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* Gradient descent

* Convexity

* Convergence of gradient descent
* Strong convexity

e Regularisation

e Stability



Gradient descent

e Gradientin 1d

. Vf = YW

aw | Vi (w)
 The derivative as a vector

* The direction and speed of increase of f

* We move opposite to the gradient —Vf
 Step sizes proportional to the gradient
* We might overshoot the min
* But eventually converge to it




High dimensional gradients

* Our model parameter sets are vectors
W = [Wl, W», ...,Wn]
* Each model is a point in high dimension

* High dimension Gradient

* Take the gradient or derivative independently in
each dimension and put them in an array
. VF(w) = [af(W) af (w) af(W)]

ow; ' owy, T owy,

* The vector direction is the direction f increases
the fastest

* Length of the vector represents rate of increase




Gradient Descent algorithm

e Start with w'initialised randomly

* Ateverystep t:
e witl = wt — nvf(wt)
* (Move in the direction that f decreases fastest With a step factor of )

_ 1
» After T steps, output the average vector w = p Z:1 wt

* Other version: output final vector wy
* For us, f is the average loss L



Stopping gradient descent

 Stop after T steps
e Where we know what T is reasonable

* Convergence
* Whatis a good T so that GD is close to the best model?

 We first need a few definitions



Convex sets

 Aset C is convex if forany u,v € C, the
line segment connecting u, visin C.
e Can be written formally as:

e Forany a € [0,1], itis true that au +
(1—-a)vecC

e Observe that for points u, v
e au + (1 — a)v, with ¢ € [0,1]

e Are points on the line segment connecting
u,v

convex

= [=

Non convex




Convex sets

 Questions:
* |s R convex?
e |s R™ convex?



Convex sets: additional observation

* The set lies entirely on one side of a
tangent to the boundary



Convex function

* For a convex C, a function f: C — R is convex if

*flau+ (1 - a)v) < af(w) + (1 - a)f(v)
* The graph of f lies below the straight line connecting u and v
* A way to formalize the shape we have been drawing

f(V/)/
o af(u) + (1 - @) f(v)

flau+ (1 - a)v)

u \%

'au—l— (I —a)v



Properties of convex functions

* For every w the tangent at f(w)lies below f:

* Vu, f(u) = f(w) +(Vf(w), u —w)

* If f: R — Ris twice differentiable, then
* f is convex
 f'is monotone nondecreasing
 f'"is nonnegative

* Are equivalent




Combining convex functions

* If f; are convex functions

* g(x) = max f;(x) is convex
l

e g(x) = Y;a;f;(x) is convex

 What is the consequence for loss functions?



Combination of loss functions

* If £(-,x)is convex foreachx € S
1

* Then the average empirical loss Lg = szes £(-,x) is convex

* Check that logistic loss is convex



Properties of convex functions

e If uis alocal minimum, then itis a
global minimum
* No other point has a lower value

* Non-convex functions

* There can be more than one local
minima




Convex function Question

* Is the the global minimum unique for convex functions?
* Can there be more than one point with the global min value?



Lipschitz and smooth functions

* Afunction f is p-Lipschitz if
|f (wy) _f(Wz)” < pllw; —wy|

e A function that does not change too fast
* If the derivative Vf is bounded by p,

* Then the function is also p-Lipschitz

* But lipschitzness can be defined/computed even
when the derivative does not exist

 Smooth functions
* fis f-smooth if Vf is f-Lipschitz:
IVf(w) —VFwW)I| < Bllv —wl|




Boundedness

* A hypothesis class is bounded if /\
NI

-vw e, |lw|| < B

* For some constant B

* That is, we are considering models only within a restricted ball of
radius B



GD Convergence theorem

* For convex lipschitz bounded learning

: B2
Settingn = T
« Wecanget f(w) — f(w*) < e

VT

* Alternatively, to achieve f(w) — f(w*) < € the number of rounds is:




Discussion: why do we need these properties

* For non-convex functions, there is no \

guarantee of getting close to the optimum
value

//

* Lipschitz bound

* Ensures that the steps are not so large that they
take us very far from the action

e Boundedness

e |f we start unbounded distance from the min, it
can take unbounded number of steps to get there

* Sometimes it is assumed that everything occurs
within radius B = 1 (after scaling) and is omitted
from the discussion.



Strong Convexity

* Function f is A-strongly convex if

Flaw + (1~ a)u) < af(w) + (1 a)f(u) ~ Sa(l — a)|w — ul?

e Alternative definition:
* f(x)is A-strongly convex

o Iff f(x) =g(x)+ % ||x| ? , Where g(x) is convex

* Strongly convex functions have unique global
minimum
* (If a minimum exists. There are some technicalities

around mathematical existence of minimum that we w o u
don’t need to worry about.) “aw+ (1 - a)u )

> 3a(l - a)llu - w|?




Regularization

* Instead of the pure loss, minimize loss with a regularization term:

argmin (Lg(w) + R(w))

W

2
e« Commonly used: R(w) = /1||w|‘
* Called Tikhonov regularization



Try yourself:

Go to wolfram alpha and plot a polynomial: y = azx® + a,x* +
asx3 + a,x? + a;x + a,

* With numbers of your choice in place of coefficients a;

* Now scale the coefficients: multiply all the coefficients with the same
number (may be fractions too). What do you see?



« R(w) = A|jw||*

* |s 2-strongly convex

* If Lg(w) is convex, then Ls(w) + R(W) is 2-strongly convex

e Strong convexity implies stability



Stability

* Intuitively: A learning algorithm is stable if

* A small change to training set does not cause a big change to the output
(model or hypothesis)

* This is a desirable property because...



Stability

* Intuitively: A learning algorithm is stable if

* A small change to training set does not cause a big change to the output
(model or hypothesis)

 This is a desirable property because

* |t implies that it is not too sensitive to specific S. does not overfit

* If we continue to use it, it will not abruptly change behavior as new data
comes in



 Suppose in S, we replace z; with z' ~ D

e Let us write this as S*

* A good algorithm A should have small value for
+ 12(A(S"), z:) — €(A(S), )|

* The loss at z; does not depend too much on it being in the sample



Stability definition and result

* Algorithm A is on-average-replace-one-stable with rate e(m)

° |f
- E[£(A(SY), z;) — 2(A(S), z)] < e(m)



Stability definition and result

* Algorithm A is on-average-replace-one-stable with rate e(m)

° |f
- E[£(A(SY), z;) — 2(A(S), z)] < e(m)

e Theorem:

« E[Lp(A(S)) — Ls(A(S))]| = E[£(A(SY), z;) — €(A(S), z)]

 The generalization gap is bounded by the stability
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