Generalisation and
Optimisation

ATML track 1: Optimization and Neural Networks

Rik Sarkar

Recap

* We use H for hypothesis or model class (e.g. NN architecture)
« Andeach h € H is a possible model (e.g. an assignment of weights to edges)

* On data point x
* True label is y and label computed by model his y = h(x)
* Error or risk or loss of model h:

+ 09,y) = {313:
 Empirical (training) loss over training set S for a model h:
+ Ls(h) = — 3, € (h(x)),)

* The best possible model in H is one that has lowest empirical loss:

e h* = arg;lrélj{[lLS(h)

Today

* Generalisation

* Sample complexity

* Model complexity

* Linear classification and logistic regression
* Gradient descent

* Sample exam question online

* Exercises for week 1& 2 will be put online (and posted on piazza)
* Fortutorials next week

Discussion

* What is a case for afinite H?

* Canyou think of a situation where we are trying to choose from a few (e.g.
5) possible models?

True loss

* When we use the model in a real situation it get inputs from the
data generating distribution D

* What we really want, is minimize the “True loss”:

* Expected loss over the distribution D
« Written as Lp(h)

* Problem: We do not know D

Testsample T

* We do not have accesstoD
* Thus we use atestsetT ~ Dt with t samples

 Compute the average loss L(h) as an estimate of Ly (h)

Generalisation and generalisation gap

* We want the empirical loss of the model to be close to the true
loss

* This is measured by the generalisation gap (sometimes
confusingly also called generalisation loss)

° |Ls(h) — LD(h)l

* Which term among L¢(h) and Ly (h) do you think will be larger?

* |If true loss is much larger than empirical (training) loss, what do
you think has happened?

Decomposition of true loss

* True loss: Lp(hs) = €4pp + Eest

* Approximation error €4, = Lp(h™)
* Min true error in the hypothesis class
* Limitation of the choice of hypothesis class

* Estimation error €,.; = Lp(hg) — Lp(h™):
* Difference between approximation error and true error

* Error due to sampling and choosing suboptimal hg (overfitting, poor
training etc)

Minimising only Empirical risk

* Suppose our sole objective was empirical risk
* That is, we want L¢(h) to be as small

* You are given the training set S

* And you can choose any kind of model to get best performance on
S

* How would you make your model?

Additional reason for choice of a specific H

* Choice of H represents our knowledge of what is generally good
for the application and the real world

* Not just what is good for the data

* E.g. specific architectures for specific applications in vision, NLP,
audio, medical diagnostics etc.

What is a good enough model?

* We are always training with a random sample of data

* We hope the training data is good — similar to the real data
 Butthere is always some chance that itis not.

* Our definition of a good model based on the training data has to be
probabilistic

* We use an (€, 0) guarantee: model hg = A(S) is good if
* IP)[LD(hS) < E] >1—-90
 Thetrue loss of his smallerthane
* With probability atleast1 — 6

* For small positive (€, 6)

Sample complexity: how much data does it
take to find a good model?

« Sample S of sizem
* We will see how sample complexity changes with H

* Assume
* We have a finite H, with |H'| models
 And h* € H has Lp(h*) = 0 (there is a perfect model)

* Not realistic, but helps with the analysis

* Algorithm
 Compute the training loss Lg(h) ofeach h € H
* Find a model hg with loss =0

Useful relations

*For0 <p <1 (e.g.pisaprobability)
1
*(1-p)p <1/e

* Union bound:
* If Aand B are event, then: P(A or B) < P(A) + P(B)
« Writing Aand Bas sets: P(AU B) < P(4) + P(B)

+ Theorem: If m > 2UHVO rpan P[Lp(hs) <€]=1-6

€

Proof

* Suppose Hgz € H are the bad models (i.e with Lp(h) > €)
* They are incorrect on € fraction of data

* We will show that the probability of selecting a model in Hg is
small

* Suppose hg is a bad model

* Pro
* Pro
* Pro

04a
04a

04a

hility t
hility t

Dility t

hat hy gets a labelwrongis > €
nat hy gets a labelrightis< 1 —¢€

nat hp gets all m labels rightis < (1 — €)™ < e ™

* Probability that one bad model in Hg gets everything right is < e™™

* Probability one or more models in Hg get everything right is
* < |Hgle™®™ < |H]e™ ™
* Probability of selecting a bad model

e Wewant |H|e €™M < §
* Probability of selecting a good modelis =1 — 0

log(|#1/9)
€

* Exercise: Solve formto getm =

Discussion of sample complexity

171
: m(a)
« Sample complexitym = ——or m > .

 Suffices to get high probability (1 — §) of high accuracy (small error €)
* Learningis possible from small amounts of data

1
ln|}[|+ln5

* In |H| : complexity to represent model class
* whatis log |H|?
 Number of bits to identify a modelin H

* The proofis for finite H and realizability assumption (there is a zero

loss model)
* But the form of the result holds in more general scenarios

Infinite hypothesis classes and model
representation

* Suppose a model has one real valued parameter
* ThenH isequivalentto R

* I[f amodel has n real valued parameters (e.g. NN with n edges)
* Then the model class is equivalent to R™

* Thatis, think of it as ann dimensional space

* Where each pointis a model
* Each dimension is a parameter weight

* We write 8 = {04, 0,, ...0,,} to represent a model
* Assuming that the class/architecture is known
« Sometimes wis usedin place of 0

Model complexity

* A simple way of looking at model complexity is the number of
parameters.

* The number of values needed to identify a particular model within the
model class

* More parameters: more expressivity/capacity of model
 Capable of doing more things (complex classifications)

* Sample complexity increases with model complexity

* But model complexity or expressivity is a bit more complex than
just number of parameters (we will discuss more later)

* Model space H = R" e Dataspace X = RF

e Fisthe numbero
features

Linear classifiers: a single neuron

* Suppose we want to get the best
possible classification by a linear
space
e Straight line in R? @
* Flat planein R3
* In general, a hyperplane R* ! in R"

* Neuron (perceptron) with threshold
activation

wl

w2

Yy = (Wlxl -+ W»r X9 —+ W()-1 = O)
e Truth value 0/1 (Or, -1/+1)

wO

Single neuron

* Perceptron with threshold activation
* Wi, W, Wy E R

Y = (Wix; +wyx, +wy.1>0)
* Truth value 0/1 (Or, -1/+1) @

wl

e We often write Y
* Z=W:+X

w2 ?

w0

Binary loss

£ =(1fory # y,and-1fory = y)

*Or,¥ = |sgnz # sgny]

* Or ¢ =sgn(—yz) -

Logistic regression (used for classification!)
4

* The logistic loss function is:

* £(hy, (x,y)) =log(1+ exp(—y - 2)) ,
* If y, z are same sign, £ gets smaller with z ,
* v,z are different signs, £ is larger with z

* Question: if x-axis was “z”, what would the plot
look like?

“ »

* The loglstlc loss is based on the logistic function

f()_ 1+e™*

* Exercise: what does look like? (look up on wikipedia)

Logistic loss of S

* For a training dataset S
* We use the average logistic loss

+ Ls(w) = -3, log(1 + e ™)
* S0, the best model w is the one with min logistic loss:

. argminwiz:’i’il log(1 + e Yi%i)

* We need an algorithm to find the model with the best loss
* Question: why do we not use the binary loss?

Gradient descent

* |dea:
e Start with some random values of parameters w
* Measure loss Lg¢(w) on S

» Make small change in w so that loss L¢(w) becomes smaller
* Repeat until Lg¢(w) no longer becomes smaller

* Remember that wis a pointin R"
* So small change in w is moving to a nearby point in R"

Gradient

* Gradient (a vector derivative in multiple dimensions)
* The direction and speed of fastest increase

Vi(w) = (Y, 2m)

8w1 ? de

* (each w; is a parameter or dimension of the model)

* Partial derivatives
* Compute the derivative along each dimension, putthem in a vector

Gradient descent

of(w of(w
e Gradientis V(W)= (_gt(ul)""’ affud))

* Gradient represents the direction in which f increases fastest

* Gradient Descent: At every step t:
o Wt+1 — Wt _ UVLS(Wt)
* (Move in the direction that f decreases fastest With a step scale of)

_ 1
* After T steps, output the average vector w = — I wt

* Other version: output final vector wr

	Slide 1: Generalisation and Optimisation
	Slide 2: Recap
	Slide 3: Today
	Slide 4: Discussion
	Slide 5: True loss
	Slide 6: Test sample cap T
	Slide 7: Generalisation and generalisation gap
	Slide 8
	Slide 9: Decomposition of true loss
	Slide 10: Minimising only Empirical risk
	Slide 11: Additional reason for choice of a specific script cap H
	Slide 12: What is a good enough model?
	Slide 13: Sample complexity: how much data does it take to find a good model?
	Slide 14: Useful relations
	Slide 15
	Slide 16: Proof
	Slide 17
	Slide 18: Discussion of sample complexity
	Slide 19: Infinite hypothesis classes and model representation
	Slide 20: Model complexity
	Slide 21
	Slide 22: Linear classifiers: a single neuron
	Slide 23: Single neuron
	Slide 24: Binary loss
	Slide 25: Logistic regression (used for classification!)
	Slide 26: Logistic loss of cap S
	Slide 27: Gradient descent
	Slide 28: Gradient
	Slide 29: Gradient descent

