Blockchains & Distributed Ledgers

Lecture 05

Petros Wallden

Slide credits: PW, Dimitris Karakostas, Aggelos Kiayias, Dionysis Zindros, Christos Nasikas

The Byzantine Generals Problem

The Consensus Problem

Motivation for the Consensus Layer, I

- A transaction history and/or state of the service needs to be **agreed** by all servers.
- Servers may be operated by participants with **diverging interests**, in terms of

the history of transactions and/or state of the service.

Motivation for the Consensus Layer, II

Consensus : Problem Statement

- A number (t) of the participating entities can diverge from the protocol.
- This has been called **Byzantine behaviour** in the literature.
- The properties of the protocol are defined in the presence of this "malicious" coalition of parties that attempts to disrupt the process for the "honest" parties.

$$|\mathsf{H}| = n - t$$

The consensus problem

• Termination $\forall i \in \mathsf{H}(u_i \text{ is defined})$

• Termination $\forall i \in \mathsf{H}(u_i \text{ is defined})$

• Agreement
$$\forall i,j \in \mathsf{H} \left(u_i = u_j \right)$$

• Termination $\forall i \in \mathsf{H}(u_i \text{ is defined})$

• Agreement
$$orall i, j \in \mathsf{H}\left(u_i = u_j
ight)$$

• Validity $\exists v (\forall i \in \mathsf{H} (v_i = v)) \implies (\forall i \in \mathsf{H} (u_i = v))$

• Termination $\forall i \in \mathsf{H}(u_i \text{ is defined})$

• Agreement
$$orall i, j \in \mathsf{H}\left(u_i = u_j
ight)$$

• Validity
$$\exists v (\forall i \in \mathsf{H} (v_i = v)) \implies (\forall i \in \mathsf{H} (u_i = v))$$

• Strong Validity
$$\forall i \in \mathsf{H} \, \exists j \in \mathsf{H} \, (u_i = v_j)$$

Honest Majority is Necessary, I

Consider an adversary that performs one of the following with probability 1/3

Honest Majority is Necessary, II

- If consensus protocol secure:
 - Adversary corrupts A_0 : output of honest parties (that belong to A_1) should be 1.
 - Adversary corrupts A_1 : output of honest parties (that belong to A_0) should be 0.
 - Adversary corrupts no-one: output of all parties should be the same.
- Adversary corrupts each set with prob. ¹/₃ and instructs corrupted parties to follow the protocol
 - honest parties cannot distinguish between honest/corrupted parties
- If all parties output same value: validity is violated with prob. at least ¹/₃
- If all parties output different value: consistency is violated with prob. at least 1/3

Is Honest Majority Sufficient?

- Two important scenarios have been considered in the consensus literature.
 - Point to point channels. **No setup.**
 - Point to point channels. With setup.

• The setup provides a correlated private initialization string to each participant; *it is assumed* to be honestly produced.

Setup and Network

Setup/Network	Synchrony	Partial Synchrony
No Setup	t < n/3	t < n/3
With Setup	t < n/2	t < n/3

We know consensus can be achieved, assuming the above bounds on adversarial parties.

The typical setup and network configuration in classical consensus protocols

- Setup: a public-key directory
 - Parties have signing and verification keys for a digital signature scheme.
 - Each party knows every other party's verification key.
- Network: point-to-point channels
 - Synchronous, partially synchronous, or asynchronous

Bitcoin Consensus

Enter Bitcoin (2008-09)

- Important concepts used by Bitcoin
 - blockchain data structure
 - proof of work (POW)
- Both known and studied earlier, but combined for a novel application

The setup and network configuration in Bitcoin

- Setup: a random (unpredictable) string
 - The blockchain protocol runs without relying on public-key crypto
- Network: peer-to-peer diffusion
 - Synchronous for at least a small subset of the participants (that may be evolving over time).

The Bitcoin Setting for Consensus

- Also referred to as the "permissionless" setting.
- The bitcoin setting is different, compared to what has been considered classically for the consensus problem.
- Communication is by **diffusion** (no point-to-point channels).
 - Message delivery is assumed, but message origins and recipient list are not specified.
- The protocol setup is not a private correlated setup
 - Digital signatures are not used to authenticate miners
 - A public setup is assumed: a genesis block

The Bitcoin "backbone"

- The core of the bitcoin protocol
 - The chain validation predicate.
 - The chain selection rule (max-valid)
 - The proof of work function.
 - The main protocol loop
- Protocol is executed by "miners"

[GKL2015] Garay, Kiayias, Leonardos. The Bitcoin Backbone Protocol: Analysis and Applications.

Model

- Assume there are *n* parties running the protocol
- Synchronous
- Each party has a quota of *q* queries to the function H(.) in each round
- A number of *t* parties are controlled by an adversary (a malicious coalition)
 - Security arguments are for any adversary

Algorithm 3 The proof of work function, parameterized by q, T and hash functions $H(\cdot), G(\cdot)$. The input is (x, C).

1: function pow(x, C)if $\mathcal{C} = \varepsilon$ then 2: $s \leftarrow 0$ 3: else 4: $\langle s', x', ctr' \rangle \leftarrow head(\mathcal{C})$ 5: $s \leftarrow H(ctr', G(s', x'))$ 6: end if 7: $ctr \leftarrow 1$ 8: $B \leftarrow \varepsilon$ 9: $h \leftarrow G(s, x)$ 10:while $(ctr \leq q)$ do 11: if (H(ctr, h) < T) then 12: $B \leftarrow \langle s, x, ctr \rangle$ 13:break 14:end if 15: $ctr \leftarrow ctr + 1$ 16:17:end while $\mathcal{C} \leftarrow \mathcal{C}B$ 18: return \mathcal{C} 19:20: end function

 \triangleright Determine proof of work instance

 \triangleright This $H(\cdot)$ invocation subject to the q-bound

 \triangleright Extend chain

Blockchain

Algorithm 1 The chain validation predicate, parameterized by q, T, the hash functions $G(\cdot), H(\cdot)$, and the content validation predicate $V(\cdot)$. The input is C.

1:	function validate(C)	
2:	$b \leftarrow V(\mathbf{x}_{\mathcal{C}})$	
3:	$\mathbf{if} \ b \wedge (\mathcal{C} \neq \varepsilon) \ \mathbf{then}$	\triangleright The chain is non-empty and meaningful w.r.t. $V(\cdot)$
4:	$\langle s, x, ctr \rangle \leftarrow \text{head}(\mathcal{C})$	
5:	$s' \leftarrow H(ctr, G(s, x))$	
6:	repeat	
7:	$\langle s, x, ctr \rangle \leftarrow \text{head}(\mathcal{C})$	
8:	\mathbf{if} validblock $_q^T(\langle s,x,ctr angle$	(H(ctr, G(s, x)) = s') then
9:	$s' \leftarrow s$	\triangleright Retain hash value
10:	$\mathcal{C} \leftarrow \mathcal{C}^{\lceil 1}$	\triangleright Remove the head from \mathcal{C}
11:	else	
12:	$b \leftarrow \text{False}$	
13:	end if	
14:	until $(\mathcal{C} = \varepsilon) \lor (b = \text{False})$	
15:	end if	
16:	\mathbf{return} (b)	
17:	end function	

validblock predicate:

PoW target

Algorithm 2 The function that finds the "best" chain, parameterized by function $\max(\cdot)$. The input is $\{C_1, \ldots, C_k\}$.

- 1: function maxvalid(C_1, \ldots, C_k)
- 2: $temp \leftarrow \varepsilon$
- 3: for i = 1 to k do
- 4: **if** validate(C_i) **then**
- 5: $temp \leftarrow \max(\mathcal{C}_i, temp)$
- 6: **end if**
- 7: end for
- 8: return temp
- 9: end function

Algorithm 4 The Bitcoin backbone protocol, parameterized by the *input contribution function* $I(\cdot)$ and the *chain reading function* $R(\cdot)$. At the onset it is assumed "init= True".

1: if (init) then $\mathcal{C} \leftarrow \varepsilon$ 2: 3: $st \leftarrow \varepsilon$ $round \leftarrow 1$ 4: $init \leftarrow False$ 5: 6: **else** $\tilde{\mathcal{C}} \leftarrow \mathsf{maxvalid}(\mathcal{C}, \mathsf{any chain } \mathcal{C}' \text{ found in Receive()})$ 7: if INPUT() contains READ then 8: write $R(\tilde{\mathcal{C}})$ to OUTPUT() \triangleright Produce necessary output before the POW stage. 9: end if 10: $\langle st, x \rangle \leftarrow I(st, \mathcal{C}, round, \text{INPUT}(), \text{RECEIVE}())$ 11: \triangleright Determine the *x*-value. $\mathcal{C}_{\mathsf{new}} \leftarrow \mathsf{pow}(x, \hat{\mathcal{C}})$ 12:if $\mathcal{C} \neq \mathcal{C}_{new}$ then 13: $\mathcal{C} \leftarrow \mathcal{C}_{\mathsf{new}}$ 14: $\text{DIFFUSE}(\mathcal{C})$ \triangleright Broadcast the chain in case of adoption/extension. 15:else 16: $\text{DIFFUSE}(\perp)$ 17: \triangleright Signals the end of the round to the diffuse functionality. end if 18: $round \leftarrow round + 1$ 19: 20: end if

Basic Properties

- Common Prefix
- Chain Quality
- Chain Growth

Common Prefix, I

Common Prefix, II

(strong common prefix / consistency)

$$\forall r_1, r_2, (r_1 \leq r_2), P_1, P_2, \text{ with } \mathcal{C}_1, \mathcal{C}_2: \ \mathcal{C}_1^{\lceil k} \preceq \mathcal{C}_2$$

• The property holds true, in a probabilistic sense, with an error that decays exponentially in *k*

Racing Attacks

• Attacker splits from the main chain and tries to overtake the "honest chain"

=> Common prefix breaks

• Intuition why the attack is a small probability event:

concentration bounds help honest parties

Chain Growth, I

Chain Growth, II

Parameters $\tau \in (0, 1), s \in \mathbb{N}$ In any period of *s* rounds at least τs blocks are added to the chain of an honest party P.

 The property holds true in a probabilistic sense with an error probability that exponentially decays in s

> $\tau \approx ext{ probability at least one honest}$ party finds a POW in a round

Abstention Attacks

• Attacker stops producing blocks

=> Chain growth stops

• Intuition why the attack is a small probability event:

honest parties will eventually issue blocks

Chain Quality, I

Chain Quality, II

Parameters $\mu \in \{0, 1\}, \ell \in \mathbb{N}$ The ratio of blocks of an ℓ -long segment of an honest chain produced by the adversary is bounded by $(1 - \mu)\ell$

• The property holds true probabilistically with an error that exponentially decays in *ℓ*

$$\mu \approx \frac{n-2t}{n-t}$$

Block Withholding Attacks

- Attacker mines privately and releases their block at the same time an honest party releases its own block
- Assuming honest propagation favours the adversary, the honest block is dropped, reducing chain quality

Intuition why the attack is a small probability event:

over time the adversary cannot produce blocks at the same rate as honest parties (to compete with them)

Robust Transaction Ledger (RTL) - Ledger Consensus

- It can be shown that the three properties can provide a ledger with two core characteristics
- **Persistence**: Transactions are organized in a *"log"* and honest nodes agree on it.
- Liveness: New transactions are included in the log, after a suitable (upperbounded) period of time.

Establishing a RTL from a Blockchain

- Persistence ← (strong) Common Prefix
 - need to exclude *k* most recent blocks
- Liveness ← Chain Growth and Chain Quality
 - leave sufficient time for chain to grow
 - apply chain quality to ensure that at least one honest block is included

Ledger Consensus vs. Consensus

- What is the connection?
 - ledger is an ever-going protocol with inputs (e.g., transactions) continuously coming from also external sources
 - consensus is a one-shot execution
- Is it possible to reduce consensus to the ledger? Is it possible to reduce the ledger to consensus?
 - (See the <u>GKL paper</u> for more details)

Hash operations

- Consider a regular PC (30 MHash / sec)
- With expectation of 2⁷⁴ hashing operations, mining a block will require ~ 20 million years.

Parallelising mining

- Bitcoin's Proof of Work can be parallelized
- Parties tend to form mining pools
 - Instead of working separately, work **together** to solve PoW for the same block.
 - By collecting "**shares**" (small hashes of the block that are not quite as small as needed) one can prove how much they contributed.

Bitcoin mining pools

https://www.blockchain.com/pools

Recall: PoW algorithm

int counter; counter = 0 while Hash(data, counter) > Target increment counter return counter

Dynamic Availability

- So far: *n* nodes maintain the blockchain
- This number may change over time:
 - new users enter the system
 - existing users leave
- The change over time can be dramatic
- The Bitcoin blockchain handles this, by adjusting the target (difficulty) of the Proof of Work algorithm

Target difficulty / Total hash rate over time

Adjusting the difficulty

"maxvalid" rule is changed s.t. parties adopt **chain with highest difficulty** linearly related to:

The *f* parameter [GKL15]

f = probability of producing a block in a round of interaction

- f depends on:
 - target T
 - number of miners
 - duration of round
- If f becomes too small, parties do not progress
 - Chain growth slows
 - Liveness is hurt
- If f becomes too large, parties "collide" often
 - Attacker can exploit network scheduling of message delivery to create forks
 - Persistence is hurt
- To resolve this dynamically, Bitcoin **recalculates** T to keep f constant

Target recalculation

next target =
$$\begin{cases} \frac{1}{\tau} \cdot T & \text{if } \frac{n_0}{n} \cdot T_0 < \frac{1}{\tau} \cdot T; \\ \tau \cdot T & \text{if } \frac{n_0}{n} \cdot T_0 > \tau \cdot T; \\ \frac{n_0}{n} \cdot T_0 & \text{otherwise} \end{cases}$$

- Recalculation occurs at the end of every "epoch"
 - m: epoch length in blocks (in Bitcoin: 2016)
- n_0 : estimation of number of ready parties at the system's onset (party=CPU)
- T_0 : initial target
- *T*: recalculation threshold parameter (in Bitcoin: 4)
- *T*: target in effect
- $n = m/(pT\Delta)$: the "effective" number of parties in the epoch
 - Δ : last epoch's duration based on block timestamps
 - *pT*: probability of a single party being successful in PoW in a round

Clay pigeon shooting game

Clay pigeon shooting game

- Suppose you shoot on targets successively against an opponent
 - your success probability: 0.3
 - your opponent's success probability: 0.4
 - you shoot in sequence 1000 targets
 - winner is the one that got the most hits
- What is your probability of winning?

Chernoff Bounds

Let:
$$\delta > 0$$
, $\mathbf{Prob}[X_i = 1] = p_i, \mu = \sum_{i=1}^n p_i$

$$\mathbf{Prob}[\sum_{i=1}^{n} X_i \ge (1+\delta)\mu] \le \exp(-\delta^2 \mu/(2+\delta))$$

Then:

$$\operatorname{Prob}[\sum_{i=1}^{n} X_i \le (1-\delta)\mu] \le \exp(-\delta^2 \mu/2), \delta \in (0,1)$$

Analysis, I

- You have an expectation of 300 hits
- Your opponent has an expectation of 400 hits
- What is *your* probability of winning?
 - Denote by X whether you hit a target, similarly Y for your opponent
 - From Chernoff bounds:

$$\Pr[\sum_{i=1}^{1} X_i \ge 345] \le \exp(-(0.15)^2 300/2.15) < 4.3\%$$
$$\Pr[\sum_{i=1}^{1000} Y_i \le 348] \le \exp(-(0.13)^2 400/2) < 3.5\%$$

Analysis, II

- You have an expectation of 300 hits
- Your opponent has an expectation of 400 hits
- What is your probability of winning?
 - Denote by X whether you hit a target, similarly Y for your opponent
 - From Chernoff bounds:

$$\Pr[\sum_{i=1}^{1000} X_i \ge 345] \le \exp(-(0.15)^2 300/2.15) < 4.3\%$$
$$\Pr[\sum_{i=1}^{1000} Y_i \le 348] \le \exp(-(0.13)^2 400/2) < 3.5\%$$

- If the negation of both events happens, you will certainly lose:
 - Thus, probability of you winning is less than 8%

 $\mathbf{Pr}[X_{<345} \land Y_{>348}] = (1 - \mathbf{Pr}[X_{\geq 345}])(1 - \mathbf{Pr}[Y_{\geq 348}]) \ge 92.3\%$

Analysis, III

- Now you are given a choice:
 - decrease the size of the clay pigeon target by a ratio β
 - augment your "kills" by multiplying with $1/\beta$
 - your accuracy is linear with β
 - your opponent will keep playing in the same way as before
- Do you accept to play like this?

Analysis, IV

- Now you are given a choice:
 - decrease the size of the clay pigeon target by a ratio β
 - augment your "kills" by multiplying with $1/\beta$
 - your accuracy is linear with β
 - your opponent will keep playing in the same way as before
- Do you accept to play like this?
- Each shot has success probability: $\mathbf{Pr}[X'_i = 1] = \beta \cdot \mathbf{Pr}[X_i = 1]$
- The score expectation of each shot remains: $E[(1/\beta)X'_i] = (1/\beta)\beta E[X_i] = E[X_i]$
- But decreasing β results in increased variance \rightarrow previous argument fails

$$\mathbf{Pr}[\sum_{i=1}^{1000} X'_i \ge 345\beta] \le \exp(-(0.15)^2 300\beta/2.15) \qquad \begin{array}{c} \frac{\beta \quad \text{bound}}{1, \ \sim 4.3\%} \\ 0.5, \ \sim 20.8\% \\ 0.25, \ \sim 45.6\% \\ 0.10, \ \sim 73.1\% \end{array}$$

The Difficulty Raising Attack

- The recalculation threshold (T) is essential
- Without it, an adversary that has a minority of hashing power:
 - Creates a private, artificially difficult chain
 - Similar to clay pigeon shooting game, this increases the variance in its block production rate
 - Overcoming the chain of the honest parties becomes a non-negligible event

[B13] Lear Bahack. Theoretical Bitcoin Attacks with less than Half of the Computational Power (draft)