Blockchains & Distributed Ledgers

Lecture 09

Michele Ciampi

Slide credits: MC, Dimitris Karakostas, Aggelos Kiayias

Security critical computations

- How to obtain the output of a security critical computation
- Deterministic with public inputs?
 - Repeat multiple times and consensus can be reached about its output
 - Example: blockchain systems with smart contracts
- What if it is probabilistic with public inputs?
 - Coin flipping protocol
- What if it uses private data?
 - Secure Multiparty Computation (MPC)

Secure Multiparty Computation and Applications

- Sharing responsibility for signatures and cryptographic keys
 - Secret sharing
- Security critical computations
 - Coin flipping and verifiable secret-sharing
 - Secure multiparty computation (MPC)
- Fair swaps and fair MPC

Secret sharing

Overarching question

- How to protect security critical operations?
- Key idea: share responsibility and somehow tolerate faulty participants
 - Cryptographic keys?
 - Cryptocurrency addresses?
 - Computations?
 - What about computations on private data?

Multi-sig transactions

- Multi-sig: a tx that can be redeemed if n parties sign it
- A payment to a script (P2SH) can facilitate a multi-signature transaction

scriptPubKey: OP_HASH160 <redeemscriptHash> OP_EQUAL

scriptSig: OP_0 <sig_Ai> ... <sig_An> <redeemscript>

redeemscript = OP_m <A1 pubkey> <A2 pubkey>... <An pubkey> <OP_n> <OP_CHECKMULTISIG>

Secret-Sharing

Main question:

- How to share a secret *s* to *n* shareholders so that:
 - Any subset including *t* of them can <u>recover</u> the secret
 - Any subset including *less than t* of them knows <u>nothing</u> about the secret

- Relative questions:
 - Can we solve this for any *n* and $t \le n$?
 - What is the relation between the size of *s* and the size of each share?

Finite fields

- Finite *sets* equipped with *two operations*, behaving similarly to addition and multiplication over the real numbers (which is an infinite field)
- Finite fields exist with number of elements equal to p^k, for:
 - any prime number p
 - any positive integer k

Example. A binary finite field {0, 1} with:

+	0	1		*	0	1
0	0	1	-	0	0	0
1	1	0		1	0	1
(a+b) mod 2				(a*b) mod 2		

Secret-Sharing over a finite field

• Consider a secret x and *N* random values, subject to the constraint:

$$\sum_{i=1}^N x_i = x$$
 (over a finite field)

- This is called (additive) secret-sharing
- Knowledge of *any* N-1 values cannot be used to infer any information about *x*

Analysis

- Example: binary field
- If you hold only *N-1* values $[x_2, \dots, x_N]$:
 - Two unknowns: x_1 , s
 - One equation: $x_1 + x_2 + \dots + x_N = s$
- *s* cannot be undetermined

•
$$s = 0 + x_2 + \dots + x_N \text{ (if } x_1 = 0)$$

$$s = 1 + x_2 + ... + x_N$$
 (if $x_1 = 1$)

Generalisation t-out-of-n

- Consider a polynomial of degree d: $p(x) = a_0 + a_1x + ... + a_dx^d$
- Any d+1 points of the polynomial completely determine it
- With *d* or less points, at least one degree of freedom remains
 - *p* cannot be fully determined
- We can use that idea to solve secret-sharing for any t, n

Generalisation t-out-of-n

Example

- 5 parties
- Polynomials of degree 2
- Any three parties (who hold 3 points) can interpolate such polynomials
- Any two parties have no information about the shared secret

Secret-sharing cryptographic keys

- Using polynomial secret-sharing, a cryptographic key can be split to multiple shareholders
 - Each shareholder gets a point on the plane
 - The secret/key is the solution to the polynomial problem
- Additional points to consider:
 - How should the value of *t* be determined:
 - in comparison to *d*?
 - in comparison to n?
 - To engage in the cryptographic operation, is it necessary to reconstruct the original key?
 - How to accomodate an evolving set of shareholders?

Distributed Randomness Generation

Application: coin-flipping

- Alice and Bob want to flip a coin remotely
 - output a bit uniformly at random
- Alice doesn't trust Bob and vice versa
 - neither Alice nor Bob should be able to bias the bit choice

Application: coin-flipping

- Alice and Bob want to flip a coin remotely
 - output a bit uniformly at random
- Alice doesn't trust Bob and vice versa
 - neither Alice nor Bob should be able to bias the bit choice
- Solution:
 - Alice commits to a random coin
 - Bob commits to a random coin
 - Alice and Bob open the commitments
 - Output = XOR of (committed) values
- Consider:
 - Can the situation be improved in an *N* party coin flip?
 - What about when >N/2 parties are honest?
 - How do you deal with (selective) aborts?

A first step towards multi-party coin flipping

- Each player commits to their coin (publicly)
- Each player publishes a secret-sharing of the opening to their commitment
 - Any subset of at least (N/2 + 1) players can reconstruct the opening
 - Shares should be encrypted with the respective public-keys of the parties
- If some parties abort the protocol: assuming that a subset of >*N*/2 parties continue, they can recover the share and terminate
- Any number of parties up to N/2 cannot gain any advantage over the honest parties

What if some parties announce incorrect shares?

- A secret cannot be retrieved from incorrect shares
- Selective aborts possible, as remaining parties cannot reconstruct the secret
- Possible solution: require that all commitments open at the end irrespectively of aborts
 - deviating players will be caught, but still have the option to selectively abort if they wish
 - other parties will only know of the abort when it is too late
- One possible approach: issue monetary penalties to those that abort

Publicly Verifiable Secret-sharing (PVSS)

- The dealer creates shares that are distributed in encrypted form
- The shares can be **publicly verified** as correct
- Verifiability should not leak information about the secret

- PVSS enables parties to detect improper share distribution at the onset
- Protocol can still be aborted, but any abort would be independent of the (random) coin!

PVSS Design Challenges

• Assuming:

$$\sum_{i=1}^{N} x_i = x \qquad \psi_i = \mathcal{E}_i(x_i)$$
$$\psi = \mathbf{Com}(x)$$

- Verify that the value encrypted in ψ_i satisfies the equation w.r.t. the values encrypted in ψ
- This problem can be solved using a zero-knowledge proof

Secure MPC

Secure Multiparty Computation

- (Secure) Multiparty Computation (MPC)
- Parameterized by function *f*
- A set of *n* parties P_i contribute inputs $x_1, x_2, ..., x_n$
- At the end of the protocol they compute $f(x_1, x_2, ..., x_n)$
 - Everyone receives output $f(x_1, x_2, ..., x_n)$
 - No party except P_i obtains information about x_i

- Consider three roles
 - Input providers
 - \circ Processors
 - Output-receivers
- Input providers secret-share their input to the processors
 - Additive secret-sharing

- Any function *f* can be expressed as a Boolean circuit
 - Fixed-size input
 - Upper-bound on number of steps (circuit depth)
 - Example: any boolean function can be implemented as a combination of NAND gates
- XOR, AND, NOT gates
- Arithmetic representation of gates
 - AND: Input: a, b; Output: (a*b) mod 2
 - XOR: Input: a,b; Output: (a+b) mod 2
 - NOT: Input: a; Output: (1+a) mod 2
- Each processor executes the circuit with their shares as input
 - How to implement the gates s.t. operations on shares, when combined, produce the correct aggregate output?

MPC Construction Idea, Example

MPC Construction Idea, Example

MPC Construction Idea, Example

NOT GATE

• Suppose *m* parties hold shares of two inputs to a NOT gate.

$$[a] = \langle a_1, \dots, a_m \rangle$$

 How do they calculate shares of the output of the NOT gate?

$$[\overline{a}] = \langle 1 + a_1 \mod 2, a_2, \dots, a_m \rangle$$

XOR GATE

Suppose *m* parties hold shares of two inputs to an XOR gate.

$$[a], [b] = \langle a_1, \dots, a_m \rangle, \langle b_1, \dots, b_m \rangle$$

 How do they calculate shares of the output of the XOR gate?

 $[a] + [b] \bmod 2$

Suppose *m* parties hold shares of two inputs to an AND gate.
 AND GATE

$$[a], [b] = \langle a_1, \dots, a_m \rangle, \langle b_1, \dots, b_m \rangle$$

 How do they calculate shares of the output of the AND gate?

$$[a] \cdot [b] = \langle a_1 b_1 \mod 2, \dots, a_m b_m \mod 2 \rangle$$

but we want: $s_1 + \dots + s_m = (\sum_{i=1}^m a_i)(\sum_{i=1}^m b_i)$

• A Beaver triple is an initial secret-sharing of random values $x \cdot y = z$

$$[x] = \langle x_1, \dots, x_m \rangle, [y] = \langle y_1, \dots, y_m \rangle, [z] = \langle z_1, \dots, z_m \rangle$$

AND GATE :

publish
$$d_i = a_i - x_i$$
 reconstruct d, e
 $e_i = b_i - y_i$

define $s_i = de + dy_i + ex_i + z_i$ share calculation

$$\sum_{i=a} s_i = de + d \sum_{i=a} y_i + e \sum_{i=a} x_i + xy \quad \text{(assuming m is odd)}$$

$$= de + dy + ex + xy = (a - x)(b - y) + (a - x)y + (b - y)x + xy$$

$$= ab$$

Constructing Beaver Triples

- The above construction idea requires the setup of all servers with a sufficient number of Beaver triples (how many?)
- Constructing Beaver triples can be done via special-purpose cryptographic protocols

MPC strengths and weaknesses

- Possible to compute any function *f* privately on parties' inputs
- Unless *honest majority* is present, there is no way to provide:
 - fairness: either all parties learn the output or none
 - guaranteed output delivery

Fairness

Workarounds for fairness

- Optimistic fairness (by involving a third party):
 - The protocol is basically not fair
 - A third party is guaranteed to be able to engage and amend the execution in case of deviation

• Gradual/timed release:

- Protocols engage in many rounds
- Parties gradually come closer to computing the output
- "gradual closeness" can be measured in terms of:
 - probability of guessing the output
 - number of computational steps remaining to compute the output
- Example:
 - At each round I = 1, ..., n the two parties can compute the output in 2^{n-1} steps
 - If a party aborts the interaction, the other party will be 2 times more steps "behind" in the calculation of the output

Using a blockchain

- Along the lines of optimistic fairness, but substituting the trusted third party with the blockchain
- How is that possible?
 - Blockchain cannot keep secrets
 - Rationale: penalize parties that deviate from the protocol

Basic tool: time-lock transactions

- Time-lock transactions
 - part of transaction data
 - specifies the earliest time that a transaction can be included in a block
- Key observation: if a conflicting transaction has already being included in the ledger, the time-lock transaction will be rejected

Time-lock example

blockchain

Time-lock example

- P_1 holds w_1 , h_2 =H(w_2)
- P_2 holds w_2 , $h_1 = H(w_1)$
- They want to exchange w_1, w_2

 $w_1, h_2 = H(w_2)$

Fair swap of values using time-locks, Execution

• P₁:

- Creates a P2SH transaction TX for \$X provided that:
 - i. (P₁ and P₂ sign, as 2-out-of-2 multisignature) or
 - ii. $(P_2 \text{ signs and reveals } \mathbf{w}_1, \mathbf{w}_2, \text{ s.t. } H(\mathbf{w}_1) = \mathbf{h}_1 \text{ and } H(\mathbf{w}_2) = \mathbf{h}_2)$
- Creates a P2PKH transaction TX' that spends the output of TX with a time-lock in the near future
- Sends TX' to P_2 to sign it (P_2 does not see TX, only the tx id is needed to refer to it)

• P_2 acts in the same way:

- Create a TX that can be redeemed via (2-out-of-2 multisig) or (P_1 signs and reveals w_1 , s.t. $H(w_1)=h_1$)
- \circ Create a corresponding time-locked TX' and send to P₁ to sign

• Completion:

- P_1 publishes its TX, so P_2 can redeem \$X by revealing w_1, w_2
- P_2 publishes its TX, so P_1 can redeem \$X by revealing w_1
- P_1 reveals w_1 and redeems \$X (from P_2 's TX)
- P_2 reveals w_1 , w_2 and redeems \$X (from P_1 's TX)
- If either party aborts, the other can claim \$X (from their TX) after time-lock fires, by publishing their TX'

Pay to script hash (P2SH) Pay-to-Public-Key-Hash (P2PKH)

- If P_1 's TX could be redeemed by " $H(w_2) = h_2$ and P_2 signs it":
 - \circ P₂ could reveal **w**₂ and obtain payment of \$X, without publishing its own TX transaction
 - P_1 would obtain the output w_2 but lose \$X
 - (note that we cannot ensure that the TX transactions will appear concurrently in the blockchain)
- If a multisig was not used for the refunds, a player could:
 - Submit its value
 - Rush to obtain its refund, invalidating the TX payment of the other player
- The time-lock for P_1 should be less than that for P_2 ; if equal, P_1 could:
 - Wait for the very last minute to reveal $\mathbf{w_1}$
 - Hope that time-lock fires before P_2 can publish w_2 on the chain
 - Claim \$X even if P_2 tries to act honestly (and reveals w_2 out of time)

Fair Computation

- The two parties use MPC to compute a secret sharing of the output of the computation
 - \circ w₁ + w₂ = MPC_output
- Subsequently parties do a fair swap of values, to obtain the MPC_output:
 - If a party aborts, the other will be compensated

N-party ladder construction, I

- Uses N-out-of-N multisig for refunds
- P_N can redeem \$X from each player if it reveals w₁, w₂, ..., w_N (i.e., the N-1 parties prepare these "roof" TX transactions)
- For i = 1, ..., N-1, player P_{N-i} can redeem from player P_{N-i+1} an amount equal to \$X(N-i) if it reveals w₁, w₂, ..., w_{N-i} (the N-1 parties also prepare these "ladder" **TX** transactions)
- Redeeming follows the sequence $P_1, P_2, ..., P_N$

N-party ladder construction, II

• P_1 will redeem \$X from P_2 for publishing w_1

. . .

- P_2 will redeem \$2X from P_3 for publishing w_1, w_2
- P_{N-1} will redeem \$(N-1)X from P_N for publishing $w_1, w_2, ..., w_{N-1}$
- P_N will redeem \$X from each of P₁, ..., P_{N-1} for publishing **w₁, w₂, ..., w_N**

References

- For secret sharing and multi-party computation in general, look at Chapter 3, until Section 3.3.2 of the following book (you can access to the book with your university account.
 - Cramer, R., Damgård, I., & Nielsen, J. (2015). Secure Multiparty Computation and Secret Sharing. Cambridge: Cambridge University Press. doi:10.1017/CB09781107337756.
- For fair swap, and in particular for how to achieve fairness with compensation in multi-party computation, please look at this paper and follows the references when something is not clear.
 - Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Fair two-party computations via the bitcoin deposits. In 1st Workshop on Bitcoin Research 2014 (in Assocation with Financial Crypto), 2014. http://eprint.iacr.org/2013/837.