
Blockchains
& Distributed Ledgers

Lecture 03

Dimitris Karakostas

Slide credits: DK, Aggelos Kiayias, Aydin Abadi, Christos Nasikas, Dionysis Zindros

Contracts

“A contract is a legally binding agreement that defines and governs the rights
and duties between or among its parties.”

Contracts

“A contract is a legally binding agreement that defines and governs the rights
and duties between or among its parties.”

“smart contracts are neither smart nor contracts”

What is a smart contract?

● Computer programs
● Contract code is executed by all full nodes
● The outcome of a smart contract is the same for everyone
● Context:

○ Internal storage
○ Transaction context
○ Most recent blocks

● The code of a smart contract cannot change

Bitcoin

Bitcoin Transactions

tx
Alice Bob

tx
Alice Bob

Bitcoin Transactions

tx’

tx1

tx2

tx3

Bob

Charlie

Eve

Eve

Bitcoin programs

● Transaction: a transfer of value in the Bitcoin network
● Each transaction consists of the following main fields:

○ input: a transaction output from which it spends bitcoins:
i. previous transaction address

ii. index
iii. ScriptSig

○ output: instructions for spending the sent bitcoins:
i. value: amount of bitcoins to send

ii. ScriptPubKey: instructions on how to spend the sent bitcoins

● To validate a transaction:
○ concatenate ScriptSig of current tx with ScriptPubKey of referenced tx
○ check if it successfully compiles with no errors

Bitcoin Script

● Stack-based
● Notation: Data in the script is enclosed in <> (<sig>, <pubKey>, etc)
● Opcodes: commands or functions

○ Arithmetic, e.g. OP_ABS, OP_ADD
○ Stack, e.g. OP_DROP, OP_SWAP
○ Flow control, e.g. OP_IF, OP_ELSE
○ Bitwise logic, e.g. OP_EQUAL, OP_EQUALVERIFY
○ Hashing, e.g. OP_SHA1, OP_SHA256
○ (Multiple) Signature Verification, e.g. OP_CHECKSIG, OP_CHECKMULTISIG
○ Locktime, e.g. OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY

Bitcoin Unspent Transaction Output (UTxO) example

Block n

Output:

OP_DUP
OP_HASH160
<pubKeyHash1>
OP_EQUALVERIFY
OP_CHECKSIG

…

ScriptPubKey

Bitcoin Script example

Block n

Output:

OP_DUP
OP_HASH160
<pubKeyHash1>
OP_EQUALVERIFY
OP_CHECKSIG

Block n+m

Input:

<sig1>
<pubKey1>

…

ScriptPubKey ScriptSig

Stack Script Description

Empty <sig1> <pubKey1> OP_DUP OP_HASH160 <pubKeyHash1>
OP_EQUALVERIFY OP_CHECKSIG

Add constant values from left
to right to the stack until we
reach an opcode.

<sig1> <pubKey1> OP_DUP OP_HASH160 <pubKeyHash1> OP_EQUALVERIFY
OP_CHECKSIG Duplicate top stack item

<sig1> <pubKey1> <pubKey1>
OP_HASH160 <pubKeyHash1> OP_EQUALVERIFY OP_CHECKSIG Hash at the top of the stack

<sig1> <pubKey1> <pub1Hash>
<pubKeyHash1> OP_EQUALVERIFY OP_CHECKSIG Push the hashvalue to the

stack
<sig1><pubKey1>

<pub1Hash><pubKeyHash1> OP_EQUALVERIFY OP_CHECKSIG Check if top two items are
equal

<sig1> <pubKey1>
OP_CHECKSIG Verify the signature.

Empty
TRUE If stack empty return True,

else return False.

Bitcoin’s scripting language limitations

● Lack of Turing-completeness: No loops
● Lack of state: Cannot keep internal state.
● Value-blindness: Cannot denominate the amount being sent
● Blockchain-blindness: Cannot access block header values such as nonce,

timestamp and previous hash block.

Extending Bitcoin functionality: add new opcodes

● Building a protocol on top of Bitcoin:
○ Pros:

■ Take advantage of the underlying network and mining power.
■ Very low development cost

○ Cons:
■ No flexibility.

Extending Bitcoin functionality: add new opcodes

● Building a protocol on top of Bitcoin:
○ Pros:

■ Take advantage of the underlying network and mining power.
■ Very low development cost

○ Cons:
■ No flexibility.

● Build an independent network:
○ Pros:

■ Easy to add and extend new opcodes.
■ Flexibility.

○ Cons:
■ Need to attract miners to sustain the network.
■ Difficult to implement.

Ethereum

Same principles as Bitcoin

● A peer-to-peer network: connects the participants
● Sybil resistance: Proof-of-Stake (former Proof-of-Work)
● A digital currency: ether
● A global ledger: the blockchain

○ Addresses: key pair
○ Wallets
○ Transactions: digital signatures
○ Blocks

Ethereum: A universal Replicated State Machine

● Transaction-based deterministic state machine
○ Global state (singleton)
○ A virtual machine that applies changes to global state

● A global decentralized computing infrastructure
● Anyone can create their own state transition functions
● Stack-based bytecode language
● Turing-completeness
● Smart contracts
● Decentralized applications

Ethereum accounts

● Global state of Ethereum: accounts
● They interact to each other through transactions (or messages)
● A state and a 20-byte address (160-bit identifier) associated with each account

Ethereum account

address balance nonce

address balance nonce

The address of the account

address balance nonce

The balance of the accountNo UTXOs
in Ethereum

address balance nonce

Total transactions

UTxO vs Accounts

● UTxO pros:
○ Unlinkability → Higher degree of privacy
○ Scalability (parallelism, sharding)

● Account pros:
○ Space saving
○ Conceptual simplicity

Two types of accounts

● Personal accounts (what we’ve seen)
● Contract accounts

address balance nonce

Ethereum contract account

code storage

Ethereum accounts

address code storage balance nonce

Personal account Contract account

address H(pub_key) H(addr + nonce of creator)

code ∅ Code to be executed

storage ∅ Data of the contract

balance ETH balance (in Wei) ETH balance (in Wei)

nonce # transaction sent # transaction sent

from signature to amount

Ethereum transaction

from signature to amount

The sender of the transaction

signature to amount

Digital signature on the new transaction
created by the sender’s private key

from signature to amount

signature to amount

Receiver of the transaction

from signature to amount

signature to amount

Amount transferred by transaction (in Wei)

from signature to amount

Account Account
Simple value transfer

a transaction about a contract

signature to amountfrom signature to amount data

Transaction about personal accounts:
Field is unused

Transaction about contracts:
Will contain data about the contract

Smart contract lifecycle

Create Interact Destroy

Create Interact Destroy

Τransaction for contract creation

signature to amountfrom signature to amount data

Smart contract code +
initial arguments

Empty recipient

Create Interact Destroy

Τransaction for contract interaction

signature to amountfrom signature to amount data

Which method to call + argumentsContract address

Amount transferred to contract’s account

Personal Account Personal Account
Simple value transfer

Personal Account Contract Account
Transaction sent to a contract

Contract method call

● When contract account is activated:
a. Contract code runs
b. It can read/write to internal storage
c. It can send other transactions or call other contracts

● Can’t initiate new transactions on their own
● Can only fire transactions in response to other transactions received

Messages

● Like a transaction except it is produced by a contract
● Virtual objects
● Exist only in the Ethereum execution environment
● A message leads to the recipient account running its code
● Contracts can have relationships with other contracts

Contract Account Contract Account

Message sent to another contact

Transactions & messages

Personal Account Contract Account

Contract AccountPersonal Account Contract Account

Contract’s code executed

Contract’s code executed Contract’s code executed

tx

tx

msg

msg

Types of transactions

send create call

from sender creator caller

signature sig sig sig

to receiver ∅ contract

amount ETH ETH ETH

data ∅ code f, args

Create Interact Destroy

a transaction for contract destruction

signature to amountfrom signature to amount data

The name of a method that calls the
selfdestruct opcode

Contract address

Ethereum Virtual Machine

● Series of bytecode instructions (EVM code)
● Each bytecode represents an operation (opcode)
● A quasi Turing complete machine
● Stack-based architecture (1024-depth)
● 32-byte words (256-bit words)
● Crypto primitives

● Three types of storage:
○ Stack
○ Memory (expandable byte array)
○ Storage (key/value store)

● All memory is zero-initialized
● Access:

○ value
○ sender
○ data
○ gas limit
○ block header data (depth, timestamp, miner, block id, ...)

EVM: contract execution

Ethereum block

prev

nonce difficulty miner extra

hash time

state root transaction root

address code storage balance nonce

receipt root

gasLimit

gasUsed

Ethereum block

prev

nonce difficulty miner extra

hash time

state root transaction root

from signature to amount data gaspricestartgas

receipt root

gasLimit

gasUsed

Ethereum Mining

● Blocks contain: transaction list and most recent state
● Block time: ~12-15 seconds
● (Since 2022) Proof-of-stake (Gasper)

○ Previously Proof-of-work: Ethash (originally designed to be memory-hard)

● Block rewards:
○ Previously: 2 ETH + tx fees (paid to miner)
○ Now: a bit more complex

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/

Transaction fees: the phone booth model

Gas: a necessary evil

● Every node on the network:
○ evaluates all transactions
○ stores all state

Gas: a necessary evil

● Every node on the network:
○ evaluates all transactions
○ stores all state

● The halting problem:
○ Miners cannot determine if a program can/will finish

Gas: a necessary evil

● Every node on the network:
○ evaluates all transactions
○ stores all state

● The halting problem:
○ Miners cannot determine if a program can/will finish

Solution

● Every computation step has a fee
● Fee is paid in gas
● Gas is the unit used to measure computations

Ethereum transaction

signature to amount data gaspricestartgasfrom signature to amount data gaspricestartgas

signature to amount data gaspricestartgasfrom signature to amount data gaspricestartgas

Maximum amount of gas willing to pay

Gas Limit

● Equals to startgas
● All unused gas is refunded at the end of a transaction
● Out of gas transactions are not refundable
● Blocks also have a gas limit

signature to amount data gaspricestartgasfrom signature to amount data gaspricestartgas

Price to pay per gas unit

Gas Price

● Measured in gwei (10^9 Wei)
● Determines how quickly a transaction will be mined

○ Higher gas price makes transaction more appealing to miners

Transaction Fees

Gas Limit

50.000

Gas Price

20 Gwei

Max transaction fee

0.001 ETH

Confirmation vs. Gas price

https://etherscan.io/gastracker

https://etherscan.io/gastracker

Confirmation vs. Gas price

https://etherscan.io/gastracker

https://etherscan.io/gastracker

Storage in Ethereum

ETH Price: $1,650 (3 October, 2023) - Gas Price: 21 Gwei

Size Gas Cost (ETH)
(gas * gas price * 10-9)

Cost ($)

1KB 677,000 ~0.014 $23

1MB ~693,000,000 14.55 $24,012

10MB ~7,000,000,000 ~147 $242,550

Computation steps

1. If gas_limit * gas_price > balance then halt
2. Deduct gas_limit * gas_price from balance
3. Set gas = gas_limit
4. Run code deducting from gas
5. After termination return remaining gas to balance

Sender

Receiver

Start
Transaction Operation

Use -50 gas

Operation
Use -30 gas

200 170

End
Transaction

170

250

Remaining
gas

Start gas

Out of gas exceptions

● State reverts to previous state
● gas_limit * gas_price is still deducted from balance

Introduction to Solidity

Solidity

● A high level programming language for writing smart contracts on
Ethereum

● Compile code for the Ethereum Virtual Machine
● Syntax similar to JavaScript

Documentation: docs.soliditylang.org

https://docs.soliditylang.org/

Solidity

● Contracts look like classes / objects
● Statically-typed language (variable types must be set explicitly)
● Most of the control structures from JavaScript are available in Solidity

(conditions, loops, exception handling, etc.)

pragma solidity >=0.7.0 <0.9.0;

contract HelloWorld {

function print () public pure returns (string memory) {

return 'Hello World!';

}

}

HelloWorld contract

pragma solidity 0.8.0;

pragma solidity ^0.8.1;

pragma solidity >=0.8.1 < 0.9.0;

Pragmas

The pragma keyword is used to enable certain compiler (version)
features or checks. Follows the same syntax used by npm.

Equivalent

https://www.npmjs.com/package/semver

contract <ContractName> { … }

Contract

contract HelloWorld1 {

constructor () { … }

}

contract HelloWorld2 {

constructor (uint x, string y) { … }

}

Constructors

● State variables:
○ Contract variables
○ Permanently stored in contract storage
○ Must declare at compilation time

● Local variables
○ Within a function: cannot be accessed outside
○ Complex types: at storage by default
○ Value types: in the stack
○ Function arguments

Solidity: Variables

Types

● The type of each variable needs to be specified (Solidity is a statically
typed language)

● Two categories:
○ Value types
○ Reference types

● “undefined” or “null” values do not exist in Solidity
● Variables without a value always have a default value (zero-state)

dependent on their type.
● Solidity follows the scoping rules of C99 (variables are visible until the end

of the smallest {}-block)

Value types

Types: booleans

contract Booleans {

bool p = true;

bool q = false;

}

Operators: !, &&, ||, !=, ==

Types: integers

contract Integers {

uint256 x = 5;

int8 y = -5;

}

● Two types:
○ int (signed)
○ uint (unsigned)

● Keywords: uint8 / int8 to uint256 / int256 in
step of 8.

● uint / int are alias for uint256 / int256.
● Operators as usual:

○ Comparisons: <=, <, ==, !=, >=, >
○ Arithmetic operators: +, -, *, /, %, **
○ Bitwise operators: &, |, ^
○ Shift operators: >>, <<

● Range: 2b - 1 where b ∈ { 8, 16, 24, 32, …, 256 }
● Division always results in an integer and round

towards zero (5 / 2 = 2).
● No floats!

Types: address

contract Address {

address owner;

address payable anotherAddress;

}

Address type holds an Ethereum address (20 byte value).
The “payable” keyword enables to send Ether to the address (you cannot send to plain addresses).

Types: fixed-size byte arrays

contract ByteArrays {

bytes32 y = 0xa5b9…;

// y.length == 32

}

● bytes1, bytes2, bytes3, …, bytes32
● byte is alias for byte1
● length: fixed length of the byte array. You

cannot change the length of a fixed byte array.

Types: Enum

contract Purchase {

 enum State { Created, Locked, Inactive }

}

Example Enum
pragma solidity ^0.4.24;

contract Enum {
 enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }
 ActionChoices choice;
 ActionChoices constant defaultChoice = ActionChoices.GoStraight;

 function setGoStraight() public {
 choice = ActionChoices.GoStraight;
 }

 function getChoice() public view returns (ActionChoices) {
 return choice;
 }
}

Reference types

Types: arrays, static and dynamic

contract Arrays {

uint256[2] x;

uint8[] y;

bytes z;

string name;

// 2D: dynamic rows, 2 columns!

uint [2][] flags;

function create () public {

uint[] memory a = new uint[](7);

flags.push([0, 1]);

}

}

● The notation of declaring 2D arrays is reversed
when compared to other languages!

○ Declaration: uint[columns][rows] z;
○ Access: z[row][column]

● bytes and string are special arrays.
● bytes is similar to byte[] but is cheaper (gas).
● string is UTF-8-encoded.
● Members:

○ push: push an element at the end of array.
○ length: return or set the size of array.

● string does not have length member.
● Allocate memory arrays by using the keyword

new. The size of memory arrays has to be known
at compilation (in this case 7). You cannot resize a
memory array.

Types: Mappings

contract Mappings {

 mapping(address => uint256) balances;

}

key value

Types: Struct

contract Vote {

 struct Voter {

 bool voted;

 address voter;

 uint vote;

 }

}

● A struct cannot contain a struct of its own type

(the size of the struct has to be finite).

● A struct can contain mappings.

Example Structs
pragma solidity ^0.4.24;

contract Ballot {
 struct Voter {
 uint weight;
 bool voted;
 address delegate;
 uint vote;
 }
}

contract CrowdFunding {
 struct Funder {
 address addr;
 uint amount;
 }

 struct Campaign {
 address beneficiary;
 uint fundingGoal;
 uint numFunders;
 uint amount;
 mapping (uint => Funder) funders;
 }
}

Visibility

Visibility

● public: Public functions can be called from other contracts, internally, and from
personal accounts. For public state variables a getter function is automatically
created.

Visibility

● public: Public functions can be called from other contracts, internally, and from
personal accounts. For public state variables a getter function is automatically
created.

● external: External functions cannot be called internally. Variables cannot be
declared as external.

Visibility

● public: Public functions can be called from other contracts, internally, and from
personal accounts. For public state variables a getter function is automatically
created.

● external: External functions cannot be called internally. Variables cannot be
declared as external.

● internal: Internal functions and variables can be called only internally. Contracts
that inherit another contract can access the parent’s internal variables and
functions.

Visibility

● public: Public functions can be called from other contracts, internally, and from
personal accounts. For public state variables a getter function is automatically
created.

● external: External functions cannot be called internally. Variables cannot be
declared as external.

● internal: Internal functions and variables can be called only internally. Contracts
that inherit another contract can access the parent’s internal variables and
functions.

● private: Private functions and variables can be called only by the contract in
which they are defined and not by a derived contract.

Solidity: Functions

● Can return multiple values
● Access

○ Public: Accessed by anyone
○ Private: Accessed only from the contract
○ Internal: Accessed only internally
○ External: Accessed only externally

● Declarations
○ View: They promise not to modify the state
○ Pure: They promise not to read from or modify the state.
○ Payable: Must be used to accept Ether

Remember that on-chain
data is public regardless

of access declaration!

Solidity: Inheritance

● Multiple inheritance
● One contract is created on the blockchain for all derived contracts: codes

concatenate
● The general inheritance system is very similar to Python’s

Solidity: Inheritance

● Use is keyword to extend a contract
● Derived contracts: access all non-private members, internal functions and

state variables
● Abstract contracts can be used as interfaces
● Functions can be overridden
● Interfaces: functions are not implemented

Solidity: Inheritance
pragma solidity ^0.4.24;

interface Regulator {
 function checkValue(uint amount) external returns (bool);
 function loan() external returns (bool);
}

contract Bank is Regulator {
 uint private value;
 constructor (uint amount) public {
 value = amount;
 }
 function deposit(uint amount) public {
 value += amount;
 }
 function withdraw(uint amount) public {
 if (checkValue(amount)) {
 value -= amount;
 }
 }
 function balance() public view returns (uint) {
 return value;
 }
 function checkValue(uint amount) public view returns (bool) {
 return value >= amount;
 }
 function loan() public view returns (bool) {
 return value > 0;
 }
}

contract LocalBank is Bank(10) {
 string private name;
 uint private age;

 function setName(string newName) public {
 name = newName;
 }
 function getName() public view returns (string) {
 return name;
 }
 function setAge(uint newAge) public {
 age = newAge;
 }
 function getAge() public view returns (uint) {
 return age;
 }
}

pragma solidity ^0.4.24;

contract Jedi {

 function computeForce() internal pure returns (uint){
return 50;

 }

 function getExtraForce() private pure returns (uint) {
return 100;

 }

}

pragma solidity ^0.4.24;

contract Human is Jedi {
 uint age = 70;
 string name = “Luke”;
 string lastName = “Skywalker”;
 bool isMaster = false;
 uint force = 0;

 function setMaster(bool _master) external {

isMaster = _master;
 force = computeForce(); // internal call
 force = force + getExtraForce(); // error private
method
 }

 function getJedi() public view returns (uint, string, string,
bool){

return (age, name, lastName, isMaster) //
multi-values
 }

}

contract Ewok {
 Jedi j = new Jedi();
 uint force = j.computeForce(); // error private method
}

Data location

Data location: areas

● Every reference type (array, struct, mapping) has a data location.

● Two main data locations: storage and memory.

● Calldata: special location for function’s arguments.

● As of Solidity version 0.5.0 you must always declare the data location of

reference types inside functions’ body, arguments and returned values.

Data location: areas

● Storage:

○ Persistent

○ All state variables are saved to storage

● Memory:

○ Non-persistent

○ Can be used for function variables or arguments

● Calldata:

○ Non-modifiable (read-only)

○ Function arguments

○ Cheaper than memory

○ Used for dynamic params of an external function

Data location: assignment copy/reference rules

● Assignment of the form “variable <- variable”

● Assignment by copy

○ storage <-> memory

○ all other assignments to storage (e.g., to state variables)

● Assignment by reference

○ memory <-> memory

○ storage -> local storage variable
https://docs.soliditylang.org/en/v0.8.21/types.html#data-location-and-assignment-behavior

https://docs.soliditylang.org/en/v0.8.21/types.html#data-location-and-assignment-behavior

Events,
Modifiers,

and Global variables

Solidity: events

● EVM logging mechanism
● Arguments are stored in the transaction log
● An alternative to store data cheaply
● Client software can create “listeners” to events (eg. in Python/JS)

Solidity: events
pragma solidity ^0.4.24;

contract ClientReceipt {
 event Deposit(
 address indexed _from,
 bytes32 indexed _id,
 uint _value
);

 function deposit(bytes32 _id) public payable {
 emit Deposit(msg.sender, _id, msg.value);
 }
}

var abi = /* abi as generated by the compiler */;
var web3 = /* http/ws connection to Eth full node */;
var contractObject = web3.eth.contract(abi);
var contractInstance = contractObject.at("0x1234...ab67");
/* address */

var event = contractInstance.Deposit();

// watch for changes
event.watch(function(error, result){
 if (!error)
 console.log(result);
 ….
 /* use result to access event data .. */
});

Contract - Solidity Client - Javascript

Solidity: Modifiers

pragma solidity ^0.4.24;

contract owned {

 address owner;

 constructor() public { owner = msg.sender; }

 modifier onlyOwner {
 require(msg.sender == owner);
 _;
 }
}

Declare modifier

contract mortal is owned {
 function close() public onlyOwner {
 selfdestruct(owner);
 }
}

Apply modifier

Solidity: units and globally available variables

● Ether Units
○ A literal number can take a suffix of wei, finney, szabo or ether (2 ether == 2000 finney

evaluates to true)

● Time Units
○ Suffixes like seconds, minutes, hours, days, weeks and years (1 hours == 60 minutes)

Solidity: units and globally available variables

● Block and Transaction Properties
○ block.blockhash
○ Block.coinbase
○ block.timestamp
○ msg.data
○ msg.gas
○ msg.value
○ msg.sender
○ tx.origin

Solidity: units and globally available variables

● Error Handling
○ via error objects (see https://docs.soliditylang.org/en/v0.8.21/control-structures.html)
○ assert
○ require
○ revert

● Mathematical and Cryptographic Functions
○ addmod, mulmod
○ Keccak256 (SHA-3), sha256, ripemd160

https://docs.soliditylang.org/en/v0.8.21/control-structures.html

Solidity: units and globally available variables

● Address Related
○ <address>.balance
○ <address>.transfer
○ <address>.send
○ <address>.call, <address>.callcode, <address>.delegatecall

● Contract Related
○ this, selfdestruct

Sending Ether and
Contract interactions

Fallback functions

contract Fallback {

 receive() external {

…

}

fallback() external {

…

}

}

● No arguments (msg.* is accessible, contains all
data about incoming transaction, incl. sender and
value).

● No returned values.
● Mandatory visibility: external.
● Receive is executed if no data (transaction field)

is supplied. It is implicitly payable.
● Fallback is executed if the function that a user

tries to call does not exist. May or may not be
payable.

● In the absence of a fallback function a contract
cannot receive Ether and an exception is thrown.

● Should be simple - without consuming too much
gas.

Send ether

Function Gas forwarded Error handling Notes

transfer 2300 throws error on failure
● Safe against re-entrancy
● Fails if recipient contract’s fallback

function consumes >2300 gas

send 2300 false on failure
● Safe against re-entrancy
● Fails if recipient contract’s fallback

function consumes >2300 gas

call all remaining gas false on failure ● Not safe against re-entrancy

contract Planet {

string private name;

constructor (string memory _name){ name = _name; }

function getName() public returns(string memory) { return name; }

}

contract Universe {

address[] planets;

event NewPlanet(address planet, string name);

function createNewPlanet(string memory name) public {

Planet p = new Planet(name);

planets.push(address(p));

emit NewPlanet(address(p), p.getName());

}

}

Interacting with other contracts

