Blockchains
& Distributed Ledgers

Lecture 09

Michele Ciampi

Slide credits: MC, Dimitris Karakostas, Aggelos Kiayias

Security critical computations

e How to obtain the output of a security critical computation

e Deterministic with public inputs?
o Repeat multiple times and consensus can be reached about its output
o Example: blockchain systems with smart contracts

e What ifitis probabilistic with public inputs?
o Coin flipping protocol

e What if it uses private data?
o Secure Multiparty Computation (MPC)

Secure Multiparty Computation and Applications

e Sharing responsibility for signatures and cryptographic keys
o Secret sharing

e Security critical computations

o Coin flipping and verifiable secret-sharing
o Secure multiparty computation (MPC)

e Fair swaps and fair MPC

Secret sharing

Overarching question

e How to protect security critical operations?

e Key idea: share responsibility and somehow tolerate faulty participants
o Cryptographic keys?
o Cryptocurrency addresses?
o Computations?
o What about computations on private data?

Multi-sig transactions

e Multi-sig: a tx that can be redeemed if n parties sign it
e A payment to a script (P2SH) can facilitate a multi-signature transaction

scriptPubKey: OP HASH160 <redeemscriptHash> OP EQUAL

scriptSig: OP_0 <sig Ai> .. <sig An> <redeemscript>

redeemscript = OP_m <Al pubkey> <A2 pubkey>.. <An pubkey>
<OP n> <OP CHECKMULTISIG>

Secret-Sharing

Main question:

e How to share a secret s to n shareholders so that:

o Any subset including t of them can recover the secret
o Any subset including less than t of them knows nothing about the secret

e Relative questions:
o Can we solve this for any n and t <= n?
o What is the relation between the size of s and the size of each share?

Finite fields

e Finite sets equipped with two operations, behaving similarly to addition and
multiplication over the real numbers (which is an infinite field)

e Finite fields exist with number of elements equal to p¥, for:

o any prime number p
o any positive integer k

0 1
0 1
1

—_—

l

+
0
1

a Ol *
O OO
o

Example. A binary finite field {0, 1} with:

—_—

(a+b) mod 2 (a*b) mod 2

Secret-Sharing over a finite field

e Consider a secret x and N random values, subject to the constraint:

N
Zazi =x (over a finite field)
=1

e This is called (additive) secret-sharing
e Knowledge of any N-1 values cannot be used to infer any information about x

Analysis

e Example: binary field
e If you hold only N-7 values [x., ..., xN]:

o Two unknowns: X, 8

o One equation: x, + X, + ... + X, =8
e S cannot be undetermined

o s§=0+x,+..+x,(ifx, =0)

o s=T1+x,+..+x,(ifx =1)

Generalisation t-out-of-n

e Consider a polynomial of degree d: p(x) =a,+ax + ... + adxd
e Any d+1 points of the polynomial completely determine it

e With d or less points, at least one degree of freedom remains
o p cannot be fully determined

e We can use that idea to solve secret-sharing for any t, n

\\;\ /

| S—+4

Generalisation t-out-of-n

| f(n)+g(n) |
A . f(3}+e(3) |
L f1)+()
3 3 g(n)
wl T

m

|
degree t

degreet

Example

5 parties

Polynomials of degree 2

Any three parties (who hold 3 points) can interpolate such polynomials
Any two parties have no information about the shared secret

Secret-sharing cryptographic keys

e Using polynomial secret-sharing, a cryptographic key can be split to multiple

shareholders

o Each shareholder gets a point on the plane
o The secret/key is the solution to the polynomial problem

e Additional points to consider:
o How should the value of t be determined:
m in comparison to d?
m in comparison to n?
o To engage in the cryptographic operation, is it necessary to reconstruct the original key?
o How to accomodate an evolving set of shareholders?

Distributed Randomness
Generation

Application: coin-flipping

e Alice and Bob want to flip a coin remotely
o output a bit uniformly at random

e Alice doesn’t trust Bob and vice versa
o neither Alice nor Bob should be able to bias the bit choice

Application: coin-flipping

e Alice and Bob want to flip a coin remotely
o output a bit uniformly at random

e Alice doesn’t trust Bob and vice versa
o neither Alice nor Bob should be able to bias the bit choice

e Solution:
o Alice commits to a random coin
o Bob commits to a random coin
o Alice and Bob open the commitments
o Output = XOR of (committed) values

e Consider:

o Can the situation be improved in an N party coin flip?
o What about when >N/2 parties are honest?
o How do you deal with (selective) aborts?

A first step towards multi-party coin flipping

e Each player commits to their coin (publicly)

e Each player publishes a secret-sharing of the opening to their commitment

o Any subset of at least (N/2 + 1) players can reconstruct the opening
o Shares should be encrypted with the respective public-keys of the parties

e If some parties abort the protocol: assuming that a subset of >N/2 parties
continue, they can recover the share and terminate
e Any number of parties up to N/2 cannot gain any advantage over the honest

parties

What if some parties announce incorrect shares?

e A secret cannot be retrieved from incorrect shares
e Selective aborts possible, as remaining parties cannot reconstruct the secret
e Possible solution: require that all commitments open at the end irrespectively

of aborts

o deviating players will be caught, but still have the option to selectively abort if they wish
o other parties will only know of the abort when it is too late

e One possible approach: issue monetary penalties to those that abort

Publicly Verifiable Secret-sharing (PVSS)

e The dealer creates shares that are distributed in encrypted form
e The shares can be publicly verified as correct
e \Verifiability should not leak information about the secret

e PVSS enables parties to detect improper share distribution at the onset
e Protocol can still be aborted, but any abort would be independent of the
(random) coin!

PVSS Design Challenges

e Assuming:

N

E €I,

i=1

T Y; = Ei(x;)

) = Com/(x)

e Verify that the value encrypted in y. satisfies the equation w.r.t. the values
encrypted in g
e This problem can be solved using a zero-knowledge proof

Secure MPC

Secure Multiparty Computation

(Secure) Multiparty Computation (MPC)
Parameterized by function f

A set of n parties Pi contribute inputs Xy Xps weny X,

At the end of the protocol they compute f(x, x,, ..., X)
o Everyone receives output f(x1, Xy ey X n)
o No party except P, obtains information about x,

MPC Construction Idea

e Consider three roles
o Input providers
o Processors
o Output-receivers

e Input providers secret-share their input to the processors
o Additive secret-sharing

MPC Construction Idea

e Any function f can be expressed as a Boolean circuit
o Fixed-size input
o Upper-bound on number of steps (circuit depth)
o Example: any boolean function can be implemented as a combination of NAND gates

e XOR, AND, NOT gates

e Arithmetic representation of gates
o AND: Input: a, b; Output: (a*b) mod 2
o XOR: Input: a,b; Output: (a+b) mod 2
o NOT: Input: a; Output: (1+a) mod 2
e Each processor executes the circuit with their shares as input
o How to implement the gates s.t. operations on shares, when combined, produce the correct
aggregate output?

MPC Construction Idea, Example

(s,+s,) mod 2 (s;*s,) mod 2

NOT Sout

MPC Construction Idea, Example

1 0 1

MPC Construction Idea, Example

S S
11 21 53,1 4,1

NOT Sout

MPC Construction Idea

NOT GATE
* Suppose m parties hold shares of two inputs to a
NOT gate.
la] = (a1,...,am)

* How do they calculate shares of the output of the
NOT gate?

(@l = (1 + a; mod 2,as,...,a,)

MPC Construction Idea

XOR GATE

* Suppose m parties hold shares of two inputs to an
XOR gate.

[a], [b] = (@1, ..., am), (b1y- - bm)

* How do they calculate shares of the output of the
XOR gate?
la] + [b] mod 2

MPC Construction Idea

* Suppose m parties hold shares of two inputs to an
AND gate. AND GATE
lal], [b] = (a1,...,am), (b1, .-, bm)

* How do they calculate shares of the output of the
AND gate?

la] - [b] = (a1b; mod 2,. .., a,,b,, mod 2)

but wewant: S1+...+8m = (Z ai)(z bi)
i=1 =1

MPC Construction Idea

* A Beaver triple is an initial secret-sharing of random

values Ty =z

) =(x1, .. xm), Y] = Wiy Um)s (2] = (21,0 2m)

AND GATE :
publish 4. — 4, — 2, reconstruct d,e
e; =b; —vy;
define s; =de +dy;+ex; + z share calculation

Zsz':deerZyrFerﬁrxy (assuming m is odd)

=detdy+ex+zy=(a—x)(b—y)+(a—2)y+(b—y)r+xy
= ab

Constructing Beaver Triples

e The above construction idea requires the setup of all servers with a sufficient
number of Beaver triples (how many?)

e Constructing Beaver triples can be done via special-purpose cryptographic
protocols

MPC strengths and weaknesses

e Possible to compute any function f privately on parties’ inputs

e Unless honest majority is present, there is no way to provide:

o fairness: either all parties learn the output or none
o guaranteed output delivery

Fairness

Workarounds for fairness

e Optimistic fairness (by involving a third party):
o The protocol is basically not fair
o Athird party is guaranteed to be able to engage and amend the execution in case of deviation

e Gradual/timed release:
o Protocols engage in many rounds
o Parties gradually come closer to computing the output
o ‘“gradual closeness” can be measured in terms of:
= probability of guessing the output
= number of computational steps remaining to compute the output
o Example:
s Ateachround /= 1,...,n the two parties can compute the output in 2" steps
n [f a party aborts the interaction, the other party will be 2 times more steps “behind” in the
calculation of the output

Using a blockchain

e Along the lines of optimistic fairness, but substituting the trusted third party
with the blockchain

e How is that possible?

o Blockchain cannot keep secrets
o Rationale: penalize parties that deviate from the protocol

Basic tool: time-lock transactions

e Time-lock transactions
o part of transaction data
o specifies the earliest time that a transaction can be included in a block

e Key observation: if a conflicting transaction has already being included in the
ledger, the time-lock transaction will be rejected

Time-lock example

blockchain

time-lock

Time-lock example

° @ ...time passes... @—Q

OR

H E v, ! M
.,
e,
.,....
..
>
>

Fair swap of values using time-locks, Setup

e P, holds w,, h,=H(w,)
e P,holds w,, h.=H(w,)
e They want to exchange w,, w,

Fa

Ir

swap of values using time-locks, Setup

Value: 5 $ X,
Pay Bob if P2SH
1) two values wl, w2, s.t.

H(wl) = hl and H(w2) = h2

2) Or Pl and P2 sign, as

2-out-o0f-2 multisignature

@,
P2PKH

Give the money of TX, to

Alice after time =5

Refund transactions

™,

Value: 5 $ X,
Pay Alice if P2SH
1) The value wl s.t. H(wl) =

hl is provided
2) Or Pl and P2 sign, as

2-out-o0f-2 multisignature

Give the money of TX_ to Bob TXy’

After time t, P2PKH

w,, h,=H(w,)

Sp TXY

Fair swap of values using time-locks, Setup

Value: 5 $ X, Value: 5 $ X,
Pay Bob if P2SH Pay Alice if P2SH
1) two values wl, w2, s.t. 1) The value wl s.t. H(wl) =
H(wl) = hl and H(w2) = h2 hl is provided
2) Or Pl and P2 sign, as 2) Or Pl and P2 sign, as
2-out-of-2 multisignature 2-out-of-2 multisignature
Give the money of TX, to @, . Give the money of TX_ to Bob TXy’
Alice after time t, P2PKH Refund transactions After time t, P2PKH
™,
w,, h,=H(w,) S, X,
S,
X, X,
w1
Blockchain w.ow

Fair swap of values using time-locks, Setup

Value: 5 $ X, Value: 5 $ X,
Pay Bob if P2SH Pay Alice if P2SH
1) two values wl, w2, s.t. 1) The value wl s.t. H(wl) =
H(wl) = hl and H(w2) = h2 hl is provided
2) Or Pl and P2 sign, as 2) Or Pl and P2 sign, as
2-out-o0f-2 multisignature 2-out-o0f-2 multisignature
Give the money of TX, to @, . Give the money of TX_ to Bob TXy’
Alice after time t, P2PKH Refund transactions After time t, P2PKH
™,
w,, h,=H(w,) S, X,
S,
X, X,
w1
Blockchain

Credit Alice 5%
) >

Credit Alice 55 (more

after time t \

Fair swap of values using time-locks, Setup

Value: 5 $ X, Value: 5 $ X,
Pay Bob if P2SH Pay Alice if P2SH
1) two values wl, w2, s.t. 1) The value wl s.t. H(wl) =
H(wl) = hl and H(w2) = h2 hl is provided
2) Or Pl and P2 sign, as 2) Or Pl and P2 sign, as
2-out-o0f-2 multisignature 2-out-o0f-2 multisignature
Give the money of TX, to @, . Give the money of TX_ to Bob TXy’
Alice after time t, P2PKH Refund transactions After time t, P2PKH
™,
w,, h,=H(w,) S, X,
S,
™,
™,
Blockchain

Fair swap of values using time-locks, Setup

Value: 5 $

Pay Bob if

1) two values wl, w2,
H(wl) = hl and H(w2)

2) Or Pl and P2 sign,

X,

P2SH

h2

2-out-of-2 multisignature

Value: 5 $ X,
Pay Alice if P2SH
1) The value wl s.t. H(wl) =

hl is provided
2) Or Pl and P2 sign, as

2-out-of-2 multisignature

Give the money of TX, to @, . Give the money of TX_ to Bob TXy’
Alice after time t, P2PKH Refund transactions After time t, P2PKH
™,
S, TX. w,, h=H(w,)
B B
S, l
X | ~
A X,
Blockchain ©,

. — Credit Bob 5%

Fair swap of values using time-locks, Execution

o P Pay to script hash (P2SH)
o Creates a P2SH transaction TX for $X provided that: Pay-to-Public-Key-Hash (P2PKH)
i. (P, and P, sign, as 2-out-of-2 multisignature) or
ii. (P, signs and reveals w,, w,, s.t. H(w,) = h, and H(w,) = h,)
o Creates a P2PKH transaction TX' that spends the output of TX with a time-lock in the near future
o Sends TX'to P, to sign it (P, does not see TX, only the tx id is needed to refer to it)

e P, acts in the same way:
o Create a TX that can be redeemed via (2-out-of-2 multisig) or (P, signs and reveals w,, s.t. H(w,)=h,)
o Create a corresponding time-locked TX" and send to P, to sign
e Completion:
o P, publishes its TX, so P, can redeem $X by revealing w,, w,
P, publishes its TX, so P, can redeem $X by revealing w,

O
o P, reveals w, and redeems $X (from P,’s TX)
o P,reveals w,, w, and redeems $X (from P,’s TX)

e If either party aborts, the other can claim $X (from their TX) after time-lock fires, by
publishing their TX’

Fair swap of values using time-locks, Notes

e If P,’s TX could be redeemed by “H(w,) = h, and P, signs it

o P, could reveal w, and obtain payment of $X, without publishing its own TX transaction

o P, would obtain the output w, but lose $X
o (note that we cannot ensure that the TX transactions will appear concurrently in the

blockchain)
e If a multisig was not used for the refunds, a player could:

o Submit its value
o Rush to obtain its refund, invalidating the TX payment of the other player

e The time-lock for P, should be less than that for P,; if equal, P, could:

o Wait for the very last minute to reveal w,
o Hope that time-lock fires before P, can publish w, on the chain
o Claim $X even if P, tries to act honestly (and reveals w, out of time)

Fair Computation

e The two parties use MPC to compute a secret sharing of the output of the
computation
o w,+w,=MPC_output
e Subsequently parties do a fair swap of values, to obtain the MPC_output:
o If a party aborts, the other will be compensated

N-party ladder construction, |

e Uses N-out-of-N multisig for refunds

° PN can redeem $X from each player if it reveals W, W,, ..., W (i.e., the N-1
parties prepare these “roof” TX transactions)

e Fori=1,...,N-1, player P . can redeem from player P ... an amount equal
to $X(N-i) if it reveals w,, w,, ..., w,, (the N-1 parties also prepare these
“ladder” TX transactions)

e Redeeming follows the sequence P, P,, ..., P

N-party ladder construction, Il

P, will redeem $X from P, for publishing w,
P, will redeem $2X from P, for publishing w,, w,

P, will redeem $(N-1)X from P, for publishing w,, w,, ..., w,

PN will redeem $X from each of P1, PN_1 for publishing W, W,,

References

e For secret sharing and multi-party computation in general, look at Chapter 3, until Section 3.3.2 of the following book
(you can access to the book with your university account.
o Cramer, R, Damgard, |., & Nielsen, J. (2015). Secure Multiparty Computation and Secret Sharing. Cambridge:
Cambridge University Press. doi:10.1017/CB09781107337756.
e For fair swap, and in particular for how to achieve fairness with compensation in multi-party computation, please
look at this paper and follows the references when something is not clear.
o Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Fair two-party
computations via the bitcoin deposits. In 1st Workshop on Bitcoin Research 2014 (in Assocation with
Financial Crypto), 2014. http://eprint.iacr.org/2013/837.

