
Blockchains
& Distributed Ledgers

Lecture 04

Dimitris Karakostas

Slide credits: DK, Aggelos Kiayias, Aydin Abadi, Christos Nasikas, Dionysis Zindros

Smart Contracts

● The developer writes and deploys the contract

B3B2B1

Smart Contracts

● The developer writes and deploys the contract
● A user interacts with the contract via a transaction

BnB3B2B1
…

Smart Contracts

● The developer writes and deploys the contract
● A user interacts with the contract
● An adversary exploits a hazard in the contract, by sending a

transaction that somehow breaks its functionality

BnB3B2B1
… Bk

…

Smart Contracts

● The developer writes and deploys the contract
● A user interacts with the contract
● An adversary exploits a hazard in the contract, by sending a

transaction that somehow breaks its functionality

In this lecture, you will learn:
● How to identify hazards in contracts written by others
● How to protect users (of your contracts) from known attacks

Denial-of-Service

DoS: Unbounded operation

for (uint i = 0; i < investors.length; i++) {
investors[i].addr.transfer(investors[i].dividendAmount));

}

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

DoS: Unbounded operation

// INSECURE
for (uint i = 0; i < investors.length; i++) {

investors[i].addr.transfer(investors[i].dividendAmount));
}

● Operation requires more gas as array becomes larger

● After some point, it might be impossible (beyond gas limits) to execute it

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

DoS: Griefing

for (uint i = 0; i < investors.length; i++) {
investors[i].addr.transfer(investors[i].dividendAmount));

}

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

DoS: Griefing

// INSECURE
for (uint i = 0; i < investors.length; i++) {

investors[i].addr.transfer(investors[i].dividendAmount));
}

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

DoS: Griefing

// INSECURE
for (uint i = 0; i < investors.length; i++) {

investors[i].addr.transfer(investors[i].dividendAmount));
}

// ALSO INSECURE
for (uint i = 0; i < investors.length; i++) {

if (!(investors[i].addr.send(investors[i].dividendAmount))) {
 revert();

}
}

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

https://cs.pomona.edu/~michael/courses/csci190s21/papers/madmax.pdf

Error handling

● If a send/transfer call fails, the contract might get stuck

● It is possible to force a call to fail (e.g., by getting the victim contract to

send to another contract that fails)

● Errors need to be handled, instead of simply reverting

● transfer is preferable to send, as it returns an error object that can be

examined to act accordingly

Pull over push: example

function bid() payable {
 require(msg.value >= highestBid);

if (highestBidder != address(0)) {
 highestBidder.transfer(highestBid);

}

 highestBidder = msg.sender;
 highestBid = msg.value;
}

https://consensys.github.io/smart-contract-best-practices

https://consensys.github.io/smart-contract-best-practices

Pull over push: example
// BAD DESIGN (PUSH)

function bid() payable {
 require(msg.value >= highestBid);

if (highestBidder != address(0)) {
 highestBidder.transfer(highestBid);

}

 highestBidder = msg.sender;
 highestBid = msg.value;
}

// GOOD DESIGN (PULL)

function bid() payable external {
require(msg.value >= highestBid);

 if (highestBidder != address(0)) {
 refunds[highestBidder] += highestBid;

}

 highestBidder = msg.sender;
 highestBid = msg.value;
}

function withdrawRefund() external {
uint refund = refunds[msg.sender];

 refunds[msg.sender] = 0;
 msg.sender.transfer(refund);
}

https://consensys.github.io/smart-contract-best-practices

https://consensys.github.io/smart-contract-best-practices

Pull over push

● Do not transfer ETH to users (push); let them withdraw (pull) their funds.

● Isolates each external call into its own transaction.

● Avoids multiple send() calls in a single transaction.

● Reduces problems with gas limits.

● Possibly increases gas fairness (each user pays the gas for receiving their

own funds).

● Tradeoff between security and user experience.

Reentrancy

Reentrancy

Withdraw ETH

Contract A Contract B

Reentrancy

Withdraw ETH

Contract A Contract B

1. Call withdraw

Reentrancy

Withdraw ETHFallback function

2. Give eth

Contract A Contract B

Reentrancy

Withdraw ETHFallback function

3. Call withdraw again

Contract A Contract B

Reentrancy

Withdraw ETHFallback function

Give eth

Call withdraw again

Loop of function calls

Contract A Contract B

Reentrancy example

// INSECURE

mapping (address => uint) private userBalances;

function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

require(msg.sender.call.value(amountToWithdraw)());

userBalances[msg.sender] = 0;

}

Reentrancy example

// INSECURE

mapping (address => uint) private userBalances;

function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

require(msg.sender.call.value(amountToWithdraw)());

userBalances[msg.sender] = 0;

}

Reentrancy example

// INSECURE

mapping (address => uint) private userBalances;

function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

require(msg.sender.call.value(amountToWithdraw)());

userBalances[msg.sender] = 0;

}

function receive() payable {

 if (victimContract.balance >= msg.value) {

 victim.withdrawBalance();

}

 }

Begin attack by sending eth

Re-entrancy in the wild: The DAO

● The DAO (distributed autonomous organization*)
○ Designed by slock.it in 2016
○ Purpose: Create a population of stakeholders
○ Stake (in the form of DAO tokens) enables them to participate in decision making
○ Decision-making to choose which proposals to fund

*According to the SEC, neither “distributed” nor “autonomous”:
https://www.sec.gov/news/press-release/2017-131

https://www.sec.gov/news/press-release/2017-131

~150 million USD in ~ 1 month

The DAO Attack (2016)

● 12 June: The reentrancy bug is identified (but stakeholders are “reassured”)
● 17 June: Attacker exploits it draining ~$50Million at the time of the attack
● 15 July: Ethereum Classic manifesto
● 19 July: “Hard Fork” neutralizes attacker’s smart contract

Reentrancy: solutions

// SECURE

mapping (address => uint) private userBalances;

function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

userBalances[msg.sender] = 0;

msg.transfer(amountToWithdraw);

}

● Finish all internal work (state changes)
and then call external functions

● Checks-Effects-Interactions Pattern
● Mutexes
● Pull-push pattern
● Use transfer or send instead of call

Checks-Effects-Interactions Pattern

1. Perform checks e.g., on inputs, sender, value, arguments etc

2. Enforce effects and update the state accordingly

3. Interact with other accounts via external calls or send/transfer

Solidity/Ethereum hazards

Forcibly Sending Ether to a Contract

● Possible exploit

○ misuse of this.balance (when contract relies on it)

contract Vulnerable {
 function receive() external {
 revert();
 }

 function fallback() external {
 revert();
 }

 function somethingBad() {
 require(this.balance > 0);
 // Do something bad
 }
}

https://github.com/demining/Solidity-Forcibly-Send-Ether-Vulnerability

https://github.com/demining/Solidity-Forcibly-Send-Ether-Vulnerability

Forcibly Sending Ether to a Contract

● Possible exploit

○ misuse of this.balance (when contract relies on it)

● How can you send ether to a contract without firing contact’s fallback

function ?

Forcibly Sending Ether to a Contract

● Possible exploit

○ misuse of this.balance (when contract relies on it)

● How can you send ether to a contract without firing contact’s fallback

function ?

○ Contract’s address = hash(sender address, nonce): anyone can calculate a contract’s address

before it is created and send ether to it

○ selfdestruct(victimContractAddress) does not trigger fallback

○ Set contract’s address as recipient of block rewards

Forcibly Sending Ether to a Contract

● Possible exploit

○ misuse of this.balance (when contract relies on it)

● How can you send ether to a contract without firing contact’s fallback

function ?

○ Contract’s address = hash(sender address, nonce): anyone can calculate a contract’s address

before it is created and send ether to it

○ selfdestruct(victimContractAddress) does not trigger fallback

○ Set contract’s address as recipient of block rewards

● Lesson: Avoid strict equality checks with the contract’s balance

Delegate call

B C

Storage Storage

Delegate call

B C

c.delegatecall(...)

Storage Storage

Delegate call

B C

Storage Storage

c.delegatecall(...)

Writes on B’s storage

Context (balance, msg, ...) is the same as B.
Only the code from C is loaded.

 address public owner;

 constructor (address _owner) public {
 owner = _owner;
 }

 function pwn() public {
 owner = msg.sender;
 }
}

Delegate call

// INSECURE
address public owner;

Library library =

function() public {
require(library.delegatecall(msg.data));

}

Use of tx.origin

A B C

tx.origin = A
msg.sender = A

tx.origin = A
msg.sender = B

Personal account Contract Contract

Use of tx.origin

// INSECURE
contract Bank {

 address owner;

 constructor() public {
 owner = msg.sender;
 }

 function sendTo(address payable receiver, uint amount)
public {
 require(tx.origin == owner);

 receiver.call.value(amount)();
 }

}

Use of tx.origin

// INSECURE
contract Bank {

 address owner;

 constructor() public {
 owner = msg.sender;
 }

 function sendTo(address payable receiver, uint amount)
public {
 require(tx.origin == owner);

 receiver.call.value(amount)();
 }

}

function receive() external payable {

 victim.sendTo(attacker,msg.sender.balance);

}

Keep fallback function simple
// BAD

function receive() payable {
balances[msg.sender] += msg.value;

}

https://consensys.github.io/smart-contract-best-practices

// GOOD

function deposit() payable external {
balances[msg.sender] += msg.value;

}

function receive() payable {
require(msg.data.length == 0);
emit LogDepositReceived(msg.sender);

}

https://consensys.github.io/smart-contract-best-practices

Default values
And

Merkle Trees

Sparse Merkle Trees

● Perfect Binary Merkle Tree

● Unfilled leaves take default values

Sparse Merkle Trees

D1 D2 ∅ ∅ ∅ D6 ∅ D8

H1= H(D1)

H H H H H H H H

H2= H(D2) H
∅
= H(∅) H

∅
= H(∅) H

∅
= H(∅) H6= H(D6) H

∅
= H(∅) H8= H(D8)

H1,2 = H(H1 || H2) H
∅,∅ = H(H

∅
 || H

∅
)

H1,4 = H(H1,2 || H∅,∅) H5,8

Hroot= H(H1,4 || H5,8)

Sparse Merkle Trees: key-value stores

● Assume that keys are 256 bits (e.g., a SHA256 hash)

● Construct a Sparse Merkle Tree with 2256 leaves

● Insert a (key, value) element in the store

○ Insert the value in the leaf that corresponds to the key

○ Construct the root of the new Merkle Tree

● Proof of inclusion: as usual

● Proof of non-inclusion: prove empty value in leaf for corresponding key

● Constructing such tree for 2256 leaves from scratch is extremely consuming

○ Optimizations?

Solidity’s default values

● Solidity does not support None/null types

● Every variable is initialized to a (respective) zero value

○ uint256: 0

○ bytes32: bytes32(0)

○ …

● Verifying whether a string is not initialized:

○ bytes(myVariable).length != 0

○ sha3(myVariable) != sha3("")

● Nomad contract kept:

○ mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

■ Intended use: Timestamp after which an MTR can be used for message validation

The Nomad Bridge Hack

function acceptableRoot(bytes32 _root) public view returns (bool) {
 // ...
 uint256 _time = confirmAt[_root];
 if (_time == 0) {
 return false;
 }
 return block.timestamp >= _time;
}

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

● Nomad contract kept:

○ mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

■ Intended use: Timestamp after which an MTR can be used for message validation

○ mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages

■ Intended use: if a message is validated, the mapping keeps the message’s hash and the

MTR used to validate it

The Nomad Bridge Hack

function process(bytes memory _message) public returns (bool _success) {
 // ...
 require(acceptableRoot(messages[_messageHash]), "!proven");
 // ...
}

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

● Nomad contract kept:

○ mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

■ Intended use: Timestamp after which an MTR can be used for message validation

○ mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages

■ Intended use: if a message is validated, the mapping keeps the message’s hash and the

MTR used to validate it

● On 21 June 2022, a new version of the contract was created

○ During initialization, Nomad set: confirmAt[bytes32(0)] = 1

○ Attack!

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

● Nomad contract kept:

○ mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

○ mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages

● On 21 June 2022, a new version of the contract was created

○ During initialization, Nomad set: confirmAt[bytes32(0)] = 1

○ Attack!

■ Every non-validated message is initialized to the zero MTR in the messages mapping

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

● Nomad contract kept:

○ mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

○ mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages

● On 21 June 2022, a new version of the contract was created

○ During initialization, Nomad set: confirmAt[bytes32(0)] = 1

○ Attack!

■ Every non-validated message is initialized to the zero MTR in the messages mapping

■ By setting confirmAt[bytes32(0)] = 1, the zero MTR gets “confirmed” at timestamp 1

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

● Nomad contract kept:

○ mapping of MTRs to timestamps: mapping(bytes32 => uint256) confirmAt

○ mapping of message hashes to MTRs: mapping(bytes32 => bytes32) messages

● On 21 June 2022, a new version of the contract was created

○ During initialization, Nomad set: confirmAt[bytes32(0)] = 1

○ Attack!

■ Every non-validated message is initialized to the zero MTR in the messages mapping

■ By setting confirmAt[bytes32(0)] = 1, the zero MTR gets “confirmed” at timestamp 1

■ So, every previously non-validated message now becomes valid

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

https://medium.com/nomad-xyz-blog/nomad-bridge-hack-root-cause-analysis-875ad2e5aacd

The Nomad Bridge Hack

The Nomad Bridge Hack

https://github.com/nomad-xyz/docs/blob/1ff0c55dba2a842c811468c57793ff9a6542ef0f/docs/public/Nomad-Audit.pdf

https://github.com/nomad-xyz/docs/blob/1ff0c55dba2a842c811468c57793ff9a6542ef0f/docs/public/Nomad-Audit.pdf

The Nomad Bridge Hack - Lessons

● Always check user input thoroughly

○ Especially for empty values

● Every object has a value

○ Even if never accessed before, it has a zero value

● When an auditor flags a bug, fix it

Binance Bridge Hack

● Binance Bridge used a sophisticated implementation of AVL Merkle Trees

○ AVL trees: self-balancing binary search trees

○ In this implementation, verification contains special operations that need to succeed

○ Root hash is computed in a pretty complex manner (source code)

● Attacker

○ Changed a leaf’s value, inserting the malicious payload

○ Added an inner node in a way that verification for original MTR passed

https://twitter.com/samczsun/status/1578167198203289600

https://github.com/cosmos/iavl/blob/de0740903a67b624d887f9055d4c60175dcfa758/proof_range.go#L237-L290
https://twitter.com/samczsun/status/1578167198203289600

Binance Bridge Hack

Binance Bridge Hack

● Binance Bridge used a sophisticated implementation of AVL Merkle Trees

○ AVL trees: self-balancing binary search trees

○ In this implementation, verification contains special operations that need to succeed

○ Root hash is computed in a pretty complex manner (source code)

● Attacker

○ Changed a leaf’s value, inserting the malicious payload

○ Added an inner node in a way that verification for original MTR passed

● Lessons:

○ Keep it simple

○ Don’t roll your own crypto
https://twitter.com/samczsun/status/1578167198203289600

https://github.com/cosmos/iavl/blob/de0740903a67b624d887f9055d4c60175dcfa758/proof_range.go#L237-L290
https://twitter.com/samczsun/status/1578167198203289600

Front-running

Front-Running

Miner: sortByGasPrice(txs, ‘desc’)

tx tx tx tx

tx tx tx tx

tx tx tx tx

Front-Running: user
tx

tx

50 GWei

2 GWei

Front-Running: user

tx tx tx tx

tx tx tx tx

tx tx tx tx

Front-Running: miner
tx

tx

1 GWei

2 GWei

Front-Running: miner

tx tx tx tx

tx tx tx tx

tx tx tx tx

tx

tx

1 GWei

2 GWei

Front-Running: example
// INSECURE

function registerName(bytes32 name) public {

names[name] = msg.sender;

}

Front-Running: solution

● Employ a cryptographic commitment scheme

● Implementation

○ commit: c = hash(<value, nonce>) (Note: nonce space should be large!)

○ reveal: v = <value’, nonce’>

○ verify: c == hash(v)

● Properties

○ Binding: a commitment can be opened only to its committed value

○ Hiding: a commitment reveals no information about its committed value

Front-Running: solution example
// INSECURE

function registerName(bytes32 name) public {

names[name] = msg.sender;

}

// MORE SECURE, BUT…

function registerName(bytes32 name, bytes32 nonce) public {

require(commitments[makeCommitment(name, nonce)] == msg.sender, “Not found!”);

names[name] = msg.sender;

}

Front-Running: example

tx

2 GWei

contract.commit(“9505cacb”)
Network

Front-Running: example

Network

tx

2 GWei

contract.commit(“9505cacb”)

Front-Running: example

tx

2 GWei

contract.registerName(“super”, “12345”)
Network

Front-Running: example

tx

2 GWei

contract.registerName(“super”, “12345”)
Network

tx

50 GWei

contract.registerName(“super”, “12345”)

Front-Running: another solution

● Employ a cryptographic commitment scheme

● Keep track of committed values

○ Prevent a user from posting a commitment already posted by another user

● Possible DoS and forced gas cost

○ Attacker can front-run a user’s commit operation and post the commitment as their own

○ User is forced to spend extra gas for new tx that posts new commitment

○ Attacker can continue front-running until they run out of money (to pay gas)

Randomness

Randomness: sources (?)

● block.number

● block.timestamp

● block.hash

● block.difficulty

timestamp msg.sender hash ...uint(keccak256()) % n

● block.coinbase

● block.gasLimit

● now

● msg.sender

Randomness: sources (?)

They can be manipulated by a malicious miner.
They are shared within the same block to all users.

● block.number

● block.timestamp

● block.hash

● block.difficulty

● block.coinbase

● block.gasLimit

● now

● msg.sender

Randomness
// INSECURE
bool won = (block.number % 2) == 0;

// INSECURE
uint random = uint(keccak256(block.timestamp)) % 2;

// INSECURE
address seed1 = contestants[uint(block.coinbase) % totalTickets].addr;
address seed2 = contestants[uint(msg.sender) % totalTickets].addr;
uint seed3 = block.difficulty;
bytes32 randHash = keccak256(seed1, seed2, seed3);
uint winningNumber = uint(randHash) % totalTickets;
address winningAddress = contestants[winningNumber].addr;

Randomness: blockhash

// INSECURE

uint256 private _seed;

function random(uint64 upper) public returns (uint64 randomNumber) {
 _seed = uint64(keccack256(keccack256(block.blockhash(block.number), _seed), now));

return _seed % upper;
}

Not really private

Also not private

Randomness: blockhash

// INSECURE

uint256 constant private FACTOR =
1157920892373161954235709850086879078532699846656405640394575840079131296399;

function rand(uint max) constant private returns (uint256 result) {
 uint256 factor = FACTOR * 100 / max;
 uint256 lastBlockNumber = block.number - 1;
 uint256 hashVal = uint256(block.blockhash(lastBlockNumber));
 return uint256((uint256(hashVal) / factor)) % max;
}

Not really private

Randomness: intra-transaction information leak

if (replicatedVictimConditionOutcome() == favorable)
victim.tryMyLuck();

https://media.dedaub.com/bad-randomness-is-even-dicier-than-you-think-7fa2c6e0c2cd

https://media.dedaub.com/bad-randomness-is-even-dicier-than-you-think-7fa2c6e0c2cd

Sources of randomness

● Block information can be manipulated by miner

● Block information shared by all users in the same block

● In Ethereum, all data posted on the chain are visible

● “private” vars are only private w.r.t. object-oriented programming visibility

● If same-block txs share randomness source, attacker can check whether

conditions are favorable before acting

What about future blocks ?

Casino Player

Casino Player

1. Player makes a bet and the casino stores
the block.number of the transaction

Casino Player

2. A few blocks later, player requests
from the casino to announce the

winning number

Casino Player

3. Casino uses, as a source of randomness,
the hash of a block produced after the bet

is placed

Casino Player

Validate block.number age!

3. Casino uses, as a source of randomness,
the hash of a block produced after the bet

is placed

Is the hash of a future block a good source of
randomness (against a malicious miner)?

● A contract can access the hashes of only the last 256 blocks; blockhash

older than that defaults to 0

● Always validate block’s age

● With some probability (how high?), a malicious miner will create the

specific future block

● In PoS, the proposer of a future block might be known beforehand

● A miner can keep newly-mined blocks hidden, until they mine a favorable

one

Randomness: towards safer PRNG

● Commitment schemes

○ Prover commits to a message m by publishing h = H(m) (H is a hash function)

○ After some time, prover reveals message m

○ Verifier wants to be sure that the originally committed message is the revealed one

■ Verifier checks that: h == H(m)

○ Binding property:

■ Collision resistance: it should be infeasible to find m’ s.t. H(m) == H(m’)

○ Hiding property:

■ Honest prover wants no information about m to be retrievable from H(m)

■ H needs to behave as a random oracle

■ m should be unpredictable; if domain is small, use salt

Randomness: towards safer PRNG

● Commitment schemes

● Example:

○ Casino and player each commit to a random value

○ Casino and player reveal their values

○ Casino XORs the random values to produce a seed

■ the seed can also be combined with the hash of a future block

○ If either casino or player honest, then the seed is random (why?)

On-chain data is public

● Applications (games, auctions, etc) required data to be private up until

some point in time

● Every data that is published on-chain is visible by everyone

● Best strategy: commitment schemes

● Watch out for front-running!

Overflow/Underflow

2 256 - 1

2 255

2 254

0

Integer Overflow and Underflow

// INSECURE

function withdraw(uint256 _value) {

require(balanceOf[msg.sender] >= _value);

msg.sender.call.value(_value)();

balanceOf[msg.sender] -= _value;

}

Integer Overflow and Underflow

// INSECURE

function withdraw(uint256 _value) {

require(balanceOf[msg.sender] >= _value);

msg.sender.call.value(_value)();

balanceOf[msg.sender] -= _value;

}

function attack() {

 performAttack = true;

victim.donate(1);

 victim.withdraw(1);

}

Integer Overflow and Underflow

// INSECURE

function withdraw(uint256 _value) {

require(balanceOf[msg.sender] >= _value);

msg.sender.call.value(_value)();

balanceOf[msg.sender] -= _value;

}

function donate(uint256 _value) public payable {

 require(msg.value == value);

balanceOf[msg.sender] += _value;

}

function() {

 if (performAttack) {

 performAttack = false;

 victim.withdraw(1);

 }

 }

Integer Overflow and Underflow: solutions

// OpenZeppelin: SafeMath.sol

function add(uint256 a, uint256 b) internal pure returns
(uint256) {
 uint256 c = a + b;
 require(c >= a, "SafeMath: addition overflow");

 return c;
}

function sub(uint256 a, uint256 b) internal pure returns
(uint256) {
 require(b <= a, "SafeMath: subtraction overflow");
 uint256 c = a - b;

 return c;
}

Solidity 0.8+ protects natively against over/underflows.

For older versions, use OpenZeppelin’s SafeMath library.

(Gas) Fairness

Gas Fairness

Crowdfunding Contract #1

R sets a threshold

Contract collects
contributions

When balance exceeds
threshold, it sends funds to R

and returns any surplus to
contributors.

Funding paid by last
contributor

Gas Fairness

vs.

Crowdfunding Contract #1

R sets a threshold

Contract collects
contributions

When balance exceeds
threshold, it sends funds to R

and returns any surplus to
contributors.

Crowdfunding Contract #2

R sets a threshold

Contract collects contributions

When balance exceeds
threshold, it allows R to

withdraw the threshold and
return any surplus to

contributors

Funding paid by last
contributor

R pays for funding

Gas Fairness

vs.

Crowdfunding Contract #1

R sets a threshold

Contract collects
contributions

When balance exceeds
threshold, it sends funds to R

and returns any surplus to
contributors.

Crowdfunding Contract #2

R sets a threshold

Contract collects contributions

When balance exceeds
threshold, it allows R to

withdraw the threshold and
return any surplus to

contributors

Funding paid by last
contributor

R pays for funding

Crowdfunding Contract #3

R sets a threshold

Contract collects contributions

When balance exceeds threshold,
it allows R and contributors to

withdraw the threshold and
surplus respectively

vs.

R and contributors pay for
funding

A (horribly insecure) ✊✋✌ contract

