
Blockchains

& Distributed Ledgers
Lecture 06

Petros Wallden

Slide credits: PW, Dimitris Karakostas, Aggelos Kiayias, Nikos Leonardos

Permissionless Protocols

● Bitcoin and similar PoW-based blockchain protocols provide a

permissionless setting:
○ Anyone can participate in the protocol and receive BTC as rewards by performing the PoW-

based mining operation

● Minting new coins (via PoW) makes it feasible for anyone (possessing

sufficient hashing power) to participate

● The ledger itself is public, readable and writeable by anyone
○ read (retrieve ledger information): connect to the network and download the ledger

○ write (insert new information to the ledger): obtain some bitcoins and create a transaction

Dynamic Availability

● Parties join and leave at will

● Need to bootstrap a chain when (re)joining):
○ Bitcoin’s “longest chain rule” (most difficult chain)

● Number of online/offline parties changes over time
○ Analysis must account for that

● No a priori knowledge of participation levels

● Unannounced disappearance

Classic BFT protocols do not operate under general dynamic availability

Bitcoin’s Energy Problem

● Bitcoin resolves dynamic availability via PoW
○ Parties have limited access to a resource (computational power)

○ They repeatedly try to solve cryptographic puzzles (hashes)

○ A puzzle solution allows to create a block and append it to the chain

● Bitcoin is extremely energy inefficient
○ The used resource is physical

○ The hash-based lottery consumes extreme energy to ensure the protocol’s security

■ An energy arms race between the good guys and the (potential) bad guys

○ Bitcoin presumes that it is under attack at all times

Bitcoin’s Energy Problem - electricity consumption

https://en.wikipedia.org/wiki/Environmental_impact_of_bitcoin

https://en.wikipedia.org/wiki/Environmental_impact_of_bitcoin

Bitcoin’s Energy Problem - electronic waste

https://en.wikipedia.org/wiki/Environmental_impact_of_bitcoin

https://en.wikipedia.org/wiki/Environmental_impact_of_bitcoin

Bitcoin’s Energy Problem - “digital crude”

Benjamin A. Jones, Andrew L. Goodkind & Robert P. Berrens.

Economic estimation of Bitcoin mining’s climate damages demonstrates

closer resemblance to digital crude than digital gold (2022)

Between 2016-2021:

● per coin climate damages from BTC were increasing, rather than

decreasing as the industry matured

● during certain time periods, BTC climate damages exceed the price of each

coin created

● on average, each $1 in BTC market value created was responsible for $0.35

in global climate damages
○ between beef production and crude oil burned as gasoline

○ an order-of-magnitude higher than wind and solar power

https://www.nature.com/articles/s41598-022-18686-8
https://www.nature.com/articles/s41598-022-18686-8
https://www.nature.com/articles/s41598-022-18686-8

Proof-of-Stake (PoS)

The time slot

● Time is continuous

● Protocol breaks time in slots
○ Defines a “slot length” parameter (in seconds)

● Slot large enough
○ E.g., if network is assumed synchronous, slot length depends on graph’s diameter, s.t. all

parties receive a message within a time slot

● Slot not too large
○ Otherwise protocol is slow

○ E.g., in Bitcoin waiting until tx is published is 10 mins (until a block is created) or more (for

safety, k blocks are needed)

● Parties act based on the time slot they are in

Proof-of-Stake (PoS)

● Sybil resilience depends on “stake”
○ Stake: the amount of digital assets (tokens) a party controls

○ Akin to computational power in PoW, but stake is digital

○ Energy efficient: no need to consume high amounts of energy to run the stake-based lottery

● Parties produce blocks proportionally to the stake they control
○ Smallest rate: linearly proportional

● Assumption: Adversary does not control a stake majority
○ Corrupted parties control, on aggregate, less stake than the honest parties

Two broad categories:

● Nakamoto-style

● BFT-style

From PoW to PoS, Nakamoto style

The setting:

● The number of all assets is known
○ Tokens are recorded on the ledger

● The public key that controls each asset is known
○ Stake transfers (e.g., payments) are recorded on the ledger

● One block should be created per slot

High level idea:

● At each slot, choose one of the assets at random
○ Relaxation: choose a very small number of assets at random

● The owner of the chosen asset is eligible to produce a block at that slot
○ Owner: the person with the private key that owns the asset

PoS setting

● Assume (for now) that stake does not shift
○ There are no changes in stake ownership

○ The initial set of stake owners is known (e.g., hardcoded in the genesis block)

● Let n be a node
○ vkn: the public key of n

○ staken: the stake owned by n

○ Both vkn and staken are known by all parties

Recall PoW

H(x, s, ctr) < T

○ H: hash function

○ ctr: PoW counter

○ x: MTR of block’s transactions

○ s: hash of parent block’s header

○ T: difficulty threshold

From PoW to PoS - Attempt 1

● Require: H(x, s, vkn) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

From PoW to PoS - Attempt 1

● Require: H(x, s, vkn) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

Grinding Attack on x:
● Attacker can try different MTRs to find one that satisfies the inequality

From PoW to PoS - Attempt 2

● Require: H(s, vkn) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

From PoW to PoS - Attempt 2

● Require: H(s, vkn) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

Stalling Hazard:
● With some probability (depending on T), no vk will satisfy the equation → No block is created

at that slot → No parameter in the inequality changes → The protocol stalls

From PoW to PoS - Attempt 3

● Require: H(s, vkn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

From PoW to PoS - Attempt 3

● Require: H(s, vkn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

Content Malleability:
● Block’s content (transactions) not represented in the header anymore → Attacker can alter the

previous blocks’ transactions without altering the headers (which are validated in the PoS

mechanism)

From PoW to PoS - Attempt 4

● Require: H(s, vkn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

4. Have both the headers and the payloads form a chain (to prevent content malleability)

■ Headers contain a pointer to parent header

■ Payload (transactions) contains a pointer to: i) parent header; ii) parent payload

From PoW to PoS - Attempt 4

● Require: H(s, vkn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

4. Have both the headers and the payloads form a chain (to prevent content malleability)

■ Headers contain a pointer to parent header

■ Payload (transactions) contains a pointer to: i) parent header; ii) parent payload

Posterior Corruptions:
● Attacker can corrupt parties after the slot passes when they create a block → Attacker can

change part (or all) of the chain’s history

From PoW to PoS - Attempt 5

● Require: H(s, vkn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

4. Have both the headers and the payloads form a chain (to prevent content malleability)

■ Headers contain a pointer to parent header

■ Payload (transactions) contains a pointer to: i) parent header; ii) parent payload

5. Key Evolving Signatures (KES) (to prevent posterior corruptions)

■ Parties refresh their keys periodically (delete old keys, create new keys linked with old ones)

From PoW to PoS - Attempt 5

● Require: H(s, vkn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

4. Have both the headers and the payloads form a chain (to prevent content malleability)

■ Headers contain a pointer to parent header

■ Payload (transactions) contains a pointer to: i) parent header; ii) parent payload

5. Key Evolving Signatures (KES) (to prevent posterior corruptions)

■ Parties refresh their keys periodically (delete old keys, create new keys linked with old ones)

Adaptive attack:
● vk that satisfies inequality is publicly known before the time slot starts → Attacker can predict

the slot “leader schedule” → Can corrupt a party that is known to be leader of a specific future

slot

From PoW to PoS - Attempt 6

● Require: VRF(s, skn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

4. Have both the headers and the payloads form a chain (to prevent content malleability)

■ Headers contain a pointer to parent header

■ Payload (transactions) contains a pointer to: i) parent header; ii) parent payload

5. Key Evolving Signatures (KES) (to prevent posterior corruptions)

■ Parties refresh their keys periodically (delete old keys, create new keys linked with old ones)

6. Verifiable Random Function (VRF) (to prevent adaptive corruptions)

■ A party runs the inequality using its secret key

■ The VRF output is verifiable publicly (i.e., with the party’s public key)

From PoW to PoS - Attempt 6

● Require: VRF(s, skn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

4. Have both the headers and the payloads form a chain (to prevent content malleability)

■ Headers contain a pointer to parent header

■ Payload (transactions) contains a pointer to: i) parent header; ii) parent payload

5. Key Evolving Signatures (KES) (to prevent posterior corruptions)

■ Parties refresh their keys periodically (delete old keys, create new keys linked with old ones)

6. Verifiable Random Function (VRF) (to prevent adaptive corruptions)

■ A party runs the inequality using its secret key

■ The VRF output is verifiable publicly (i.e., with the party’s public key)

Nothing-at-stake:
● Each block offers different randomness; Creating uncle blocks has (practically) no cost →

Grinding on different blocks of the tree (i.e., different s)

From PoW to PoS - Attempt 7

● Require: VRF(Repoch, skn, ts) < T ᐧ staken

1. threshold is proportional to stake of each party (right side of inequality)

2. inequality’s left side does not depend on MTR (to prevent grinding)

3. ts (e.g., timestamp) changes as slots change (to prevent stalling)

4. Have both the headers and the payloads form a chain (to prevent content malleability)

■ Headers contain a pointer to parent header

■ Payload (transactions) contains a pointer to: i) parent header; ii) parent payload

5. Key Evolving Signatures (KES) (to prevent posterior corruptions)

■ Parties refresh their keys periodically (delete old keys, create new keys linked with old ones)

6. Verifiable Random Function (VRF) (to prevent adaptive corruptions)

■ A party runs the inequality using its secret key

■ The VRF output is verifiable publicly (i.e., with the party’s public key)

7. Refresh randomness more periodically (to prevent nothing-at-stake)

■ Divide execution in epochs (of a specific amount of slots)

■ Each epoch’s first block contains a (securely generated) randomness Repoch for all slots in that epoch

■ This is the idea behind Ouroboros Praos

https://eprint.iacr.org/2017/573.pdf

Dynamic Stake

● Stake shifts occur via payments
○ New stakeholders (i.e., keys) are added

○ The stake of old stakeholders is reduced

● Changes in stakes take effect from the next Epoch

● Stake ownership distribution depends on the chain (i.e., branch)
○ Different blocks (in different chains) will contain different transactions

Key Grinding Attack

● Each user’s key is created locally (by the user)

● Creating keys is (effectively) costless

● If the randomness source can be biased, the attacker might generate multiple

keys until they find one that favors them (w.r.t. the used randomness)

Key Grinding Attack

● Each user’s key is created locally (by the user)

● Creating keys is (effectively) costless

● If the randomness source can be biased, the attacker might generate multiple

keys until they find one that favors them (w.r.t. the used randomness)

Solutions:

● Combine (possibly) adversarially-generated randomness with honestly-

generated on

● Get more randomness from little randomness
○ Hint: randomness extractors

https://en.wikipedia.org/wiki/Randomness_extractor

genesis

slot 1 slot 2 slot 3

Epoch 1

slot 4 slot 5

honest

chain

Long-range attack

genesis

slot 1 slot 2 slot 3

Epoch 1

slot 4 slot 5

honest

chain

Long-range attack

genesis

slot 1 slot 2 slot 3

Epoch 1

slot 4 slot 5 slot 6 slot 7 slot 8 slot 9 slot 10

honest

chain

long-range

fork

Epoch 2

Long-range attack

genesis

slot 1 slot 2 slot 3

Epoch 1 Epoch 2

slot 4 slot 5 slot 6 slot 7 slot 8 slot 9 slot 10 slot 11 slot 12 slot 13 slot 14 slot 15

honest

chain

long-range

fork

Epoch 3

Long-range attack

Long-range attack

● The attack:
○ Starting from an old block, the attacker creates a chain of adversarial-only blocks

○ In this chain, it collects the rewards for every block

■ In this branch/“fork”, the attacker’s stake is increased

○ After some point, the attacker gets stake majority in this fork

○ Because creating blocks is costless, the attacker can create an arbitrarily long chain

Long-range attack

● The attack:
○ Starting from an old block, the attacker creates a chain of adversarial-only blocks

○ In this chain, it collects the rewards for every block

■ In this branch/“fork”, the attacker’s stake is increased

○ After some point, the attacker gets stake majority in this fork

○ Because creating blocks is costless, the attacker can create an arbitrarily long chain

● Solution 1: checkpoints
○ Basic idea: a checkpoint is a block that is never dropped by the user, even if they receive a

longer chain without it

○ Chain decision prioritizes checkpoints over longest chains

○ Nodes have to go online periodically to retrieve the latest checkpoints

■ For any checkpoints issued while the node is offline, the node can be tricked by an adversary

○ Checkpoints have been used by Ouroboros, Snow White, and even Bitcoin (for other reasons)

https://eprint.iacr.org/2016/889.pdf
https://eprint.iacr.org/2016/919.pdf
https://en.bitcoin.it/wiki/Checkpoint_Lockin

Long-range attack

● The attack:
○ Starting from an old block, the attacker creates a chain of adversarial-only blocks

○ In this chain, it collects the rewards for every block

■ In this branch/“fork”, the attacker’s stake is increased

○ After some point, the attacker gets stake majority in this fork

○ Because creating blocks is costless, the attacker can create an arbitrarily long chain

● Solution 2: chain density
○ Basic idea: immediately after the fork, the honest chain’s blocks are more “dense”

compared to the attacker’s (forked) chain

○ A new node that joins the system, chooses a path at each fork by following the most dense

branch

○ The idea behind Ouroboros Genesis

https://eprint.iacr.org/2018/378.pdf

BFT-style PoS

High level idea:

● At each slot, subselect a committee of stakeholders
○ Getting elected to the committee is proportional to the party’s owned stake

● The committee runs a BFT protocol to agree on the new block

● Each block is immediately finalized
○ Liveness with parameter 1, no need to wait for k blocks

● The idea behind Algorand

https://arxiv.org/pdf/1607.01341.pdf

BFT-style PoS

High level idea:

● At each slot, subselect a committee of stakeholders
○ Getting elected to the committee is proportional to the party’s owned stake

● The committee runs a BFT protocol to agree on the new block

● Each block is immediately finalized
○ Liveness with parameter 1, no need to wait for k blocks

● The idea behind Algorand

Some security considerations:

● Where does the randomness come from (for the committee selection)?

● How to prevent grinding attacks?

● How to prevent adaptive corruptions?

● How to prevent long-range attacks?

https://arxiv.org/pdf/1607.01341.pdf

Food for thought

● How to ensure that parties have a synchronised clock?
○ How do parties coordinate in terms of the time progress?

○ How do parties agree on which time slot is active at any point in time?

○ Hint: Ouroboros Chronos (PoS-based), Permissionless Clock Synchronization (PoW-based)

● Will rational parties delete their keys?
○ Key erasures (in KES) are necessary to prevent posterior attacks.

○ Do parties get any benefit by not deleting their keys? Can an attacker incentivize this?

● What happens if an attacker gets a majority during one epoch?
○ Can the system recover from temporary adversarial majority?

○ Can PoW systems recover?

○ Hint: Self-healing blockchains

https://eprint.iacr.org/2019/838
https://eprint.iacr.org/2022/1220.pdf
https://eprint.iacr.org/2020/1021.pdf

Permissioned Ledgers

Permissioned Protocols

● Participation is restricted:
○ Producing transactions and/or blocks can only be performed after being authorized by (some)

other nodes

● In the simplest case, the set of nodes is static:
○ the set of participating nodes is fixed and determined at the onset of protocol’s execution

Permissioning How-To

● Most straightforward approach:
○ employ a PKI (Public-Key Infrastructure)

● Use digital signatures / authentication protocols

● Certificate authorities can authorize other entities
○ authorization includes a signature from the CA on the entity’s public-key, identity info etc

○ example: TLS/SSL

● Sharing certificate authority information is necessary
○ All computer systems come with preloaded certificates from certificate authorities - a setup

assumption

● Certificates need to be revoked in case the corresponding secret keys

become exposed or the algorithms used are not safe anymore

X.509 Certificates

● Internet standard since 1988
○ http://www.ietf.org/rfc/rfc3280.txt

● Hierarchical

http://www.ietf.org/rfc/rfc3280.txt

Digital Signatures and Certificates

● A certificate contains a digital signature

● Cryptographic design of digital signatures involves typically:
○ A cryptographic signing operation that acts on a fixed input of a specific type and has a public-

verifiability feature

○ A cryptographic hash function that takes arbitrary strings and maps them to the data type

suitable for the signing operation

○ Common setting today: SHA2 with RSA or DSA

Secure channels and certificates

● Possession of mutually acceptable certificates:
○ permits authenticated communication (exchanging signed mechanism between two entities)

○ allows building a secure channel

● TLS 1.3 can be used to build such secure channel:
○ Based on cryptographic protocols like Diffie-Hellman key exchange

○ Data confidentiality ensured

Static Permissioned Blockchain

● Prior to system’s start:
○ the nodes register their certificates

○ these certificates are included in the genesis block

● Using these certificates, all nodes are capable of:
○ authenticating each participant

○ allowing interaction with the shared state, in a way prescribed by the participants’ credentials

● The set of participants remains the same throughout the execution

● This is the simplest form of a PKI / public-key directory

● Assume just a “LOG” of transactions

● One of the participants acts as a server and maintains the LOG

● Readers and writers to the LOG authenticate with the server and can perform

read and write operations

● Consistency of the LOG is guaranteed, assuming the server is trusted

● Liveness of the LOG is guaranteed, assuming the server is trusted and

functional

● If server is corrupted, the ledger is compromised

(The course’s testnet is built on a centralized permissioned ledger.)

A Centralised Permissioned Ledger

Bitcoin Permissionless Ledger

● The genesis block contains no certificate information

● Reading from the LOG is open
○ anyone can do it, without credentials

● Writing to the LOG requires a specific type of credentials
○ write: insert data into the log

○ Nodes can obtain valid credentials (accounts) by generating a public and secret-key and:

■ mine a block (and be rewarded with BTC) or

■ buy BTC from another node

● Once the LOG records their account credit, they can issue transactions (and

pay the necessary fees)

● In essence: crediting a bitcoin account is akin to creating a certificate that

imparts the account holder with certain permissions w.r.t. the ledger

Distributed Permissioned Ledger

● A number of servers maintain the ledger (LOG) individually

● All share the same genesis block that identifies all participants

● Assuming a synchronous operation, at each round, readers and writers:
○ authenticate with the servers

○ interact with the LOG in a prescribed fashion

Distributed Permissioned Ledger

● A number of servers maintain the ledger (LOG) individually

● All share the same genesis block that identifies all participants

● Assuming a synchronous operation, at each round, readers and writers:
○ authenticate with the servers

○ interact with the LOG in a prescribed fashion

● Readers authenticate to each server and obtain read access

● Writers authenticate to each server and provide their inputs

● Servers run a consensus protocol to agree what inputs should be included

in the LOG

Read Requests

● Is it possible to restrict read requests, as in the centralized setting?
○ Hint: Nodes keep blocks of transactions private and issue them only to authenticated users

● TLS can be used to build a secure channel between the reader and the

responding node

● Requirement that all servers remain honest (as they all share the LOG)

● Is is possible to impose read restrictions on servers as well?
○ Hint: Threshold signatures

Reader/Writer Management

● Readers and writers can authenticate to each server referring to the

information in the genesis block

● It is possible to introduce additional readers and writers by suitably issuing

certificates to other users

● Note that each participant would then need to show a valid certificate chain,

that establishes their privileges for the requested read or write access

BFT Protocol Example

“Classical” BFT Consensus (example)

● Focus on write requests: we want to ensure LOG liveness and consistency

● We will build a “byzantine fault tolerant” (BFT) agreement protocol that uses

two important tools:

○ a graded broadcast

○ a binary consensus protocol

Graded Consensus

● Parties involved :
○ a single sender

○ several receivers

● The i-th receiver outputs (Mi, Gi)
○ Mi: the output message

○ Gi ∈ {0, 1, 2}: the grade of the message

Properties

● If the sender is honest, then Mi = Mj for all i, j and Gi = 2

● If the sender is malicious and one receiver outputs (M, 2), then all other

honest receivers output (M, Gi) with Gi∈ {1, 2}

Graded Broadcast Protocol

Communication

● Round 1. The sender sends the message M to all receivers

● Round 2. The i-th receiver, who obtained M1,i in round 1, sends it to all receivers

● Round 3. The i-th receiver, who obtained M2,j,i from the j-th receiver in round 2:

○ if there is a single message that was sent by at least 2n/3 receivers, it sends it to all receivers

○ else does nothing

Graded Broadcast Protocol

Communication rounds

1. The sender sends the message M to all receivers

2. The i-th receiver, who obtained M1,i in round 1, sends it to all receivers

3. The i-th receiver, who obtained M2,j,i from the j-th receiver in round 2:

○ if there is a single message that was sent by at least 2n/3 receivers, it sends it to all receivers

○ else does nothing

Output Generation

The honest i-th receiver does the following:

● If a single message was received from at least 2n/3 receivers in round 3, output that

message as Mi and set Gi = 2

● If a single message was received from at least n/3 receivers in round 3, output that

message as Mi and set Gi = 1

● In any other case, output fail as Mi and set Gi = 0

Graded Broadcast Protocol (Analysis: t < n/3)

Theorem #1

If the sender is honest and broadcasts M, then all

honest receivers Pi will output Gi = 2 and M in the

output generation stage.

Proof

● If the sender is honest, then all honest

receivers will receive the same message M

in round 1.

● Since t < n/3, each receiver will receive M at

least 2n/3 times in rounds 2 and 3 (from the

honest parties).

Communication rounds

1. The sender sends the message M to all

receivers

2. The i-th receiver, who obtained M1,i in

round 1, sends it to all receivers

3. The i-th receiver, who obtained M2,j,i from

the j-th receiver in round 2:

○ if a single message was sent by at

least 2n/3 receivers, send it to all

receivers

Output Generation

The honest i-th receiver:

● If a single message was received from at

least 2n/3 receivers in round 3, outputs

that message as Mi and set Gi = 2

Graded Broadcast Protocol (Analysis: t < n/3)

Lemma #1

If two honest receivers send a message in round 3, it must be

the same.

Proof

Suppose an honest party P sends message M in round 3:

1. P has received M by at least 2n/3 parties in round 2 (by

definition)

2. Let h be the number of honest parties that sent M in round

2: h ≥ (2n/3) - t > n/3 (by assumption)

3. Let p be the parties capable of sending a different

message M’ ≠ M in round 2: p = n - h < 2n/3 (by step 2,

i.e., since h honest parties sent M)

4. Therefore, any other honest party in round 3 will send M

or do nothing

Communication rounds

1. The sender sends the message M to

all receivers

2. The i-th receiver, who obtained M1,i in

round 1, sends it to all receivers

3. The i-th receiver, who obtained M2,j,i

from the j-th receiver in round 2:

○ if there is a single message that

was sent by at least 2n/3

receivers, it sends it to all

receivers

○ else does nothing

Graded Broadcast Protocol (Analysis: t < n/3)

Theorem #2

Suppose the i-th receiver returns Gi = 2 and a message Mi;

for the j-th honest receiver’s output (Mj, Gj), it holds Mi = Mj,

Gj∈ {1, 2}.

Proof

First, we show that it cannot be that Mj = fail:

1. The i-th party received Mi from at least 2n/3 receivers

in round 3 (of which at most t<n/3 adversarial)

2. So, more than n/3 honest parties sent Mi in round 3

Now, suppose Mj ≠ Mi:

1. Mj was sent by at least n/3 receivers in round 3 (by

definition)

2. At least one of them is honest (since t < n/3)

3. By Lemma #1, it holds Mi = Mj [contradiction]

Communication

Round 3. The i-th receiver, who obtained M2,j,i

from the j-th receiver in round 2:

● if a single message was sent by at least

2n/3 receivers, send it to all receivers

Output Generation

The honest i-th receiver:

● If a single message was received from at

least 2n/3 receivers in round 3, outputs

that message as Mi and set Gi = 2

● If a single message was received from at

least n/3 receivers in round 3, output that

message as Mi and set Gi = 1

● In any other case, output fail as Mi and

set Gi = 0

Graded broadcast is not enough:

● If grade Gi = 1, party Pi cannot know if other honest parties received the

message

A simplistic approach:

● execute n/3 phases (to guarantee at least one honest sender encountered)

● in each phase:
○ A designated sender organizes all valid transactions as M and performs a graded broadcast

○ A binary consensus protocol determines if at least one honest has grade 2 or if not able to tell:

■ If true, each node signs the output to generate a public endorsement and appends M to

their LOG (together with the signatures).

Recall by Thm 2, all honest parties agree to M (with G=1 or 2) if one honest has G=2

■ otherwise, LOG remains the same

From Graded Broadcast to a BFT-Ledger

● n/3 phases => at least one honest sender encountered which will return

correct message

● Cases (per phase):
○ Honest sender => All honest parties have M and grade 2, so by validity consensus returns

“grade 2” and parties output the message

○ Dishonest sender:

○ No honest party with grade 2 => consensus returns “not grade 2” by validity, no

message output

○ At least one party has grade 2

○ Consensus returns “grade 2”. All parties output message M same (by Thm 2)

○ Consensus returns “not grade 2”. Parties don’t output message

From Graded Broadcast to a BFT-Ledger

Byzantine Binary Consensus

● (RECALL) n parties, t adversarial

● vi ∈ {0, 1} the input of party i

● Honest parties should decide on values ui ∈ {0, 1} satisfying the following

properties:
○ Termination: values ui are well defined for all honest parties

○ Agreement: if parties i and j are honest, then ui = uj

○ Validity: if, for every honest party i, there exists v ∈ {0, 1} such that vi = v, then each honest

party i outputs ui = v

NOTE (in BFT-ledger): input 0 corresponds to “grade G=0 or grade G=1”; input 1 corresponds to

“grade G=2”. Output 1 corresponds to “certain some honest with G=2”, output 0 is “not all honest

G=2”

Note: We examine the synchronous setting

Exponential Information Gathering Algorithm (EIG)

Algorithm Sketch:

● At round 1, send everyone your input

● At round r+1, send everyone all messages you received at

round r (avoiding redundant messages)

Each party arranges the messages in its own EIG tree:

● Let u1,...,un be the messages received in the first round

(including one’s self)

● u12…k is the value 𝑣 s.t. (ik told i) that (ik-1 told ik) that … that

(i1 told i2) that i1’s initial value was 𝑣

u1 u2

u21

u4u3

u23 u24

u23: The value party 3 told

me that party 2 sent them

in the previous round.(Food for thought) What is the size of the tree?

EIG Termination

The EIG algorithm terminates after t+1 rounds. The output value of each party is

defined as follows:

● For each leaf v in the EIG tree, set zv=uv

● For an internal node v, set zv equal to the majority of the z-values of its

children; if the majority is not defined, set zv=0 (without loss of generality)

● Define the output as zroot

(Food for thought) Prove that EIG satisfies: i) agreement; ii) validity. (Hint)

https://www.inf.ed.ac.uk/teaching/courses/ds/slides1718/BA.pdf

Impossibility results - asynchronous setting

● Theorem [LSP1982]: Impossible for n < 3t + 1.

● Theorem [FL1982]: Impossible in t rounds.
○ Example: The EIG algorithm with t = 1 needs at least 2 rounds:

■ If a party received a single 1, its output should be 0. (Because the 1 could be coming

from the adversary.)

■ If a party received two 1s, its output should be 0. (Because one of them could have been

sent from the adversary, while another party could have received a single 1 and will

decide 0 according to the previous statement.)

■ And so on… (by induction, the output will always be 0, contradicting validity)

● Theorem[GM1998]: Doable for n > 3t in t + 1 rounds.

● Theorem [DS83]: Doable for n > 2t assuming a PKI.

https://dl.acm.org/doi/pdf/10.1145/357172.357176
https://groups.csail.mit.edu/tds/papers/Lynch/GIT-ICS-81-13.pdf
https://www.csa.iisc.ac.in/~arpita/BroadcastBAReadingGroup/GM98.pdf
https://www2.imm.dtu.dk/courses/02220/2015/L12/DolevStrong83.pdf

Impossibility results - asynchronous setting

● Theorem [BT1985]: Asynchronous Byzantine Consensus is impossible with

n < 3t + 1, even if the parties have agreed on a PKI (setup).
○ Partition parties into sets A, B, C of size at most t and consider three scenarios:

i. A malicious, B and C honest with inputs 0. The adversary sends no messages. The

honest parties should decide on 0 until some time TA.

ii. B malicious, A and C honest with inputs 1. The adversary sends no messages. The

honest parties should decide on 1 until some time TB.

iii. C malicious, B and A honest with inputs 0 and 1 respectively. The adversary

communicates with B as the honest C in scenario (i) and with A as the honest C in

scenario (ii). At the same time every communication between A and B is delayed for time

at least max{TA, TB}.

○ The crux is that A has the same view in scenarios (ii) and (iii). Similarly for B, in scenarios (i)

and (iii). Agreement in scenario (iii) is impossible, if validity is achieved in scenarios (i) and (ii).

https://dl.acm.org/doi/pdf/10.1145/4221.214134

	Slide 1
	Slide 2: Permissionless Protocols
	Slide 3: Dynamic Availability
	Slide 4: Bitcoin’s Energy Problem
	Slide 5: Bitcoin’s Energy Problem - electricity consumption
	Slide 6: Bitcoin’s Energy Problem - electronic waste
	Slide 7: Bitcoin’s Energy Problem - “digital crude”
	Slide 8: Proof-of-Stake (PoS)
	Slide 9: The time slot
	Slide 10: Proof-of-Stake (PoS)
	Slide 11: From PoW to PoS, Nakamoto style
	Slide 12: PoS setting
	Slide 13: Recall PoW
	Slide 14: From PoW to PoS - Attempt 1
	Slide 15: From PoW to PoS - Attempt 1
	Slide 16: From PoW to PoS - Attempt 2
	Slide 17: From PoW to PoS - Attempt 2
	Slide 18: From PoW to PoS - Attempt 3
	Slide 19: From PoW to PoS - Attempt 3
	Slide 20: From PoW to PoS - Attempt 4
	Slide 21: From PoW to PoS - Attempt 4
	Slide 22: From PoW to PoS - Attempt 5
	Slide 23: From PoW to PoS - Attempt 5
	Slide 24: From PoW to PoS - Attempt 6
	Slide 25: From PoW to PoS - Attempt 6
	Slide 26: From PoW to PoS - Attempt 7
	Slide 27: Dynamic Stake
	Slide 28: Key Grinding Attack
	Slide 29: Key Grinding Attack
	Slide 30: Long-range attack
	Slide 31: Long-range attack
	Slide 32: Long-range attack
	Slide 33: Long-range attack
	Slide 34: Long-range attack
	Slide 35: Long-range attack
	Slide 36: Long-range attack
	Slide 37: BFT-style PoS
	Slide 38: BFT-style PoS
	Slide 39: Food for thought
	Slide 40: Permissioned Ledgers
	Slide 41: Permissioned Protocols
	Slide 42: Permissioning How-To
	Slide 43: X.509 Certificates
	Slide 44: Digital Signatures and Certificates
	Slide 45: Secure channels and certificates
	Slide 46: Static Permissioned Blockchain
	Slide 47: A Centralised Permissioned Ledger
	Slide 48: Bitcoin Permissionless Ledger
	Slide 49: Distributed Permissioned Ledger
	Slide 50: Distributed Permissioned Ledger
	Slide 51: Read Requests
	Slide 52: Reader/Writer Management
	Slide 53: BFT Protocol Example
	Slide 54: “Classical” BFT Consensus (example)
	Slide 55: Graded Consensus
	Slide 56: Graded Broadcast Protocol
	Slide 57: Graded Broadcast Protocol
	Slide 58: Graded Broadcast Protocol (Analysis: t < n/3)
	Slide 59: Graded Broadcast Protocol (Analysis: t < n/3)
	Slide 60: Graded Broadcast Protocol (Analysis: t < n/3)
	Slide 61: From Graded Broadcast to a BFT-Ledger
	Slide 62: From Graded Broadcast to a BFT-Ledger
	Slide 63: Byzantine Binary Consensus
	Slide 64: Exponential Information Gathering Algorithm (EIG)
	Slide 65: EIG Termination
	Slide 66: Impossibility results - asynchronous setting
	Slide 67: Impossibility results - asynchronous setting

