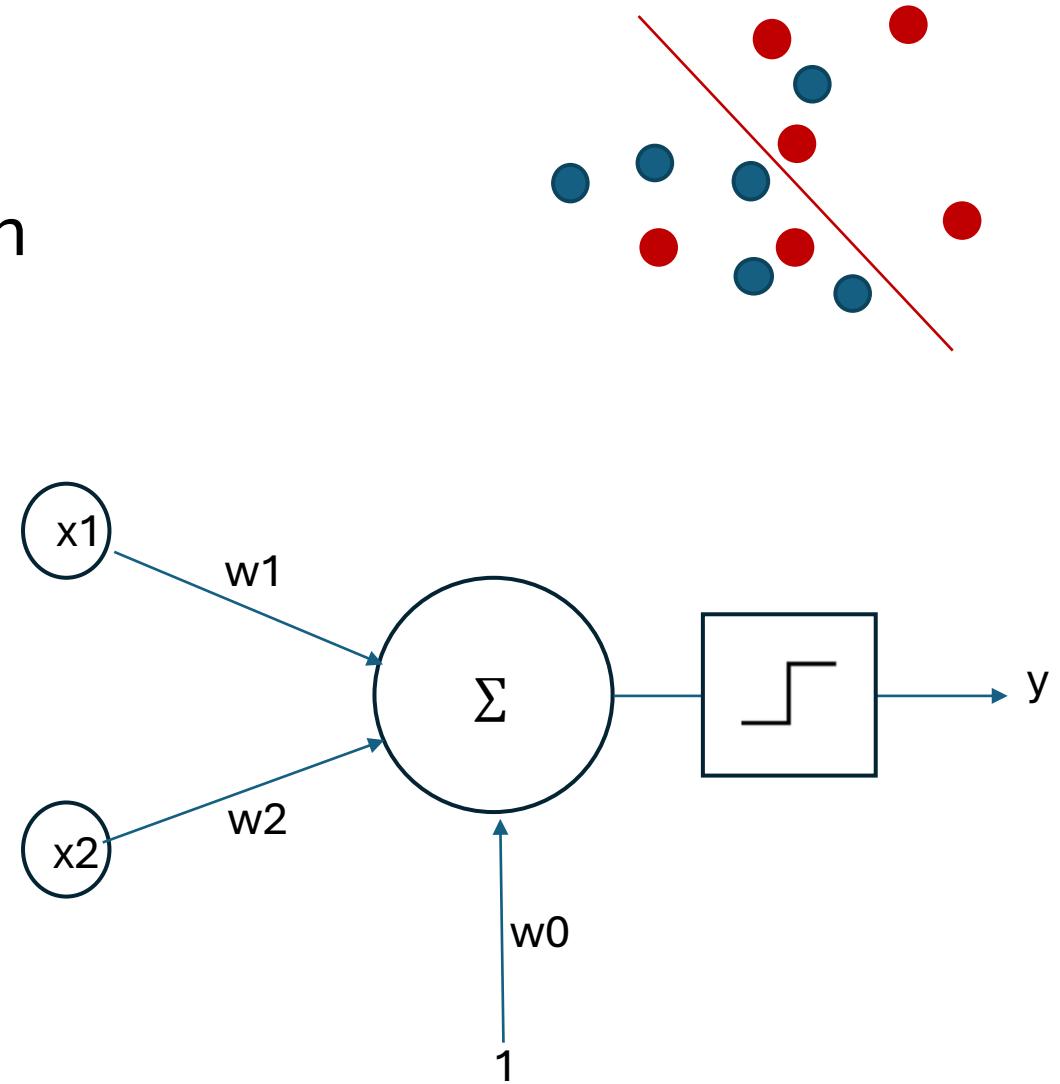
Linear classifiers: a single neuron

- Suppose we want to get the best possible classification by a linear space
 - Straight line in \mathbb{R}^2
 - Flat plane in \mathbb{R}^3
 - In general, a hyperplane \mathbb{R}^{n-1} in \mathbb{R}^n
- Neuron (perceptron) with threshold activation
- $y = (w_1x_1 + w_2x_2 + w_0 \cdot 1 \geq 0)$
 - Truth value 0/1 (0r, -1/+1)



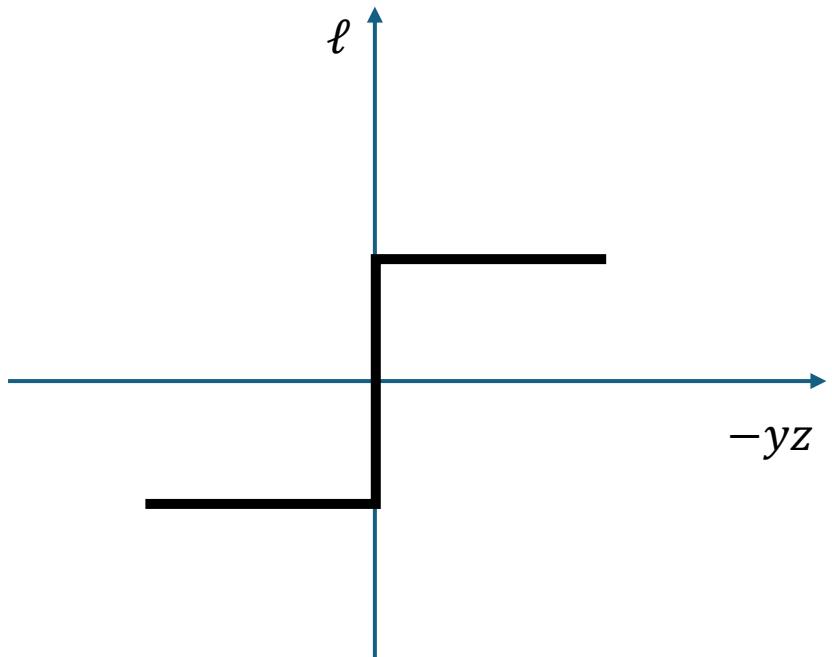
Single neuron

- Perceptron with threshold activation
 - $w_1, w_2, w_0 \in \mathbb{R}$
- $\hat{y} = (w_1x_1 + w_2x_2 + w_0 \cdot 1 \geq 0)$
 - Truth value 0/1 (0r, -1/+1)
- We often write
 - $z = w \cdot x$



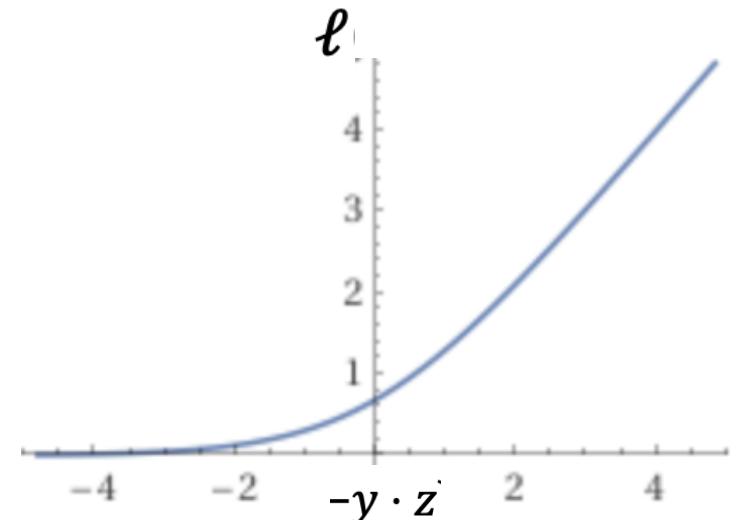
Binary loss

- $\ell = (1 \text{ for } \hat{y} \neq y, \text{ and } -1 \text{ for } \hat{y} = y)$
- Or, $\ell = [\operatorname{sgn} z \neq \operatorname{sgn} y]$
- Or $\ell = \operatorname{sgn}(-yz)$



Logistic regression (used for classification!)

- The logistic loss function is:
 - $\ell(h_w, (x, y)) = \log(1 + \exp(-y \cdot z))$
 - If y, z are same sign, ℓ gets smaller with z
 - y, z are different signs, ℓ is larger with z
- Question: if x-axis was “z”, what would the plot look like?
- The logistic loss is based on the logistic function
$$f(x) = \frac{1}{1+e^{-x}}$$
 - Exercise: what does look like? (look up on wikipedia)



Logistic loss of S

- For a training dataset S
- We use the average logistic loss
 - $L_S(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \log(1 + e^{-y_i z_i})$
- So, the best model \mathbf{w} is the one with min logistic loss:
 - $\operatorname{argmin}_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^m \log(1 + e^{-y_i z_i})$
- We need an algorithm to find the model with the best loss
- Question: why do we not use the binary loss?

Gradient descent

- Idea:
- Start with some random values of parameters \mathbf{w}
- Measure loss $L_S(\mathbf{w})$ on S
- Make small change in \mathbf{w} so that loss $L_S(\mathbf{w})$ becomes smaller
 - Repeat until $L_S(\mathbf{w})$ no longer becomes smaller
- Remember that \mathbf{w} is a point in \mathbb{R}^n
- So small change in \mathbf{w} is moving to a nearby point in \mathbb{R}^n

Gradient

- Gradient (a vector derivative in multiple dimensions)
 - The direction and speed of fastest increase

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d} \right)$$

- (each w_i is a parameter or dimension of the model)
- Partial derivatives
 - Compute the derivative along each dimension, put them in a vector

Gradient descent

- Gradient is $\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d} \right)$
- Gradient represents the direction in which f increases fastest
- Gradient Descent: At every step t :
 - $\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla L_S(\mathbf{w}^t)$
 - (Move in the direction that f decreases fastest With a step scale of η)
- After T steps, output the average vector $\bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^T \mathbf{w}^t$
- Other version: output final vector \mathbf{w}_T