Blockchains
& Distributed Ledgers

Lecture 04

Dimitris Karakostas

Slide credits: DK, Aggelos Kiayias, Aydin Abadi, Christos Nasikas, Dionysis Zindros

Smart Contracts

e The developer writes and deploys the contract

Smart Contracts

e The developer writes and deploys the contract
@ A user interacts with the contract via a transaction

Smart Contracts

e The developer writes and deploys the contract

e A user interacts with the contract

e An adversary exploits a hazard in the contract, by sending a
transaction that somehow breaks its functionality

s

Smart Contracts

e The developer writes and deploys the contract

e A user interacts with the contract
e An adversary exploits a hazard in the contract, by sending a

transaction that somehow breaks its functionality

In this lecture, you will learn:
e How to identify hazards in contracts written by others

e How to protect users (of your contracts) from known attacks

Denial-of-Service

DoS: Unbounded operation

for (uint i = @; i < investors.length; i++) {
investors[i].addr.transfer(investors[i].dividendAmount));

}

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

DoS: Unbounded operation

// INSECURE

for (uint i = @; i < investors.length; i++) {

investors[i].addr.transfer(investors[i].dividendAmount));

}

e Operation requires more gas as array becomes larger

e After some point, it might be impossible (beyond gas limits) to execute it

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

DoS: Griefing

for (uint i = @; i < investors.length; i++) {
investors[i].addr.transfer(investors[i].dividendAmount));

}

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

DoS: Griefing

// INSECURE
for (uint i = @; i < investors.length; i++) {
investors[i].addr.transfer(investors[i].dividendAmount));

}

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

DoS: Griefing

// INSECURE
for (uint i = @; i < investors.length; i++) {
investors[i].addr.transfer(investors[i].dividendAmount));

}

// ALSO INSECURE

for (uint i = @; i < investors.length; i++) {

if (!(investors[i].addr.send(investors[i].dividendAmount))) {
revert();

}

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

Error handling

e If asend/transfer call fails, the contract might get stuck

e |Itis possible to force a call to fail (e.g., by getting the victim contract to
send to another contract that Fails)

e Errors need to be handled, instead of simply reverting

e (ransferis preferable to send, as it returns an error object that can be
examined to act accordingly

Pull over push: example

function bid() payable {
require(msg.value >= highestBid);

if (highestBidder != address(9)) {
highestBidder.transfer(highestBid);

}

highestBidder = msg.sender;
highestBid = msg.value;

https://consensys.qithub.io/smart-contract-best-practices

https://consensys.github.io/smart-contract-best-practices

Pull over push: example

// BAD DESIGN (PUSH)

function bid() payable {
require(msg.value >= highestBid);

if (highestBidder != address(9)) {
highestBidder.transfer(highestBid);

}

highestBidder = msg.sender;
highestBid = msg.value;

// GOOD DESIGN (PULL)

function bid() payable external {
require(msg.value >= highestBid);

if (highestBidder != address(9)) {
refunds[highestBidder] += highestBid;
}

highestBidder = msg.sender;
highestBid = msg.value;
}

function withdrawRefund() external {
uint refund = refunds[msg.sender];
refunds[msg.sender] = 0;
msg.sender.transfer(refund);

https://consensys.qithub.io/smart-contract-best-practices

https://consensys.github.io/smart-contract-best-practices

Pull over push

e Do nottransfer ETH to users (push); let them withdraw (pull) their funds.

e Isolates each external call into its own transaction.

e Avoids multiple send() calls in a single transaction.

e Reduces problems with gas limits.

e Possibly increases gas Fairness (each user pays the gas for receiving their
own funds).

e Tradeoff between security and user experience.

Reentrancy

Reentrancy

- _

Contract A Contract B

L

Reentrancy

Withdraw ETH

1. Call withdraw

Contract A Contract B

Reentrancy

2. Give eth

Fallback function Withdraw ETH

Contract A Contract B

Reentrancy

Fallback function Withdraw ETH

3. Call withdraw again

Contract A Contract B

Reentrancy

Give eth

Fallback function Withdraw ETH

Call withdraw again

Contract A Contract B

Loop of function calls

Reentrancy example

// INSECURE

mapping (address => uint) private userBalances;

function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());

userBalances[msg.sender] = 0;

Reentrancy example

// INSECURE
mapping (address => uint) private userBalances;
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

require(msg.sender.call.value(amountToWithdraw)());

userBalances[msg.sender] = 0;

Begin attack by sending eth

Reentrancy example

// INSECURE

mapping (address => uint) private userBalances; function receive() payable {

9 function withdrawBalance() public { if (victimContract.balance >= msg.value) {
uint amountToWithdraw = userBalances[msg.sender]; victim.withdrawBalance();
require(msg.sender.call.value(amountToWithdraw)()); }
userBalances[msg.sender] = 0; }

Re-entrancy in the wild: The DAO

e The DAO (distributed autonomous organization®)
o Designed by slock.itin 2016
o Purpose: Create a population of stakeholders
o Stake (in the Form of DAO tokens) enables them to participate in decision making
o Decision-making to choose which proposals to fund

The DAO

The DAQO's Mission: To blaze a new path in
business organization for the betterment of
its members, existing simultaneously
nowhere and everywhere and operating
solely with the steadfast iron will of

unsto Ppa ble code. *According to the SEC, neither “distributed” nor “autonomous”:
https://www.sec.gov/news/press-release/2017-131

https://www.sec.gov/news/press-release/2017-131

THE DAO IS

1071.36 M 1.10
10.73 M 15 hours
116 81 M 11 days

~150 million USD in ~ 1 month

The DAO Attack (2016)

12 June: The reentrancy bug is identified (but stakeholders are “reassured”)
17 June: Attacker exploits it draining ~$50Million at the time of the attack
15 July: Ethereum Classic manifesto

19 July: “Hard Fork” neutralizes attacker’s smart contract

ledgerwatch

Reentrancy: solutions

// SECURE
mapping (address => uint) private userBalances;
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

userBalances[msg.sender] = 0;

msg.transfer(amountToWithdraw);

Finish all internal work (state changes)
and then call external functions
Checks-Effects-Interactions Pattern
Mutexes

Pull-push pattern

Use transfer or send instead of call

Checks-Effects-Interactions Pattern

1. Perform checks e.g., on inputs, sender, value, arguments etc
2. Enforce effects and update the state accordingly

3. Interact with other accounts via external calls or send/transfer

Solidity/Ethereum hazards

Forcibly Sending Ether to a Contract

e Possible exploit

O misuse of this.balance (when contract relies on it)

contract Vulnerable {
function receive() external {
revert();
}

function fallback() external {
revert();
}

function somethingBad() {
require(this.balance > 0);
// Do something bad
}
}

https://github.com/demining/Solidity-Forcibly-Send-Ether-Vulnerability

Forcibly Sending Ether to a Contract

e Possible exploit
O misuse of this.balance (when contract relies on it)
e How can you send ether to a contract without firing contact’s fallback

Function ?

Forcibly Sending Ether to a Contract

e Possible exploit
O misuse of this.balance (when contract relies on it)
e How can you send ether to a contract without firing contact’s fallback

Function ?
o Contract’'s address = hash(sender address, nonce): anyone can calculate a contract’s address
before it is created and send ether to it
o selfdestruct(victimContractAddress) does not trigger fFallback

o Set contract’s address as recipient of block rewards

Forcibly Sending Ether to a Contract

e Possible exploit
O misuse of this.balance (when contract relies on it)
e How can you send ether to a contract without firing contact’s fallback

Function ?
o Contract’'s address = hash(sender address, nonce): anyone can calculate a contract’s address
before it is created and send ether to it
o selfdestruct(victimContractAddress) does not trigger fFallback

o Set contract’s address as recipient of block rewards

e Lesson: Avoid strict equality checks with the contract’s balance

Delegate call

Storage

Storage

Delegate call

c.delegatecall(...)

Storage

Storage

Delegate call

c.delegatecall(...)

Writes on B's storage

Storage Storage

Context (balance, msg, ...) is the same as B.
Only the code from Cis loaded.

Delegate call

// INSECURE
address public owner;

Library library =

function() public {
require(library.delegatecall(msg.data));

}

}

address public owner;

constructor (address _owner) public {
owner = _owner;

}

function pwn() public {
owner = msg.sender;

}

Use of tx.origin

tx.origin = A
msg.sender = A

tx.origin = A
msg.sender =B

Personal account Contract Contract

Use of tx.origin

// INSECURE
contract Bank {

address owner;

constructor() public {
owner = msg.sender;

}

function sendTo(address payable receiver, uint amount)
public

require(tx.origin == owner);
receiver.call.value(amount)();

Use of tx.origin

// INSECURE
contract Bank {

address owner;

constructor() public {
owner = msg.sender;

}

function sendTo(address payable receiver
public {

require(tx.origin == owner);
receiver.call.value(amount)();

uint amount)

/

function receive() external payable {

victim.sendTo(attacker,msg.sender.balance);

Keep fallback function simple

// BAD // GOOD

function receive() payable { function deposit() payable external {
balances[msg.sender] += msg.value; balances[msg.sender] += msg.value;

} }

function receive() payable {
require(msg.data.length == 0);
emit LogDepositReceived(msg.sender);

https://consensys.qithub.io/smart-contract-best-practices

https://consensys.github.io/smart-contract-best-practices

Default values
And
Merkle Trees

Sparse Merkle Trees

e Perfect Binary Merkle Tree

e Unfilled leaves take default values

Sparse Merkle Trees

=H(H, ,1IH;5)

H root

H,,=H(H, [l H

2,0)

H,,=H(H, [H,) H,,=H(H,[IH,)

H,=H(,) H,=H(D,) H.= H(E)

H H H

Sparse Merkle Trees: key-value stores

e Assume that keys are 256 bits (e.g., a SHA256 hash)
e Construct a Sparse Merkle Tree with 22°¢ leaves

e Insert a (key, value) element in the store

o Insert the value in the leaF that corresponds to the key

o Construct the root of the new Merkle Tree

e Proof of inclusion: as usual
e Proof of non-inclusion: prove empty value in leaf for corresponding key

e Constructing such tree for 22°¢ leaves from scratch is extremely consuming

o Optimizations?

Solidity’s default values

e Solidity does not support None/null types

e Everyvariable isinitialized to a (respective) zero value
o uint256:0
o bytes32: bytes32(0)
0
e Verifying whether a string is not initialized:
o bytes(myVariable).length !=0
o sha3(myVariable) '= sha3("")

The Nomad Bridge Hack

e Nomad contract kept:

o mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

m Intended use: Timestamp after which an MTR can be used for message validation

function acceptableRoot(bytes32 root) public view returns (bool) {
/] ...
uint256 _time = confirmAt[_root];
if (_time == 0) {
return false;

}

return block.timestamp >= _time;

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

e Nomad contract kept:
o mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt
m Intended use: Timestamp after which an MTR can be used for message validation
o mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages
m Intended use: if a message is validated, the mapping keeps the message’s hash and the
MTR used to validate it

function process(bytes memory _message) public returns (bool _success) {
/] ...

require(acceptableRoot(messages[_messageHash]), "!proven");
/] ...
}

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

e Nomad contract kept:

o mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt
m Intended use: Timestamp after which an MTR can be used for message validation
o mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages
m Intended use: if a message is validated, the mapping keeps the message’s hash and the
MTR used to validate it

e On21June 2022, a new version of the contract was created

o Duringinitialization, Nomad set: confirmAt[bytes32(0)] = 1
o Attack!

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

e Nomad contract kept:

o mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

o mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages
e On 21 June 2022, a new version of the contract was created

o Duringinitialization, Nomad set: confirmAt[bytes32(0)] = 1
o Attack!

m Every non-validated message is initialized to the zero MTR in the messages mapping

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

e Nomad contract kept:

o mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

o mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages
e On 21 June 2022, a new version of the contract was created

o Duringinitialization, Nomad set: confirmAt[bytes32(0)] = 1
o Attack!
m Every non-validated message is initialized to the zero MTR in the messages mapping

m By setting confirmAt[bytes32(0)] = 1, the zero MTR gets “confirmed” at timestamp 1

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

e Nomad contract kept:

o mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt
o mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages
e On 21 June 2022, a new version of the contract was created
o Duringinitialization, Nomad set: confirmAt[bytes32(0)] = 1
o Attack!
m Every non-validated message is initialized to the zero MTR in the messages mapping
m By setting confirmAt[bytes32(0)] = 1, the zero MTR gets “confirmed” at timestamp 1

m So, every previously non-validated message now becomes valid

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

Another crypto bridge attack: Nomad loses
$190 million in ‘chaotic’ hack

By Jennifer Kom

Published 12:39 PM EDT, Wed August 3, 2022

How a crypto bridge bug led to a $200m
‘decentralized crowd looting’

Flash mob exploits Nomad's validation code blunder

Hackers Return $9M to Nomad Bridge After $1I90M
Exploit

The popular Ethereum to Moonbeam bridge is working with law enforcement and data

analytics firms. samczsun &

By Oliver Knight (¢} Aug 3, 2022 at 10:52 am. GMT Updated Aug 3, 2022 at 2:53 p.m. GMT

11/ This is why the hack was so chaotic - you didn't need to know about
Solidity or Merkle Trees or anything like that. All you had to do was find a

transaction that worked, find/replace the other person's address with
yours, and then re-broadcast it

The Nomad Bridge Hack

QSP-19 Proving With An Empty Leaf

Status: Acknowledged

File(s) affected: Replica.sol

Description: The function Replica. sol :prove accepts the input _Leaf and checks if it is part of the Merkle tree. Nomad architecture uses a sparse Merkle tree, in which all the non-used
leaves default with empty bytes32. This nature of the sparse Merkle tree makes it possible for one to pass an empty bytes32 as the _lLeaf and some artificial Merkle proof with a specified
index to pass the inclusion check. The “empty leaf” message status can later be flagged as PROVEN, resulting in the messages mapping in an undesired state.

Recommendation: Validate that the _Leaf input of the function Replica.sol :prove is not empty.

Update: The Nomad team responded that "We consider it to be effectively impossible to find the preimage of the empty leaf". We believe the Nomad team has misunderstood the issue. It is not
related to finding the pre-image of the empty bytes. Instead, it is about being able to prove that empty bytes are included in the tree (empty bytes are the default nodes of a sparse Merkle tree).
Therefore, anyone can call the prove function with an empty leaf and update the status to be proven.

https://github.com/nomad-xyz/docs/blob/1ff0c55dba2a842c811468c57793ff9a6542ef0f/docs/public/Nomad-Audit.pdf

https://github.com/nomad-xyz/docs/blob/1ff0c55dba2a842c811468c57793ff9a6542ef0f/docs/public/Nomad-Audit.pdf

The Nomad Bridge Hack - Lessons

e Always check user input thoroughly
o Especially for empty values
e Everyobject has avalue
o Even if never accessed before, it has a zero value

e When an auditor flags a bug, Fix it

Binance Bridge Hack

e Binance Bridge used a sophisticated implementation of AVL Merkle Trees

o AVL trees: self-balancing binary search trees
o Inthis implementation, verification contains special operations that need to succeed

o Root hash is computed in a pretty complex manner (source code)
e Attacker

o Changed a leaf's value, inserting the malicious payload

o Added aninner node in a way that verification for original MTR passed

https://twitter.com/samczsun/status/1578167 198203289600

https://github.com/cosmos/iavl/blob/de0740903a67b624d887f9055d4c60175dcfa758/proof_range.go#L237-L290
https://twitter.com/samczsun/status/1578167198203289600

Binance Bridge Hack

Binance hit by $100 million blockchain bridge hack

Carly Page @carlypage_ / 2:36 PM GMT+1 * October 7, 2022 O

Binance Hit By $570 Million
Blockchain Bridge Hack

By RAHUL NAMBIAMPURATH Published October 07,2022

Key takeaways

e The world’s largest crypto exchange, Binance, had to suspend

deposits and withdrawals due to a hack.

» BNB is the fifth largest crypto by market cap, and the hack was for 2

million BNB tokens, which resulted in $570 million.

Binance Bridge Hack

e Binance Bridge used a sophisticated implementation of AVL Merkle Trees

o AVL trees: self-balancing binary search trees
o Inthis implementation, verification contains special operations that need to succeed

o Root hash is computed in a pretty complex manner (source code)
e Attacker

o Changed a leaf's value, inserting the malicious payload

o Added aninner node in a way that verification for original MTR passed
e Lessons:

o Keep it simple

o Don’t roll your own crypto

https://twitter.com/samczsun/status/1578167 198203289600

https://github.com/cosmos/iavl/blob/de0740903a67b624d887f9055d4c60175dcfa758/proof_range.go#L237-L290
https://twitter.com/samczsun/status/1578167198203289600

Front-running

Front-Running

ORONO
ORONO

HONORO

sortByGasPrice(txs,

‘d

2 E®®E

50 GWei

Front-Running: user

Front-Running: user

Front-Running: miner

L

Front-Running: example

// INSECURE

function registerName(bytes32 name) public {

names[name] = msg.sender;

Front-Running: solution

e Employ a cryptographic commitment scheme

e Implementation
o commit: c = hash(<value, nonce>) (Note: nonce space should be large!)
o reveal: v =<value’, nonce’>
o verify: c == hash(v)

e Properties

o Binding: a commitment can be opened only to its committed value

o Hiding: a commitment reveals no information about its committed value

Front-Running: solution example

// INSECURE
function registerName(bytes32 name) public {

names[name] = msg.sender;

// MORE SECURE, BUT...
function registerName(bytes32 name, bytes32 nonce) public {
require(commitments[makeCommitment(name, nonce)] == msg.sender, “Not found!”);

names[name] = msg.sender;

Front-Running: example

2 GWei

contract.commit(“9505cacb”)
Network

[3

Front-Running: example

2 GWei

w contract.commit(“95@5cacb™)

Front-Running: example

2 GWei

contract.registerName(“super”, “12345”)

Network

Front-Running: example

2 GWei

contract.registerName(“super”, “12345”)

Network

50 GWei

contract.registerName(“super”, “12345”)

Front-Running: another solution

e Employ a cryptographic commitment scheme

e Keep track of committed values
o Prevent a user from posting a commitment already posted by another user
e Possible DoS and forced gas cost

o Attacker can front-run a user's commit operation and post the commitment as their own
o Useris forced to spend extra gas for new tx that posts new commitment

o Attacker can continue front-running until they run out of money (to pay gas)

Randomness

Randomness: sources (?)

e block.number

e block.timestamp

e block.hash
e block.difficulty

uint(keccak256(

block.coinbase
block.gasLimit
now

msg.sender

timestamp

msg.sender

hash)) % n

Randomness: sources (?)

They can be manipulated by a malicious miner.
They are shared within the same block to all users.

Randomness

// INSECURE
bool won =|(block.number % 2)}==

// INSECURE
uint random = uint(keccak256(block.timestamp))|% 2;

// INSECURE
address seed1 = contestants[uinf(block.coinbase) P4 totalTickets].addr;

address seed2 = contestants[uinf(msg.sender)|% totalTickets].addr;
uint seed3 =|block.difficulty; |

bytes32 randHash = keccak256(seed1, seed?, seed3);
uint winningNumber = uint(randHash) % totalTickets;
address winningAddress = contestants[winningNumber].addr;

Randomness: blockhash

Not really private

Also not private
// INSECURE

uint256 private seed;

function random(uint64 upper) public returns (uint64 fandomNumber)|{

_seed = uint64(keccack256(keccack256(block.blockhash{block.number), seed),

now)J;
return _seed % upper;

Randomness: blockhash

Not really private

// INSECURE

uint256 constant private |FACTOR =
1157920892373161954235709850086879078532699846656405640394575840079131296399;

function rand(uint max) constant private returns (uint256 result) {
uint256 factor = FACTOR * 100 / max;
uint256 lastBlockNumber =|plock.number - 1;
uint256 hashVal = uint256(block.blockhash(lastBlockNumber));
return uint256((uint256(hashVal) / factor)) % max;

Randomness: intra-transaction information leak

if (replicatedVictimConditionOutcome() == favorable)
victim.tryMyLuck();

https://media.dedaub.com/bad-randomness-is-even-dicier-than-you-think-7fa2c6e0c2cd

https://media.dedaub.com/bad-randomness-is-even-dicier-than-you-think-7fa2c6e0c2cd

Sources of randomness

e Block information can be manipulated by miner

e Block information shared by all users in the same block

e In Ethereum, all data posted on the chain are visible

e ‘“private” vars are only private w.r.t. object-oriented programming visibility
e [f same-block txs share randomness source, attacker can check whether

conditions are favorable before acting

What about future blocks ?

Casino

Player

WYY W

$

$

1. Player makes a bet and the casino stores
the block.number of the transaction

Casino

Player

2. A few blocks later, player requests
from the casino to announce the
winning number

Casino

Player

3. Casino uses, as a source of randomness,
the hash of a block produced after the bet
is placed

Casino

Player

Validate block.number age!

N

3. Casino uses, as a source of randomness,
the hash of a block produced after the bet
is placed

Casino

Player

Is the hash of a future block a good source of
randomness (against a malicious miner)?

A contract can access the hashes of only the last 256 blocks; blockhash
older than that defaults to 0

Always validate block’s age

With some probability (how high?), a malicious miner will create the
specific future block

In PoS, the proposer of a future block might be known beforehand

A miner can keep newly-mined blocks hidden, until they mine a favorable

one

Randomness: towards safer PRNG

e Commitment schemes

@)

@)

(@)

Prover commits to a message m by publishing h = H(m) (H is a hash Function)

After some time, prover reveals message m

Verifier wants to be sure that the originally committed message is the revealed one
m Verifier checks that: h == H(m)
Binding property:
m Collision resistance: it should be infeasible to find m’' s.t. H(m) == H(m’)
Hiding property:
m Honest prover wants no information about m to be retrievable from H(m)
m Hneeds to behave as a random oracle

m m should be unpredictable; if domain is small, use salt

Randomness: towards safer PRNG

e Commitment schemes

e Example:

(@)

(@)

O

Casino and player each commit to a random value
Casino and player reveal their values
Casino XORs the random values to produce a seed
m the seed can also be combined with the hash of a future block

If either casino or player honest, then the seed is random (why?)

On-chain data is public

e Applications (games, auctions, etc) required data to be private up until
some pointin time

e Every data thatis published on-chain is visible by everyone

e Best strategy: commitment schemes

e Watch out for front-running!

Overflow/Underflow

2256_1
0

2 254

2 255

Integer Overflow and Underflow

// INSECURE

function withdraw(uint256 _value) {
require(balanceOf[msg.sender] >= _value);
msg.sender.call.value(_value)();

balanceOf[msg.sender] -= _value;

Integer Overflow and Underflow

// INSECURE
function withdraw(uint256 _value) {

require(balanceOf[msg.sender] >= _value);

msg.sender.call.value(_value)();

balanceOf[msg.sender] -= _value;

Integer Overflow and Underflow

l function attack() {

// INSECURE
performAttack = true;

function withdraw(uint256 _value) {
victim.donate(1);

require(balanceOf[msg.sender] >= _value);

msg.sender.call.value(_value)(); ~~\§\\\\\\\\\\\\\\\\\
}

balanceOf[msg.sender] -= _value; [function() {

victim.withdraw(1);

} if (performAttack) {

function donate(uint256 _value) public payable { performAttack = false;

victim.withdraw(1);

require(msg.value == value);

balanceOf[msg.sender] += _value;

Integer Overflow and Underflow: solutions

Solidity 0.8+ protects natively against over/underflows.

For older versions, use OpenZeppelin's SafeMath library.

// OpenZeppelin: SafeMath.sol

function add(uint256 a, uint256 b) internal pure returns
(uint256) {

uint256 ¢ = a + b;

require(c >= a, "SafeMath: addition overflow");

return c;

}

function sub(uint256 a, uint256 b) internal pure returns
(uint256) {
require(b <= a, "SafeMath: subtraction overflow");
uint256 ¢ = a - b;

return c;

(Gas) Fairness

Gas Fairness

Crowdfunding Contract #1

R sets a threshold

Contract collects
contributions

When balance exceeds
threshold, it sends funds to R
and returns any surplus to
contributors.

Funding paid by last
contributor

Gas Fairness

Crowdfunding Contract #1 Crowdfunding Contract #2

R sets a threshold R sets a threshold

Contract collects Contract collects contributions
contributions
When balance exceeds
threshold, it allows R to
withdraw the threshold and
return any surplus to
contributors

When balance exceeds
threshold, it sends funds to R
and returns any surplus to
contributors.

Funding paid by last

contributor R pays for funding

Gas Fairness

Crowdfunding Contract #1

Crowdfunding Contract #2

Crowdfunding Contract #3

R sets a threshold R sets a threshold

R sets a threshold

Contract collects Contract collects contributions

s Contract collects contributions
contributions
When balance exceeds
threshold, it allows R to
withdraw the threshold and
return any surplus to

contributors

When balance exceeds threshold,
it allows R and contributors to
withdraw the threshold and
surplus respectively

When balance exceeds
threshold, it sends funds to R
and returns any surplus to
contributors.

Funding paid by last R and contributors pay for

contributor R pays for funding

funding

A (horribly insecure) contract

pragma solidity >=0.7.0 <0.9.0;

struct round {
address payable player;

3
4
5- contract RockPaperScissors { // Winner gets 1 ETH
6
7
8 bytes32 commitment;

9 uint256 hand;

10

11 round[] private rounds;

12

187 function commit(uint256) payable public {

14 require((hand == 1 || hand == 2 || hand == 3) && (rounds.length < 2));
5 rounds.push(round(payable(msg.sender), sha256(abi.encode(hand)), 0));
16 }

17

18- function open(uint256) public {

19 require(rounds.length == 2);

20~ for (uint256 1 = 0; 1 < 2; 1++) {

21- if (rounds[i].commitment == sha256(abi.encode(hand))) {
22 rounds[i].hand = hand;

23 }

24- if (rounds[(i + 1) % 2].hand == 0) {

25 return;

26 }

27 }

28 if ((rounds[0].hand == 1 && rounds[1].hand == 2) ||

29 (rounds[0].hand == 2 && rounds[1].hand == 3) ||

30- (rounds[0].hand == 3 && rounds[1].hand == 1)) {

31 rounds[0].player.transfer(1 ether);

32

33- else if (rounds[0@].hand != rounds[1].hand) {

34 rounds[1].player.transfer(1 ether);

35 }

36 selfdestruct(payable(msg.sender));

37

