
Gradient Descent and 
Optimisation

ATML Track1

Rik Sarkar



Today 

• Gradient descent

• Convexity 

• Convergence of gradient descent 

• Strong convexity 

• Regularisation 

• Stability 



Gradient descent 

• Gradient in 1d 

• ∇𝑓 =
𝑑𝑓(𝑤)

𝑑𝑤

• The derivative as a vector
• The direction and speed of increase of 𝑓

• We move opposite to the gradient −∇𝑓
• Step sizes proportional to the gradient

• We might overshoot the min 

• But eventually converge to it

𝑤

𝑓

∇𝑓(𝑤)



High dimensional gradients

• Our model parameter sets are vectors
• 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑛]

• Each model is a point in high dimension

• High dimension Gradient  
• Take the gradient or derivative independently in 

each dimension and put them in an array

• ∇𝑓 𝒘 = [
𝜕𝑓 𝒘

𝜕𝑤1
,

𝜕𝑓 𝒘

𝜕𝑤2
, … ,

𝜕𝑓 𝒘

𝜕𝑤𝑛
]

• The vector direction is the direction 𝑓 increases 
the fastest

• Length of the vector represents rate of increase 

𝑤

𝑓



Gradient Descent algorithm

• Start with 𝒘0initialised randomly 

• At every step 𝑡 : 
• 𝒘𝑡+1 = 𝒘𝑡 − 𝜂∇𝑓(𝒘𝑡)

• (Move in the direction that 𝑓 decreases fastest With a step factor of 𝜂)

• After T steps, output the average vector ഥ𝒘 =
1

𝑇
σ𝑡=1

𝑇 𝒘𝑡

• Other version: output final vector 𝒘𝑻

• For us, 𝑓 is the average loss 𝐿



Stopping gradient descent

• Stop after T steps 

• Where we know what T is reasonable

• Convergence 
• What is a good T so that GD is close to the best model? 

• We first need a few definitions 



Convex sets  

• A set 𝐶 is convex if for any 𝒖, 𝒗 ∈ 𝐶, the 
line segment connecting 𝒖, 𝒗 is in 𝐶. 
• Can be written formally as: 

• For any 𝛼 ∈ 0,1 , it is true that 𝛼𝒖 +
1 − 𝛼 𝒗 ∈ 𝐶 

• Observe that for points 𝒖, 𝒗
• 𝛼𝒖 + 1 − 𝛼 𝒗, with 𝛼 ∈ 0,1  

• Are points on the line segment connecting 
𝒖, 𝒗

convex

Non convex



Convex sets

• Questions: 

• Is ℝ convex? 

• Is ℝ𝑛 convex?



Convex sets: additional observation

• The set lies entirely on one side of a 
tangent to the boundary



Convex function

• For a convex 𝐶, a function 𝑓: 𝐶 → ℝ is convex if 

• 𝑓 𝛼𝒖 + 1 − 𝛼 𝒗 ≤ 𝛼𝑓 𝒖 + 1 − 𝛼 𝑓(𝒗)

• The graph of 𝑓 lies below the straight line connecting u and v

• A way to formalize the shape we have been drawing



Properties of convex functions

• For every 𝒘 the tangent at 𝑓 𝒘 lies below 𝑓: 
• ∀𝒖, 𝑓 𝒖 ≥ 𝑓 𝒘 + ⟨∇𝑓 𝒘 , 𝒖 − 𝒘⟩

• If 𝑓: ℝ → ℝ is twice differentiable, then 
• 𝑓 is convex

• 𝑓′ is monotone nondecreasing

• 𝑓′′ is nonnegative

• Are equivalent



Combining convex functions

• If 𝑓𝑖  are convex functions

• 𝑔 𝑥 = max
𝑖

𝑓𝑖(𝑥) is convex

• 𝑔 𝑥 = σ𝑖 𝑎𝑖𝑓𝑖 𝑥  is convex 
• What is the consequence for loss functions? 



Combination of loss functions

• If ℓ(⋅, 𝑥)is convex for each 𝑥 ∈ 𝑆

• Then the average empirical loss 𝐿𝑆 =
1

𝑚
σ𝑥∈S ℓ(⋅, 𝑥) is convex

• Check that logistic loss is convex



Properties of convex functions

• If 𝑢 is a local minimum, then it is a 
global minimum 
• No other point has a lower value

• Non-convex functions
• There can be more than one local 

minima



Convex function Question

• Is the the global minimum unique for convex functions?

• Can there be more than one point with the global min value? 



Lipschitz and smooth functions

• A function 𝑓 is 𝜌-Lipschitz if
• 𝑓 𝒘1 − 𝑓 𝒘2 ≤ 𝜌| 𝒘1 − 𝒘2 |

• A function that does not change too fast
• If the derivative ∇𝑓 is bounded by 𝜌,

• Then the function is also 𝜌-Lipschitz 
• But lipschitzness can be defined/computed even 

when the derivative does not exist

• Smooth functions
• 𝑓 is 𝛽-smooth if ∇𝑓 is 𝛽-Lipschitz:

• ∇𝑓 𝒗 − ∇𝑓 𝒘 ≤ 𝛽| 𝒗 − 𝒘 |



• A hypothesis class is bounded if 

• ∀𝑤 ∈ ℋ, 𝒘 ≤ 𝐵

• For some constant 𝐵

• That is, we are considering models only within a restricted ball of 
radius 𝐵

Boundedness



GD Convergence theorem 

• For convex lipschitz bounded learning 

• Setting 𝜂 =
𝐵2

𝜌2𝑇
 

• We can get 𝑓 ഥ𝑤 − 𝑓 𝑤∗ ≤
𝐵𝜌

𝑇

• Alternatively, to achieve 𝑓 ഥ𝒘 − 𝑓 𝒘∗ ≤ 𝜖 the number of rounds is: 

• 𝑇 ≥
𝐵2𝜌2

𝜖2



Discussion: why do we need these properties

• For non-convex functions, there is no 
guarantee of getting close to the optimum 
value

• Lipschitz bound
• Ensures that the steps are not so large that they 

take us very far from the action

• Boundedness 
• If we start unbounded distance from the min, it 

can take unbounded number of steps to get there
• Sometimes it is assumed that everything occurs 

within radius 𝐵 = 1 (after scaling) and is omitted 
from the discussion. 



Strong Convexity 

• Function 𝑓 is 𝜆-strongly convex if 

• Alternative definition: 
• 𝑓 𝑥  is 𝜆-strongly convex 

• Iff 𝑓 𝑥 = 𝑔 𝑥 +
𝜆

2
𝑥

2
 , where 𝑔(𝑥) is convex

• Strongly convex functions have unique global 
minimum 
• (If a minimum exists. There are some technicalities 

around mathematical existence of minimum that we 
don’t need to worry about.)



Regularization 

• Instead of the pure loss, minimize loss with a regularization term: 

• Commonly used: 𝑅 𝒘 = 𝜆 𝒘
2

 
• Called Tikhonov regularization 



Try yourself: 

Go to wolfram alpha and plot a polynomial: 𝑦 = 𝑎5𝑥5 + 𝑎4𝑥4 +
𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0

• With numbers of your choice in place of coefficients  𝑎𝑖

• Now scale the coefficients: multiply all the coefficients with the same 
number (may be fractions too). What do you see? 



• 𝑅 𝒘 = 𝜆 𝒘
2

 
• Is 2-strongly convex 

• If 𝐿𝑆 𝑤  is convex, then 𝐿𝑆 𝑤 + 𝑅(𝑊) is 2-strongly convex

• Strong convexity implies stability  



Stability 

• Intuitively: A learning algorithm is stable if
• A small change to training set does not cause a big change to the output 

(model or hypothesis)

• This is a desirable property because…



Stability 

• Intuitively: A learning algorithm is stable if
• A small change to training set does not cause a big change to the output 

(model or hypothesis)

• This is a desirable property because
• It implies that it is not too sensitive to specific S. does not overfit

• If we continue to use it, it will not abruptly change behavior as new data 
comes in



• Suppose in 𝑆, we replace 𝑧𝑖 with 𝑧′ ∼ 𝒟

• Let us write this as 𝑆𝑖

• A good algorithm 𝐴 should have small value for 
• |ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 |

• The loss at 𝑧𝑖 does not depend too much on it being in the sample



Stability definition and result

• Algorithm 𝐴 is on-average-replace-one-stable with rate 𝜖(𝑚)

• If
• 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 ≤ 𝜖(𝑚)



Stability definition and result

• Algorithm 𝐴 is on-average-replace-one-stable with rate 𝜖(𝑚)

• If
• 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 ≤ 𝜖(𝑚)

• Theorem: 
• 𝔼 𝐿𝒟 𝐴 𝑆 − 𝐿𝑆 𝐴 𝑆 = 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖

• The generalization gap is bounded by the stability 
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