

Gradient Descent and Optimisation

ATML Track1

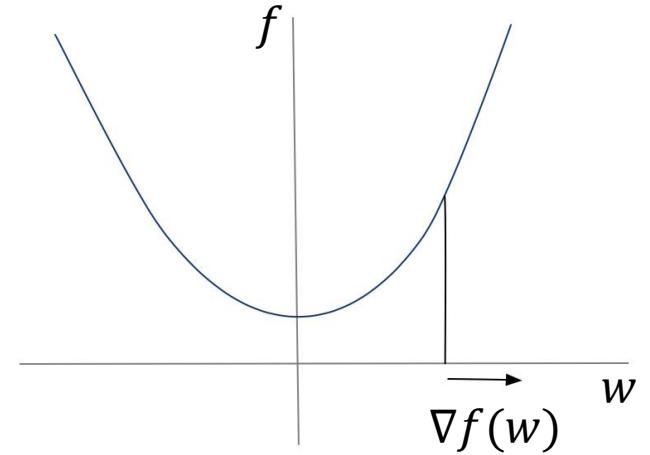
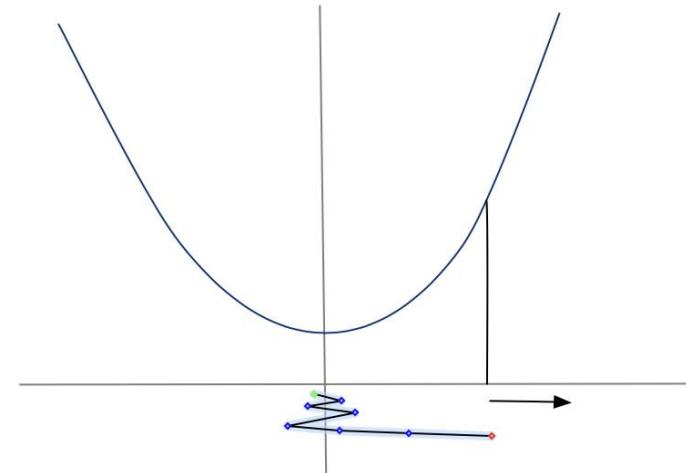
Rik Sarkar

Today

- Gradient descent
- Convexity
- Convergence of gradient descent
- Strong convexity
- Regularisation
- Stability

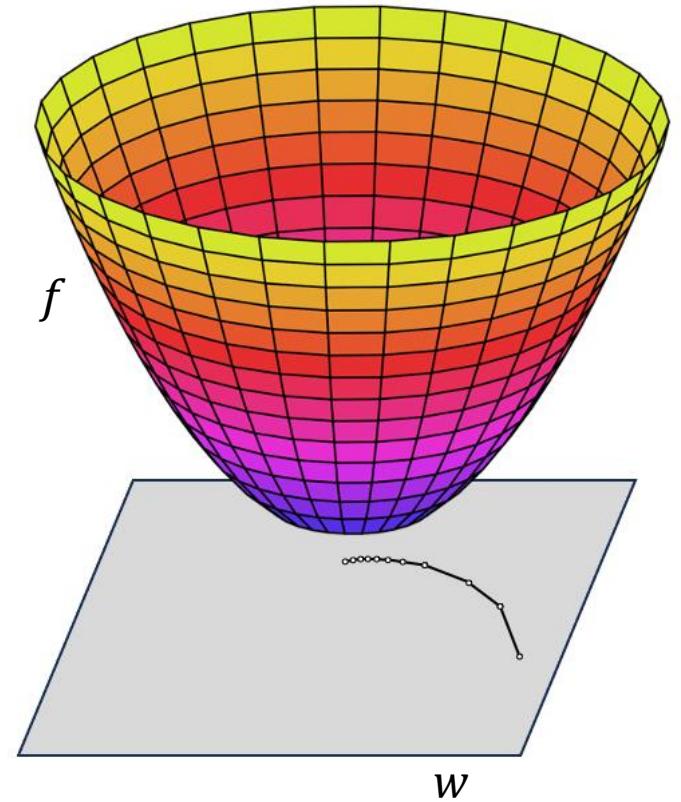
Gradient descent

- Gradient in 1d
 - $\nabla f = \frac{df(w)}{dw}$
 - The derivative as a vector
 - The direction and speed of increase of f
- We move opposite to the gradient $-\nabla f$
 - Step sizes proportional to the gradient
 - We might overshoot the min
 - But eventually converge to it



High dimensional gradients

- Our model parameter sets are vectors
 - $\mathbf{w} = [w_1, w_2, \dots, w_n]$
 - Each model is a point in high dimension
- High dimension Gradient
 - Take the gradient or derivative independently in each dimension and put them in an array
 - $\nabla f(\mathbf{w}) = \left[\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_n} \right]$
 - The vector direction is the direction f increases the fastest
 - Length of the vector represents rate of increase



Gradient Descent algorithm

- Start with \mathbf{w}^0 initialised randomly
- At every step t :
 - $\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla f(\mathbf{w}^t)$
 - (Move in the direction that f decreases fastest With a step factor of η)
- After T steps, output the average vector $\bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^T \mathbf{w}^t$
- Other version: output final vector \mathbf{w}_T
- For us, f is the average loss L

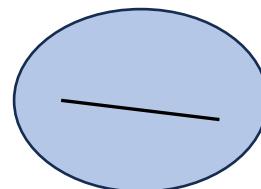
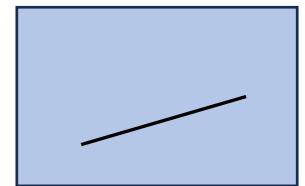
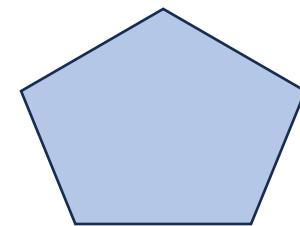
Stopping gradient descent

- Stop after T steps
- Where we know what T is reasonable
- Convergence
 - What is a good T so that GD is close to the best model?
- We first need a few definitions

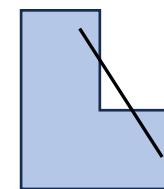
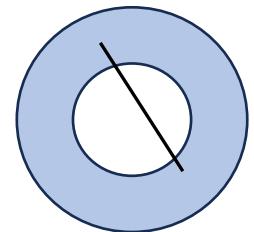
Convex sets

- A set C is convex if for any $\mathbf{u}, \mathbf{v} \in C$, the line segment connecting \mathbf{u}, \mathbf{v} is in C .
 - Can be written formally as:
 - For any $\alpha \in [0,1]$, it is true that $\alpha\mathbf{u} + (1 - \alpha)\mathbf{v} \in C$
- Observe that for points \mathbf{u}, \mathbf{v}
 - $\alpha\mathbf{u} + (1 - \alpha)\mathbf{v}$, with $\alpha \in [0,1]$
 - Are points on the line segment connecting \mathbf{u}, \mathbf{v}

convex



Non convex

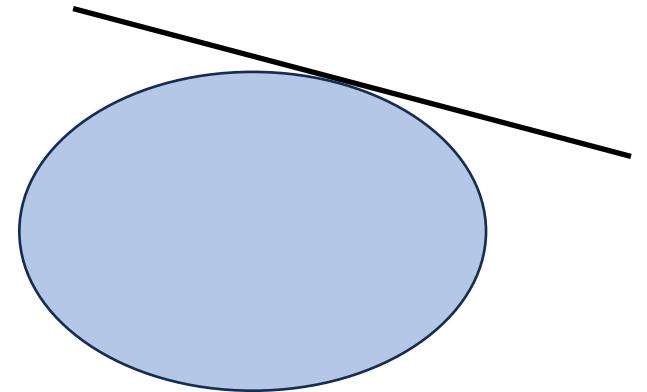


Convex sets

- Questions:
- Is \mathbb{R} convex?
- Is \mathbb{R}^n convex?

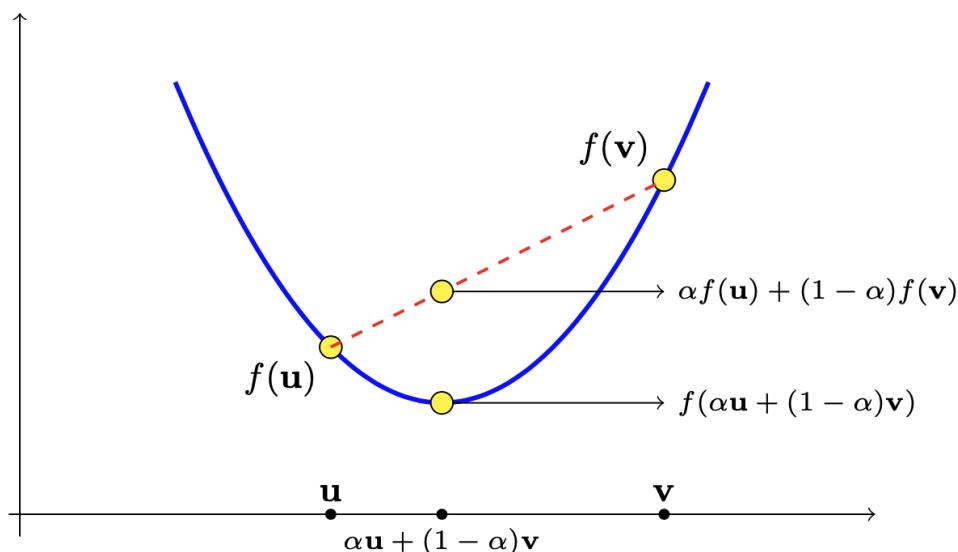
Convex sets: additional observation

- The set lies entirely on one side of a tangent to the boundary



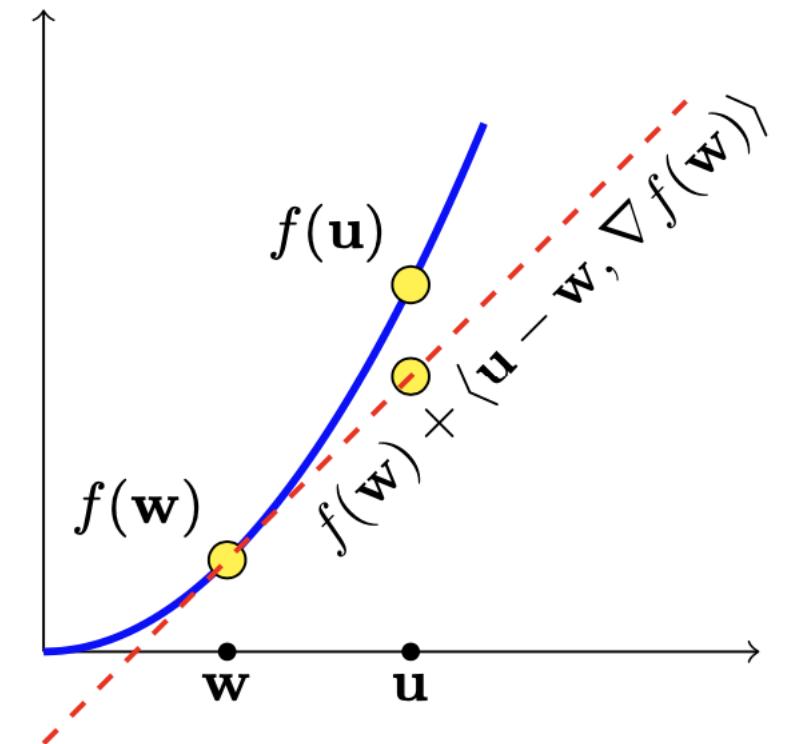
Convex function

- For a convex C , a function $f: C \rightarrow \mathbb{R}$ is convex if
- $f(\alpha\mathbf{u} + (1 - \alpha)\mathbf{v}) \leq \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v})$
- The graph of f lies below the straight line connecting \mathbf{u} and \mathbf{v}
- A way to formalize the shape we have been drawing



Properties of convex functions

- For every w the tangent at $f(w)$ lies below f :
 - $\forall u, f(u) \geq f(w) + \langle \nabla f(w), u - w \rangle$
- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable, then
 - f is convex
 - f' is monotone nondecreasing
 - f'' is nonnegative
- Are equivalent



Combining convex functions

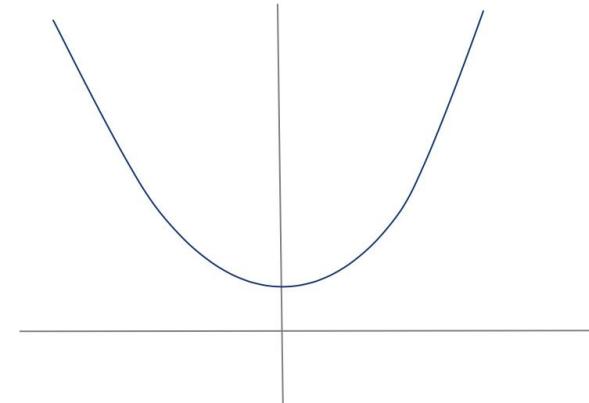
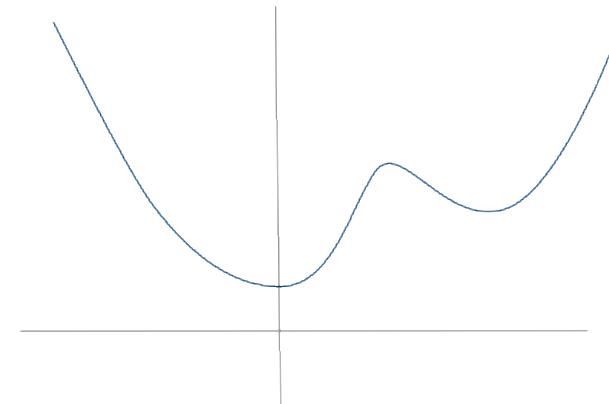
- If f_i are convex functions
- $g(x) = \max_i f_i(x)$ is convex
- $g(x) = \sum_i a_i f_i(x)$ is convex
 - What is the consequence for loss functions?

Combination of loss functions

- If $\ell(\cdot, x)$ is convex for each $x \in S$
- Then the average empirical loss $L_S = \frac{1}{m} \sum_{x \in S} \ell(\cdot, x)$ is convex
- Check that logistic loss is convex

Properties of convex functions

- If u is a local minimum, then it is a global minimum
 - No other point has a lower value
- Non-convex functions
 - There can be more than one local minima

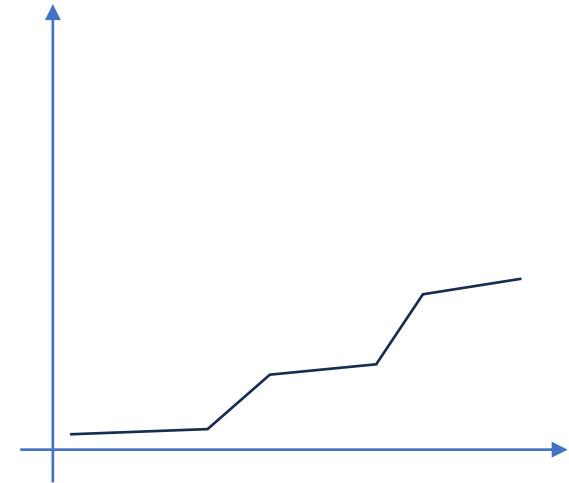


Convex function Question

- Is the the global minimum unique for convex functions?
- Can there be more than one point with the global min value?

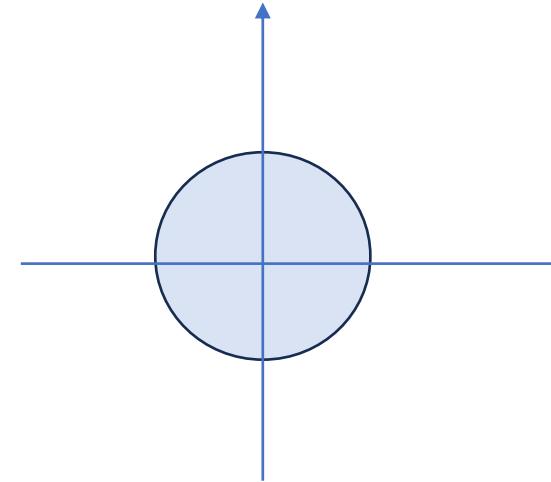
Lipschitz and smooth functions

- A function f is ρ -Lipschitz if
 - $\|f(\mathbf{w}_1) - f(\mathbf{w}_2)\| \leq \rho \|\mathbf{w}_1 - \mathbf{w}_2\|$
- A function that does not change too fast
 - If the derivative ∇f is bounded by ρ ,
 - Then the function is also ρ -Lipschitz
 - But lipschitzness can be defined/computed even when the derivative does not exist
- Smooth functions
 - f is β -smooth if ∇f is β -Lipschitz:
 - $\|\nabla f(\mathbf{v}) - \nabla f(\mathbf{w})\| \leq \beta \|\mathbf{v} - \mathbf{w}\|$



Boundedness

- A hypothesis class is bounded if
- $\forall w \in \mathcal{H}, \|w\| \leq B$
- For some constant B
- That is, we are considering models only within a restricted ball of radius B

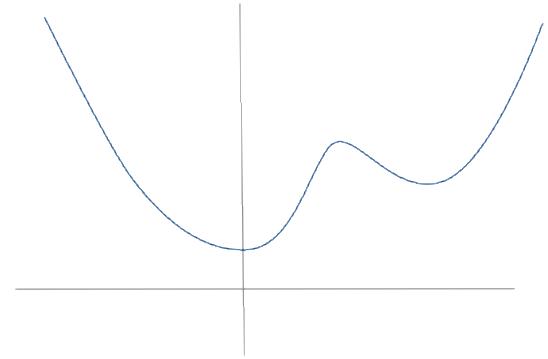


GD Convergence theorem

- For convex lipschitz bounded learning
- Setting $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$
- We can get $f(\bar{w}) - f(w^*) \leq \frac{B\rho}{\sqrt{T}}$
- Alternatively, to achieve $f(\bar{w}) - f(w^*) \leq \epsilon$ the number of rounds is:
$$T \geq \frac{B^2 \rho^2}{\epsilon^2}$$

Discussion: why do we need these properties

- For non-convex functions, there is no guarantee of getting close to the optimum value
- Lipschitz bound
 - Ensures that the steps are not so large that they take us very far from the action
- Boundedness
 - If we start unbounded distance from the min, it can take unbounded number of steps to get there
 - Sometimes it is assumed that everything occurs within radius $B = 1$ (after scaling) and is omitted from the discussion.

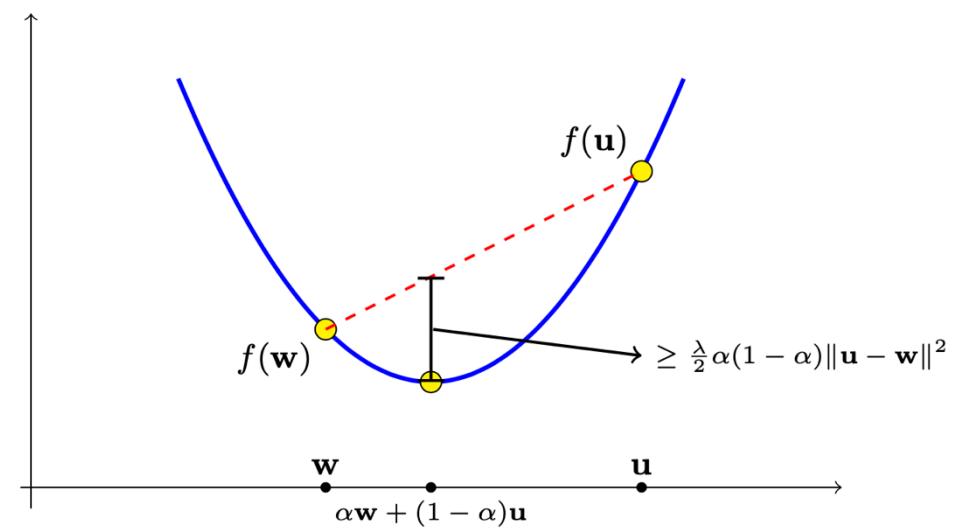


Strong Convexity

- Function f is λ -strongly convex if

$$f(\alpha\mathbf{w} + (1 - \alpha)\mathbf{u}) \leq \alpha f(\mathbf{w}) + (1 - \alpha)f(\mathbf{u}) - \frac{\lambda}{2}\alpha(1 - \alpha)\|\mathbf{w} - \mathbf{u}\|^2$$

- Alternative definition:
 - $f(x)$ is λ -strongly convex
 - Iff $f(x) = g(x) + \frac{\lambda}{2}\|x\|^2$, where $g(x)$ is convex
- Strongly convex functions have unique global minimum
 - (If a minimum exists. There are some technicalities around mathematical existence of minimum that we don't need to worry about.)



Regularization

- Instead of the pure loss, minimize loss with a regularization term:

$$\operatorname{argmin}_{\mathbf{w}} (L_S(\mathbf{w}) + R(\mathbf{w}))$$

- Commonly used: $R(\mathbf{w}) = \lambda \|\mathbf{w}\|^2$
 - Called Tikhonov regularization

Try yourself:

Go to wolfram alpha and plot a polynomial: $y = a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$

- With numbers of your choice in place of coefficients a_i
- Now scale the coefficients: multiply all the coefficients with the same number (may be fractions too). What do you see?

- $R(\mathbf{w}) = \lambda \|\mathbf{w}\|^2$
 - Is 2-strongly convex
- If $L_S(\mathbf{w})$ is convex, then $L_S(\mathbf{w}) + R(\mathbf{W})$ is 2-strongly convex
- Strong convexity implies stability

Stability

- Intuitively: A learning algorithm is stable if
 - A small change to training set does not cause a big change to the output (model or hypothesis)
- This is a desirable property because...

Stability

- Intuitively: A learning algorithm is stable if
 - A small change to training set does not cause a big change to the output (model or hypothesis)
- This is a desirable property because
 - It implies that it is not too sensitive to specific S . does not overfit
 - If we continue to use it, it will not abruptly change behavior as new data comes in

- Suppose in S , we replace z_i with $z' \sim \mathcal{D}$
- Let us write this as S^i
- A good algorithm A should have small value for
 - $|\ell(A(S^i), z_i) - \ell(A(S), z_i)|$
- The loss at z_i does not depend too much on it being in the sample

Stability definition and result

- Algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$
- If
 - $\mathbb{E}[\ell(A(S^i), z_i) - \ell(A(S), z_i)] \leq \epsilon(m)$

Stability definition and result

- Algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$
- If
 - $\mathbb{E}[\ell(A(S^i), z_i) - \ell(A(S), z_i)] \leq \epsilon(m)$
- Theorem:
 - $\mathbb{E}[L_{\mathcal{D}}(A(S)) - L_S(A(S))] = \mathbb{E}[\ell(A(S^i), z_i) - \ell(A(S), z_i)]$
 - The generalization gap is bounded by the stability

