
Blockchains
& Distributed Ledgers

Lecture 02

Michele Ciampi

Slide credits: MC, Dimitris Karakostas, Aggelos Kiayias, Dionysis Zindros, Christos Nasikas

The authenticated file storage problem

Store file F with content D

verifier server

The authenticated file storage problem

Store file F with content D

Retrieve file F

Here is the content D
verifier server

Time passes…

The authenticated file storage problem
The problem

● Client wants to store a file, with identifier F and content D, on a server
● Clients wants to retrieve D later in time

Usecases

● Save storage space (e.g., cloud)
● Redundancy (e.g., backup)

File storage: Basic protocol
● Client sends file F with content D to server
● Server stores (F, D)
● Client deletes D
● Client requests F from server
● Server returns D
● Client has recovered D

File storage: Basic protocol
● Client sends file F with content D to server
● Server stores (F, D)
● Client deletes D
● Client requests F from server
● Server returns D
● Client has recovered D

What if server is corrupted and returns D’ != D?

File storage: Protocol against adversaries
Trivial solution:

● Client does not delete D
● When server returns D’, client compares D and D’

What if client can’t store D for a long time?

● Like regular data structures, but cryptographically authenticated
● A verifier can store/retrieve/operate on data held by an untrusted prover

○ Client wants to store a file, with identifier F and content D, on a server
○ Client wants to delete D
○ Clients wants to retrieve D later in time
○ Prover is not trusted - it has to prove that the returned data is the correct/original D

● How can this problem be solved using:
a. A hash function H
b. A signature scheme Σ = <KeyGen, Sign, Verify>

Authenticated Data Structures

File storage: Authenticated protocols
Hash-based

● Client sends file F with data D to server
● Server stores (F, D)
● Client computes and stores H(D), deletes D

Time passes…

● Client requests F from server
● Server returns D’
● Client compares H(D’) = H(D)

File storage: Authenticated protocols
Digital signature-based

● Client creates and stores key pair (sk, vk)
● Client computes σ = Sign(sk, <F, D>)
● Client sends (F, D, σ) to server, deletes D, σ
● Server stores (F, D, σ)

Time passes…

● Client requests F from server
● Server returns (D’, σ’)
● Client checks if Verify(vk, <F, D’>, σ’) = True

File storage: Authenticated protocols

What if client needs only one byte of the file?

Hash-based

● Client sends file F with data D to server
● Server stores (F, D)
● Client computes and stores H(D), deletes D

Time passes…

● Client requests F from server
● Server returns D’
● Client compares H(D’) = H(D)

Digital signature-based

● Client creates and stores key pair (sk, vk)
● Client computes σ = Sign(sk, <F, D>)
● Client sends (F, D, σ) to server, deletes D, σ
● Server stores (F, D, σ)

Time passes…

● Client requests F from server
● Server returns (D’, σ’)
● Client checks if Verify(vk, <F, D’>, σ’) = True

Merkle Trees

Tree definitions
● Binary: every node has at most 2 children
● Binary full: every node has either 0 or 2 children
● Binary complete: every node in every level, except possibly the

second-to-last, has exactly 2 children, and all nodes in the last level are as far
left as possible

● Merkle tree: an authenticated binary tree

Merkle Tree
● Split file into small chunks (e.g., 1KB)

1KB

the whole file

a small chunk

Merkle Tree
● Hash each chunk using a cryptographic hash function (e.g., SHA256)

*Arrows show direction of hash function application

D1 D2 D3 D4 ... 1KB Dn

H(D1)

H H H H H H H H

H(D2) H(D3) H(D4) ... 32 B H(Dn)

Merkle Tree
● Combine them by two to create a binary tree
● Each node stores the hash of the concat of its children

D1 D2 D3 D4 ... 1KB Dn

H(D1)

H H H H H H H H

H(D2) H(D3) H(D4) ... 32 B H(Dn)

H(H(D1)||H(D2)) H(H(D3)||H(D4)) 32 B H(H(Dn-1)||H(Dn))

Merkle Tree

D1 D2 D3 D4 ... 1KB Dn

H1= H(D1)

H H H H H H H H

H2= H(D2) H3= H(D3) H4= H(D4) ... 32 B Hn= H(Dn)

H1,2 = H(H1 || H2) H3,4 = H(H3 || H4)

H1,4 = H(H1,2 || H3,4) H5,8 = H(H5,6 || H7,8)

Hroot= H(H1,4 || H5,8) MTR: Merkle tree root

● Client sends file data D to server
● Client creates Merkle Tree root MTR from initial file data D
● Client deletes data D, but stores MTR (32 bytes)

File storage: Merkle tree-based protocol

● Client sends file data D to server
● Client creates Merkle Tree root MTR from initial file data D
● Client deletes data D, but stores MTR (32 bytes)

Time passes…

● Client requests chunk x from server
● Server returns chunk x and short proof-of-inclusion π
● Client checks whether proof π of chunk x is correct w.r.t. stored MTR

File storage: Merkle tree-based protocol

Merkle tree: proof of inclusion
Verifier: MTRabcdefgh
Prover: a, b, c, d, e, f, g, h

Merkle tree: proof of inclusion
Verifier: MTRabcdefgh, E, πΕ
Prover: a, b, c, d, e, f, g, h

E = e ?

Merkle tree: proof of inclusion

HA HB HC HD HE HF HG HH

HAB HCD HEF HGH

HABCD HEFGH

Verifier: MTRabcdefgh, E, πΕ
Prover: a, b, c, d, e, f, g, h
πE = []

E = e ? ≍ MTRabcdefgh = HABCDEFGH ?

HABCDEFGH

Merkle tree: proof of inclusion

HA HB HC HD HE HF HG HH

HAB HCD HEF HGH

Verifier: MTRabcdefgh, E, πΕ
Prover: a, b, c, d, e, f, g, h
πE = [HF]

E = e ? ≍ MTRabcdefgh = HABCDEFGH ?

HABCD HEFGH

HABCDEFGH

Merkle tree: proof of inclusion

HA HB HC HD HE HF HG HH

HAB HCD HGHHEF

Verifier: MTRabcdefgh, E, πΕ
Prover: a, b, c, d, e, f, g, h
πE = [HF]

E = e ? ≍ MTRabcdefgh = HABCDEFGH ?

HABCD HEFGH

HABCDEFGH

Merkle tree: proof of inclusion

HA HB HC HD HE HF HG HH

HAB HCD HGH

Verifier: MTRabcdefgh, E, πΕ
Prover: a, b, c, d, e, f, g, h
πE = [HF, HGH]

E = e ? ≍ MTRabcdefgh = HABCDEFGH ?

HEF

HEFGH HABCD

HABCDEFGH

Merkle tree: proof of inclusion

HA HB HC HD HE HF HG HH

HAB HCD HGH

Verifier: MTRabcdefgh, E, πΕ
Prover: a, b, c, d, e, f, g, h
πE = [HF, HGH]

E = e ? ≍ MTRabcdefgh = HABCDEFGH ?

HEF

HEFGH HABCD

HABCDEFGH

Merkle tree: proof of inclusion

HA HB HC HD HE HF HG HH

HAB HCD HGH

HABCD

HABCDEFGH

Verifier: MTRabcdefgh, E, πΕ
Prover: a, b, c, d, e, f, g, h
πE = [HF, HGH, HABCD]

E = e ? ≍ MTRabcdefgh = HABCDEFGH ?

HEF

HEFGH

Merkle tree: proof of inclusion

HA HB HC HD HE HF HG HH

HAB HCD HEF

HABCD HEFGH

HABCDEFGH

Verifier: MTRabcdefgh, E, πΕ
Prover: a, b, c, d, e, f, g, h
πE = [HF, HGH, HABCD]

E = e ? ≍ MTRabcdefgh = HABCDEFGH ?

HGH

Merkle Tree proof-of-inclusion
● Prover sends chunk
● Prover sends siblings along path connecting leaf to MTR
● Verifier computes hashes along the path connecting leaf to MTR
● Verifier checks that computed root is equal to MTR
● How big is proof-of-inclusion?

Merkle Tree proof-of-inclusion
● Prover sends chunk
● Prover sends siblings along path connecting leaf to MTR
● Verifier computes hashes along the path connecting leaf to MTR
● Verifier checks that computed root is equal to MTR
● How big is proof-of-inclusion?

|π| ∈ Θ(log2|D|)

Merkle tree applications
● BitTorrent uses Merkle trees to verify exchanged files
● Bitcoin uses Merkle trees to store transactions
● Ethereum uses Merkle-Patricia tries for storage and transactions

Storing sets instead of lists
● Merkle trees can be used to store sets of keys instead of lists
● Verifier asks prover to store a set of keys
● Verifier deletes set
● Verifier later asks prover if key belongs to set
● Prover provides proof-of-inclusion or proof-of-non-inclusion
● Prover can be adversarial

Merkle trees for set storage
● Verifier sorts set elements
● Creates MTR on sorted set
● Proof-of-inclusion as before

Merkle trees for set storage
● Verifier sorts set elements
● Creates MTR on sorted set
● Proof-of-inclusion as before
● Proof-of-non-inclusion for x

○ Show proof-of-inclusion for previous H< and next H> element in set
○ Verifier checks that H<, H> proofs-of-inclusion are correct
○ Verifier checks that H<, H> are adjacent in tree
○ Verifier checks that H< < x and H> > x
○ Question: How to compress the two proofs-of-inclusion into one?

Merkle tree: proof of inclusion / non-inclusion

HA HB HC HD HE HF HG HH

HAB HCD HEF HGH

HABCD HEFGH

HABCDEFGH

H?

Tries

Tries
● Also called radix or prefix tree
● Search tree: ordered data structure
● Used to store a set or an associative array (key/value store)
● Keys are usually strings

Tries
● Initialize: Start with empty root
● Supports two operations: add and query
● add adds a string to the set
● query checks if a string is in the set (true/false)

Tries / Patricia tries as key/value store
● Marking can contain arbitrary value
● This allows to map keys to values
● add(key, value)
● query(key) → value

Tries: add(string)
● Start at root
● Split string into characters
● For every character, follow an edge labelled by that character
● If edge does not exist, create it
● Mark the node you arrive at

Tries: query(string)
● Start at root
● Split string into characters
● For every character, follow an edge labelled by that character
● If edge does not exist, return false
● When you arrive at a node and your string is consumed, check if node is

marked
○ If it is marked, return yes (and marked value)
○ Otherwise, return no

root

{ }

rootd

0

o

{ do: 0 }

rootd

0

o

1

g

{ do: 0, dog: 1 }

rootd

2

a

x 0

4

o

d

o

1

g

3

e

h

o

u

s

5

e

6

s

{ do: 0, dog: 1, dax: 2, doge: 3, dodo: 4, house: 5, houses: 6 }

Patricia (or radix) tree
● Space-optimized trie
● An isolated path, with unmarked nodes which are only children, is merged into

single edge
● The label of the merged edge is the concatenation of the labels of merged

nodes

Trie vs. Patricia trie

rootd

2

ax

0

o

1

g

rootd

2

a

x 0

o

1

g

Patricia trie

rootd

2

ax

0

4

o

do

1

g

3

e

5

house

6

s

{ do: 0, dog: 1, dax: 2, doge: 3, dodo: 4, house: 5, houses: 6 }

Merkle Patricia trie
● Authenticated Patricia trie
● First implemented in Ethereum
● Allows proof of inclusion (of key, with particular value)
● Allows proof of non-inclusion (by showing key does not exist in trie)

Merkle Patricia trie
● Split nodes into three types:

○ Leaf: Stores edge string leading to it, and value
○ Extension: Stores string of a single edge, pointer to next node, and value if node marked
○ Branch: Stores one pointer to another node per alphabet symbol, and value if node marked

● Encode keys as hex, so alphabet size is 16
● Encode all child edges in every node with some encoding (e.g., JSON)
● Pointers are by hash application
● Arguments for correctness and security are same as for Merkle Trees

Authenticated data in
blockchains

● Each block references a previous block
● This reference is by hash to its previous block
● This linked list is called the blockchain
● Blocks contain list of transactions (more on this later)

*Convention: Arrows show authenticated inclusion

Blockchain

blockblockblockblockblockblock

Blocks
● Data structure with three parts:

○ nonce (ctr), data (x), reference (s)
○ Typically called the block header

● data (x) is application-dependent
○ In Bitcoin it stores financial data (“UTXO”-based)
○ In Ethereum it stores contract data (account-based)

● Block validity:
○ Data must be valid (application-defined validity)

● s: pointer to the previous block by hash

ctr x s

Proof-of-work in blocks
● Blocks must satisfy proof-of-work equation

H(ctr || x || s) <= T

for some (protocol-specific) T

● ctr is the nonce used to solve Proof-of-work
● The value H(ctr || x || s) is known as the blockid

Bitcoin at a high level
1. New transactions are broadcast to all nodes.
2. Each node collects new transactions into a block.
3. Each node works on finding a difficult proof-of-work for its block.
4. When a node finds a proof-of-work, it broadcasts the block to all nodes.
5. Nodes accept the block only if all transactions in it are valid and not already

spent.
6. Nodes express their acceptance of the block by working on creating the next

block in the chain, using the hash of the accepted block as the previous hash.

Digital Signature Scheme

● Three algorithms: KeyGen, Sign, Verify
● KeyGen

○ Input: security parameter (bits of security)
○ Output: a pair of keys <sk, vk> (sk: signing/private key, vk: verification/ public – key)

● Sign
○ Input: <sk, m> (m: message)
○ Output: σ (σ: signature)

● Verify
○ Input: <vk, m, σ>
○ Output: {True, False}

● The first block of a blockchain is called the Genesis Block

Blockchain

genesis
tx1
tx2
tx3

tx4
tx5

tx6
tx7

tx8 tx9
tx10

PKB, SKB PKA, SKA

H(PKB)=AddressB H(PKA)=AddressA

tx11

m=I want to give 50 bitcoin to Alice AddressA

sB=Sign(SKB,m)

tx11=(m,sB)

High level idea (more details later)

Transactions
A simple transaction for financial data

● Input: contains a proof of spending an existing UTxO*
● Output: contains a verification procedure and a value

*UTxO = “Unspent Transaction Output”
Field Description

In-counter positive integer

list of inputs the first input of the first transaction is also called "coinbase" (its content was ignored in earlier versions)

Out-counter positive integer

list of outputs the outputs of the first transaction spend the mined bitcoins for the block

Field Description

Outpoint hash The previous transaction that contains the spendable output

Outpoint index The index within the previous transaction's output array to identify the spendable output

Script signature Information required to spend the output (see below for details)

Input

Field Description

Value The monetary value of the output in satoshis

Script A calculation which future transactions need to solve in order to spend it

Output

Transactions

Transaction Verification

scriptSig (input): <sig> <pubKey>

scriptPubKey (output): OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Transaction Verification

Data
Input:

Previous tx: f5d8ee39a430901c91a5917b9f2dc19d6d1a0e9cea205b009ca73dd04470b9a6

Index: 0

scriptSig: 304502206e21798a42fae0e854281abd38bacd1aeed3ee3738d9e1446618c4571d10

90db022100e2ac980643b0b82c0e88ffdfec6b64e3e6ba35e7ba5fdd7d5d6cc8d25c6b241501

Output:

Value: 5000000000

scriptPubKey: OP_DUP OP_HASH160 404371705fa9bd789a2fcd52d2c580b65d35549d

OP_EQUALVERIFY OP_CHECKSIG

scriptSig (input): <sig> <pubKey>

scriptPubKey (output): OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

0th output in
the previous
transaction

Hash of the recipient’s
public key

The input in this transaction imports 50 BTC from output #0 in transaction f5d8... Then the output sends 50 BTC to a Bitcoin address. When the
recipient wants to spend this money, he will reference output #0 of this transaction in an input of his own transaction.

Transaction Verification

PKB, SKB PKA, SKA

H(PKB)=AddressB H(PKA)=AddressA

m=H(output* from tx10)

sB=Sign(SKB,m)

Input:

…

Output:

Value: 5000000000

scriptPubKey: OP_DUP OP_HASH160

AddressB

OP_EQUALVERIFY OP_CHECKSIG

Input:

Previous tx: tx10
Index: 0

scriptSig: sB PKB
Output:

Value: 4000000000

scriptPubKey: OP_DUP OP_HASH160 AddressA
OP_EQUALVERIFY OP_CHECKSIG

 tx10 tx11

Data and Transactions
● Financial data is encoded in the form of transactions
● Each block organizes transactions in an authenticated data structure

○ Bitcoin: Merkle Tree
○ Ethereum: Merkle Patricia Trie

● Every transaction is sent on the network to everyone via a gossip protocol

● Question: Is it necessary to download the entire block (header + transactions)
to verify whether a transaction is included in it?

The Bitcoin network

The bitcoin network
● All bitcoin nodes connect to a common p2p network
● Each node runs (code that implements) the Bitcoin protocol
● Open source code
● Each node connects to its (network) neighbours
● They continuously exchange data
● Each node can freely enter the network – no permission needed!

○ A “permissionless network”

● The adversarial assumption:
There is no trust on the network! Each neighbour can lie.

Peer discovery
● Each node stores a list of peers (by IP address)
● When Alice connects to Bob, Bob sends Alice his own known peers
● That way, Alice can learn about new peers

Bootstrapping the p2p network
● Peer-to-peer nodes come “pre-installed” with some peers by IP / host
● When running a node, you can specify extra “known peers”

The gossip protocol
● Alice generates some new data
● Alice broadcasts data to its peers
● Each peer broadcasts this data to its peers
● If a peer has seen this data before, it ignores it
● If this data is new, it broadcasts it to its peers
● That way, the data spreads like an epidemic, until the whole network learns it
● This process is called diffuse

Eclipse attacks
● Isolate some honest nodes in the network, effectively causing a “network split”

in two partitions A and B
● If peers in A and peers in B are disjoint and don’t know about each other,

the networks will remain isolated
○ Recent attack: Erebus

● The connectivity assumption:
○ There is a path between two nodes on the network
○ If a node broadcasts a message, every other node will learn it

Conclusions
● Hash functions and signatures: useful primitives, and building blocks of

Bitcoin
○ Short digest for big amount of data
○ PoW
○ Making payments

● Bitcoin
○ Structure
○ Transactions

Thanks

