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Eponymous system

● Each action can be attributed to a user’s real-world identity
● Examples:

○ Facebook - posts/comments are linked with the real-world name of the user who made it
○ Twitter blue check (pre-Musk) - accounts are verified w.r.t. real-world identification documents
○ UK parliament votes - the vote of each MP is (publicly) attributable to each



Pseudonymous system

● Identities are represented as tags
● Each tag is independently assigned to each identity
● An identity may be assigned multiple tags and vice versa
● Examples:

○ Twitter/Reddit - posts/comments are linked to an (arbitrary) username
○ Email - each message is linked with an email address
○ Graffiti - each piece is signed by a tag/pseudonym (e.g., Banksy)



Anonymous system

● Any performed action is manifested within a set of indistinguishably-acting 
participants

● The set of indistinguishable participants is called the anonymity set
○ Hide in public

● Examples:
○ General election voting - e.g., ~14M of 47.6M eligible voters voted Conservatives in 2019
○ Tor browsing - website/hidden service sees only number of Tor connections (not name/IP)



Privacy in Bitcoin

● Users can create multiple accounts/addresses:
○ without cost 
○ without association to previous accounts

● Essentially, users can create an unlimited number of pseudonyms
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Fungibility and Privacy

● Fungibility: Coins are interchangeable
● However, each “satoshi” has its whole history in the Bitcoin blockchain

○ satoshi fungibility is debatable



Transaction Anonymization 
Techniques
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Anonymizing Bitcoin Payments via E-cash
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● Alice and Bob would like to exchange secrets s.t.:
○ either none of them gets their output 
○ or both do

● Classical problem
● Impossible to solve under standard network assumptions!
● Going around the impossibility:

○ optimistic fair exchange 
○ resource-based fair exchange 
○ fair swaps with penalties

Fair Swaps



● Using a blockchain that supports smart contracts
● A contract that both parties fund to accept their secrets
● The parties are rational

○ The security argument will be game theoretic
● Key requirements:

○ parties lock up some funds in deposits
○ secret submission should be verifiable by the contract’s code

● Fair swap variation:
○ Either both parties get their output
○ Or the offending party is penalized financially

Fair Swaps - Construction



Coinjoin
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Anonymizing Transactions - CoinJoin
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Anonymizing Transactions - CoinJoin
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Anonymizing Transactions - CoinJoin
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Multiple Input Transactions - Setup

● Parties:
○ n participants
○ one designated leader

● The i-th party sends to the leader:
○ the recipient address bi 

○ the return (change) address ci 

○ the corresponding amounts

● When all n parties complete this step, the multiple input transaction is formed 
by the leader and sent to all n parties



● Each party sends a signature on the multiple input tx to the leader
● When all n signatures are received, the multiple input tx is posted on the 

blockchain by the leader
● If any of the n parties aborts the protocol, the transaction cannot be validated
● If the leader is adversarial, transaction cannot be published/validated

Question: Can we ensure that an adversary does not correlate the IP address 
of the sender and the receiver? 

Multiple Input Transactions - Sign and Publish



Mix-net

● A mix-net facilitates hiding the sender and the receiver of a given message
● Decryption mix-nets
● Re-encryption mix-nets



Mix-net: simplified scenario (hiding only the sender)
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Routing via a Mix-net

sender A (PKA) B (PKB) C (PKc) receiver

Sample 3 encryption keys 
Sym_key1, Sym_key2,Sym_key3
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Routing via a Mix-net
sender
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Coordination 

● CoinJoin and similar techniques require:
○ Coordination
○ Message passing between multiple parties

● How do parties find each other?
● How to prevent DoS attacks?
● Is it possible to improve with more advanced cryptographic techniques? 



Anonymity and Digital 
Signatures



Anonymity and Digital Signatures

● So far all digital signatures identify the signer
● Is it possible to hide the sender within a group?



Group Signatures
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Traceable Signatures
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Ring Signatures
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● Linkable ring signatures
● “Stealth” addresses
● For each payment, an anonymity set is selected with accounts of the same 

monetary value
● A ring signature is issued on behalf of that set:

○ suitably restricted s.t. an account can only be used once 
○ if an output is used twice, it is linkable

● Stealth addresses enable:
○ the sender to create unlinkable addresses for the receiver
○ the receiver to detect said addresses

Monero/Cryptonote



Is Monero Anonymous?

● There is potentially more uncertainty in the Monero blockchain compared to a 
Bitcoin-like blockchain (even with Coinjoin transactions)

● However, it is not obvious how to quantify the level of anonymization 
● De-anonymization is feasible in reasonable real-world threat models

○ e.g., the attacker “sprays” the ledger with transactions s.t. it commands a good number of 
selected accounts



The importance of the anonymity set



Increasing and Safeguarding the anonymity set

● A larger anonymity set is most preferable
● In the techniques seen so far, transaction preparation work increases 

linearly with the anonymity set
● Goal: use the set of all possible Unspent Transaction Outputs (UTxOs)



Zerocash



ZK-Snarks

● Zero-knowledge succinct arguments of knowledge
● Similar to “zero-knowledge proofs”
● Can prove possession of a witness for any public statement / predicate
● Zero-Knowledge

○ Nothing aside the fact that the statement is true is leaked.

● Computational soundness:
○ depends on the security of a “common reference string” (a structured cryptographic 

information that is assumed to be honestly sampled)

● Succinctness: 
○ the proof size and the verifier’s running time is efficient
○ proportional to the statement only



Constructing ZK-SNARKs

● There exist a SNARK for any NP-relation R 

NP = { L | exists R: x in L iff (x, w) in R; R is polynomial time} 

● The actual proof sizes are small (hundreds of bytes)
● Verification does not depend on the running time of R

































































































Network security



Overlay Networks

● A reliable network is critical for blockchains and distributed ledger protocols to 
operate

● Typically they utilize an overlay network
○ a network built on top of another network
○ virtual links connect the participating nodes



Overlay Networks

in a network, we would like
nodes to be fully connected

relevant operations : 
1. point-to-point communication
2. broadcast



Network Requirements

● Synchronicity
● Reliable message transmission
● Reliable Broadcast



Bitcoin’s P2P Network

● A Peer-to-Peer (P2P) network over TCP/IP
● Peers are identified by their IP address
● Peers can diffuse messages to be propagated to the whole network
● Peers initiate a small number of outgoing connections
● Peers receive a limited number of incoming connections



Eclipse attack (overview)



Eclipse attack (overview)



Eclipse attack (overview)



Eclipse attack (overview)



Eclipse attack (overview)



Implications of the attack

● Controlling blocks propagation 
● Splitting mining power
● Confirmation double spending 

○ Send the merchants a tx T, but send T’ to the rest of the 
network. 



(Deeper look into eclipse attack) P2P Networks

● (In the case of Bitcoin) The requesting node contacts a DNS Seeder:
○ A node with a public IP address that can serve a list of IP addresses for Bitcoin nodes
○ Obtains those addresses via crawling

● If the connection fails, the node has a hardcoded set of IP addresses
● Peers exchange node IP addresses via ADDR messages that contain a 

selection of a peer’s address book



Table maintenance 

● Nodes maintain tables of peers that they have learned:
○ Nodes that have proven to be operational
○ Nodes for which the node has been informed about their existence, but they have not been 

contacted yet

● Tables are updated on a regular basis
● Timestamp information is stored from the last connection attempt



Attacking the P2P layer - Key Observations

● A node will add an address to the ‘tried' table if it receives an incoming 
connection from another node

● A node will accept unsolicited ADDR messages; these will be added to the 
‘new’ table

● Nodes rarely solicit information from DNS seeders and other nodes 



Eclipse Attack

● Victim is a node with a public IP
● Attacker makes outgoing connection to the node using adversarial nodes

○ ‘tried’ table gets full with fresh adversarial IP’s

● Attacker uses ADDR messages to insert trash IP’s into the ‘new’ table of the 
victim

● Attacker waits for the victim node to restart (nodes maintain existing outgoing 
connections)

○ Restarts can happen because of a software update or even deliberately by the attacker via a 
DOS attack



Eclipse Attack

● The attacker can repetitively connect to victim node to ensure timestamps of 
adversarial nodes are fresh

● If a ‘new’ address is selected:
○ injection of trash IPs ensures that, with some probability, the new node will not be responsive
○ another coin flip will be attempted for the connection, which can result to an adversarial IP



Eclipse Attack

● Attacker saturates the incoming connections of the victim 
○ The protocol allows for the same IP to occupy all 117 incoming TCP/IP connections

● It becomes impossible for other nodes to connect to the victim
● As maximum number of connections is reached, the victim will deny any other 

incoming connections



Eclipse Attack

● Once the eclipse takes place, all (incoming/outgoing) communication of the 
victim is routed via the attacker nodes

○ victim’s transactions may be censored
○ victim’s blocks can be dropped
○ victim’s blockchain could be populated almost entirely by adversarial blocks! 

● The rest of the network will eventually completely forget about the victim node
○ a function isTerrible is executed periodically on the tables to remove any node that has an 

over-30-days old timestamp and too many failed connection attempts



Attack Countermeasures

● Many mitigation techniques can be used: 
○ ban unsolicited ADDR messages
○ diversify incoming connections
○ test before evicting addresses from the tried table

● The possibility of an attack cannot be zeroed



Wallets



● Some wallets maintain the whole blockchain
● Full nodes:

○ Keep the whole blockchain history 
○ Keep the whole UTxO set
○ Verify each tx
○ Verify each block
○ Relay every tx and block

Full nodes



Recall : Merkle trees of transactions

● Transactions not yet confirmed, but received by a 
full node are collected into a data structure called 
the mempool

● To build a block, the mempool transactions are 
collected into a Merkle Tree in an (arbitrary, but 
valid) order defined by the miner

● The application data in the block header, for 
which the Proof-of-Work equation is solved, only 
contain the root of this Merkle Tree: x



Advantages of using a Merkle tree

● Proof-of-Work difficulty does not depend on the number of confirmed 
transactions

○ each miner is incentivized to include all transactions they can, which have a non-zero fee

● The PoW difficulty only depends on the target T
○ this allows better control of the mining rate

● It enables SPV (Simple Payment Verification) wallets!



SPV

● Simple Payment Verification
● A different type of wallet
● Useful for mobile, laptops etc.
● Doesn’t need to download the whole blockchain

○ Does not download all transactions
○ Much faster than standard (full) node

● Keeps only the block headers from genesis till today
● Connects to multiple untrusted servers
● Server is a full node which proves to the SPV wallet each claim



SPV

● Wallet sends to the SPV server the bitcoin addresses they have
○ Not the private keys!
○ The SPV server knows which transactions to send to the SPV client
○ The addresses are shared via a Bloom filter

● Wallet verifies each block’s PoW and authenticated ancestry
○ Keeps a longest chain as usual
○ Does not keep transactions

● Wallet verifies each transaction it receives
○ Signatures
○ Law of conservation

● Wallet verifies that the transaction belongs to the Merkle Tree root of a block



SPV Security

● SPV wallets
○ don’t keep a UTXO
○ don’t verify or receive transactions they are not interested in
○ don’t verify coinbase validity

● Have the same level of security as a regular full node
○ assuming honest majority

● What can a malicious SPV server achieve?
○ Temporary fork to invalid block (invalid coinbase, transactions, non-existing UTXO, double 

spending...)



Wallet seeds and HD wallets

● Hierarchical Deterministic (HD) wallet
● An infinite sequence of wallet private keys can be generated from a single 

“master private key” (BIP-32)
● A private key can be encoded as a human-readable seed
● Seed is sufficient to recover all the private keys of a wallet

○ Typically backed up on paper
○ Optionally encrypted with password

Seed Example: 
deal smooth awful edit virtual monitor term sign start home shrimp wrestle



Hot and cold wallets

● Keys on an Internet-connected computer: Hot wallet
○ Easy to use
○ Can always spend my money immediately

● Private keys offline: Cold wallet
○ Kept on a computer not connected to the Internet or a hard drive
○ Keys cannot easily be stolen
○ Keys can be moved to a hot wallet when needed to spend
○ User can see balance and how much money they have using public keys kept (safely) online



Wallet classification
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