
Generalisation and
Optimisation

ATML track 1: Optimization and Neural Networks

Rik Sarkar

Recap

• We use ℋ for hypothesis or model class (e.g. NN architecture)
• And each ℎ ∈ ℋ is a possible model (e.g. an assignment of weights to edges)

• On data point 𝑥
• True label is 𝑦 and label computed by model ℎ is ො𝑦 = ℎ(𝑥)
• Error or risk or loss of model ℎ:

• ℓ ො𝑦, 𝑦 = ቊ
1 if ො𝑦 ≠ 𝑦
0 if ො𝑦 = 𝑦

• Empirical (training) loss over training set 𝑆 for a model ℎ:
• 𝐿𝑆 ℎ =

1

𝑚
σ𝑖=1

𝑚 ℓ (ℎ 𝑥𝑖 , 𝑦𝑖)

• The best possible model in ℋ is one that has lowest empirical loss:
• ℎ∗ = argmin

ℎ∈ℋ
𝐿𝑆(ℎ)

Today

• Generalisation
• Sample complexity
• Model complexity
• Linear classification and logistic regression
• Gradient descent

• Sample exam question online
• Exercises for week 1& 2 will be put online (and posted on piazza)

• For tutorials next week

Discussion

• What is a case for a finite ℋ?
• Can you think of a situation where we are trying to choose from a few (e.g.

5) possible models?

True loss

• When we use the model in a real situation it get inputs from the
data generating distribution 𝒟

• What we really want, is minimize the “True loss”:
• Expected loss over the distribution 𝒟
• Written as 𝐿𝒟 ℎ

• Problem: We do not know 𝒟

Test sample 𝑇

• We do not have access to 𝒟
• Thus we use a test set 𝑇 ∼ 𝒟𝑡 with 𝑡 samples
• Compute the average loss 𝐿𝑇(ℎ) as an estimate of 𝐿𝒟(ℎ)

Generalisation and generalisation gap

• We want the empirical loss of the model to be close to the true
loss

• This is measured by the generalisation gap (sometimes
confusingly also called generalisation loss)
• 𝐿𝑆 ℎ − 𝐿𝒟 ℎ

• Which term among 𝐿𝑆 ℎ and 𝐿𝒟(ℎ) do you think will be larger?

• If true loss is much larger than empirical (training) loss, what do
you think has happened?

Decomposition of true loss

• True loss: 𝐿𝒟 ℎ𝑆 = 𝜖𝑎𝑝𝑝 + 𝜖𝑒𝑠𝑡

• Approximation error 𝜖𝑎𝑝𝑝 = 𝐿𝒟(ℎ∗)
• Min true error in the hypothesis class
• Limitation of the choice of hypothesis class

• Estimation error 𝜖𝑒𝑠𝑡 = 𝐿𝒟 ℎ𝑆 − 𝐿𝒟(ℎ∗):
• Difference between approximation error and true error
• Error due to sampling and choosing suboptimal ℎ𝑆 (overfitting, poor

training etc)

Minimising only Empirical risk

• Suppose our sole objective was empirical risk
• That is, we want 𝐿𝑆 ℎ to be as small

• You are given the training set 𝑆
• And you can choose any kind of model to get best performance on

𝑆

• How would you make your model?

Additional reason for choice of a specific ℋ

• Choice of ℋ represents our knowledge of what is generally good
for the application and the real world
• Not just what is good for the data

• E.g. specific architectures for specific applications in vision, NLP,
audio, medical diagnostics etc.

What is a good enough model?

• We are always training with a random sample of data
• We hope the training data is good – similar to the real data

• But there is always some chance that it is not.
• Our definition of a good model based on the training data has to be

probabilistic

• We use an (𝜖, 𝛿) guarantee: model ℎ𝑆 = 𝐴(𝑆) is good if
• ℙ 𝐿𝒟 ℎ𝑆 ≤ 𝜖 ≥ 1 − 𝛿

• The true loss of ℎ is smaller than 𝜖
• With probability at least 1 − 𝛿

• For small positive (𝜖, 𝛿)

Sample complexity: how much data does it
take to find a good model?
• Sample 𝑆 of size 𝑚

• We will see how sample complexity changes with ℋ

• Assume
• We have a finite ℋ, with |ℋ| models
• And ℎ∗ ∈ ℋ has 𝐿𝒟 ℎ∗ = 0 (there is a perfect model)

• Not realistic, but helps with the analysis

• Algorithm
• Compute the training loss 𝐿𝑆(ℎ) of each ℎ ∈ ℋ

• Find a model ℎ𝑆 with loss = 0

Useful relations

• For 0 < 𝑝 < 1 (e.g. p is a probability)

• 1 − 𝑝
1

𝑝 ≤ 1/𝑒

• Union bound:
• If A and B are event, then: 𝑃 𝐴 𝑜𝑟 𝐵 ≤ 𝑃 𝐴 + 𝑃(𝐵)

• Writing A and B as sets: 𝑃(𝐴 ∪ 𝐵) ≤ 𝑃 𝐴 + 𝑃(𝐵)

• Theorem: If 𝑚 ≥
ln(|ℋ|/𝛿)

𝜖
Then ℙ 𝐿𝒟 ℎ𝑆 ≤ 𝜖 ≥ 1 − 𝛿

Proof

• Suppose 𝐻𝐵 ⊂ ℋ are the bad models (i.e with 𝐿𝒟 ℎ > 𝜖)
• They are incorrect on 𝜖 fraction of data

• We will show that the probability of selecting a model in 𝐻𝐵 is
small

• Suppose ℎ𝐵 is a bad model
• Probability that ℎ𝐵 gets a label wrong is > 𝜖

• Probability that ℎ𝐵 gets a label right is ≤ 1 − 𝜖

• Probability that ℎ𝐵 gets all 𝑚 labels right is ≤ 1 − 𝜖 𝑚≤ 𝑒−𝜖𝑚

• Probability that one bad model in 𝐻𝐵 gets everything right is ≤ 𝑒−𝜖𝑚

• Probability one or more models in 𝐻𝐵 get everything right is
• ≤ 𝐻𝐵 𝑒−𝜖𝑚 ≤ |𝓗|𝑒−𝜖𝑚

• Probability of selecting a bad model

• We want 𝓗 𝑒−𝜖𝑚 ≤ 𝛿
• Probability of selecting a good model is ≥ 1 − 𝛿

• Exercise: Solve for 𝑚 to get 𝑚 ≥
log(|ℋ|/𝛿)

𝜖

Discussion of sample complexity

• Sample complexity 𝑚 ≥
ln

ℋ

𝛿

𝜖
or, 𝑚 ≥

ln|ℋ|+ln
1

𝛿

𝜖

• Suffices to get high probability (1 − 𝛿) of high accuracy (small error 𝜖)
• Learning is possible from small amounts of data

• ln |ℋ| : complexity to represent model class
• what is log |ℋ|?
• Number of bits to identify a model in ℋ

• The proof is for finite ℋ and realizability assumption (there is a zero
loss model)
• But the form of the result holds in more general scenarios

Infinite hypothesis classes and model
representation
• Suppose a model has one real valued parameter

• Then ℋ is equivalent to ℝ

• If a model has 𝑛 real valued parameters (e.g. NN with 𝑛 edges)
• Then the model class is equivalent to ℝ𝑛

• That is, think of it as an 𝑛 dimensional space
• Where each point is a model
• Each dimension is a parameter weight

• We write 𝜽 = {𝜃1, 𝜃2, … 𝜃𝑛} to represent a model
• Assuming that the class/architecture is known
• Sometimes 𝒘 is used in place of 𝜽

Model complexity

• A simple way of looking at model complexity is the number of
parameters.
• The number of values needed to identify a particular model within the

model class
• More parameters: more expressivity/capacity of model

• Capable of doing more things (complex classifications)
• Sample complexity increases with model complexity

• But model complexity or expressivity is a bit more complex than
just number of parameters (we will discuss more later)

• Model space ℋ ≈ ℝ𝑛 • Data space 𝒳 ≈ ℝ𝐹

• 𝐹 is the number o
features

Linear classifiers: a single neuron

• Suppose we want to get the best
possible classification by a linear
space
• Straight line in ℝ2

• Flat plane in ℝ3

• In general, a hyperplane ℝ𝑛−1 in ℝ𝑛

• Neuron (perceptron) with threshold
activation

• 𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0. 1 ≥ 0
• Truth value 0/1 (0r, -1/+1)

x1

x2

w1

w2

σ

1

y

w0

Single neuron

• Perceptron with threshold activation
• 𝑤1, 𝑤2, 𝑤0 ∈ ℝ

• ො𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0. 1 ≥ 0
• Truth value 0/1 (0r, -1/+1)

• We often write
• 𝑧 = 𝑤 ⋅ 𝑥

x1

x2

w1

w2

σ

1

y

w0

Binary loss

• ℓ = (1 for ො𝑦 ≠ 𝑦, and -1 for ො𝑦 = 𝑦)

• Or, ℓ = [sgn 𝑧 ≠ sgn 𝑦]

• Or ℓ = sgn(−𝑦𝑧) −𝑦𝑧

ℓ

Logistic regression (used for classification!)

• The logistic loss function is:
• ℓ ℎ𝑤 , 𝑥, 𝑦 = log(1 + exp(−𝑦 ⋅ 𝑧))
• If 𝑦, 𝑧 are same sign, ℓ gets smaller with 𝑧
• 𝑦, 𝑧 are different signs, ℓ is larger with 𝑧

• Question: if x-axis was “z”, what would the plot
look like?

• The logistic loss is based on the logistic function
𝑓 𝑥 =

1

1+𝑒−𝑥
• Exercise: what does look like? (look up on wikipedia)

Logistic loss of 𝑆

• For a training dataset 𝑆
• We use the average logistic loss

• 𝐿𝑆 𝒘 =
1

𝑚
σ𝑖=1

𝑚 log(1 + 𝑒−𝑦𝑖𝑧𝑖)

• So, the best model 𝑤 is the one with min logistic loss:
• 𝑎𝑟𝑔𝑚𝑖𝑛𝒘

1

𝑚
σ𝑖=1

𝑚 log(1 + 𝑒−𝑦𝑖𝑧𝑖)

• We need an algorithm to find the model with the best loss
• Question: why do we not use the binary loss?

Gradient descent

• Idea:
• Start with some random values of parameters 𝒘
• Measure loss 𝐿𝑆 𝒘 on 𝑆
• Make small change in 𝒘 so that loss 𝐿𝑆 𝒘 becomes smaller

• Repeat until 𝐿𝑆 𝒘 no longer becomes smaller

• Remember that 𝒘 is a point in ℝ𝑛

• So small change in 𝒘 is moving to a nearby point in ℝ𝑛

Gradient

• Gradient (a vector derivative in multiple dimensions)
• The direction and speed of fastest increase

• (each 𝑤𝑖 is a parameter or dimension of the model)

• Partial derivatives
• Compute the derivative along each dimension, put them in a vector

Gradient descent

• Gradient is

• Gradient represents the direction in which 𝑓 increases fastest
• Gradient Descent: At every step 𝑡 :

• 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝐿𝑆(𝒘𝑡)

• (Move in the direction that 𝑓 decreases fastest With a step scale of 𝜂)

• After T steps, output the average vector ഥ𝒘 =
1

𝑇
σ𝑡=1

𝑇 𝒘𝑡

• Other version: output final vector 𝒘𝑻

	Slide 1: Generalisation and Optimisation
	Slide 2: Recap
	Slide 3: Today
	Slide 4: Discussion
	Slide 5: True loss
	Slide 6: Test sample cap T
	Slide 7: Generalisation and generalisation gap
	Slide 8
	Slide 9: Decomposition of true loss
	Slide 10: Minimising only Empirical risk
	Slide 11: Additional reason for choice of a specific script cap H
	Slide 12: What is a good enough model?
	Slide 13: Sample complexity: how much data does it take to find a good model?
	Slide 14: Useful relations
	Slide 15
	Slide 16: Proof
	Slide 17
	Slide 18: Discussion of sample complexity
	Slide 19: Infinite hypothesis classes and model representation
	Slide 20: Model complexity
	Slide 21
	Slide 22: Linear classifiers: a single neuron
	Slide 23: Single neuron
	Slide 24: Binary loss
	Slide 25: Logistic regression (used for classification!)
	Slide 26: Logistic loss of cap S
	Slide 27: Gradient descent
	Slide 28: Gradient
	Slide 29: Gradient descent

