
Blockchains
& Distributed Ledgers

Lecture 08

Michele Ciampi

Slide credits: MC, Dimitris Karakostas, Aggelos Kiayias

Eponymous system

● Each action can be attributed to a user’s real-world identity
● Examples:

○ Facebook - posts/comments are linked with the real-world name of the user who made it
○ Twitter blue check (pre-Musk) - accounts are verified w.r.t. real-world identification documents
○ UK parliament votes - the vote of each MP is (publicly) attributable to each

Pseudonymous system

● Identities are represented as tags
● Each tag is independently assigned to each identity
● An identity may be assigned multiple tags and vice versa
● Examples:

○ Twitter/Reddit - posts/comments are linked to an (arbitrary) username
○ Email - each message is linked with an email address
○ Graffiti - each piece is signed by a tag/pseudonym (e.g., Banksy)

Anonymous system

● Any performed action is manifested within a set of indistinguishably-acting
participants

● The set of indistinguishable participants is called the anonymity set
○ Hide in public

● Examples:
○ General election voting - e.g., ~14M of 47.6M eligible voters voted Conservatives in 2019
○ Tor browsing - website/hidden service sees only number of Tor connections (not name/IP)

Privacy in Bitcoin

● Users can create multiple accounts/addresses:
○ without cost
○ without association to previous accounts

● Essentially, users can create an unlimited number of pseudonyms

Transaction Graph Analysis

TX1 TX1
50 BTC

a

b

c

24.999

25
coinbase

transaction

account a moves
50 BTC to

accounts b and c
(minus fees)

Transaction Graph Analysis

TX1 TX1
50 BTC

a

b

c

24.999

25
coinbase

transaction

account a moves
50 BTC to

accounts b and c
(minus fees)

b

c

a.

24.999

25

50

Common Behaviours

1

N N-1

1

N-2

1

N-3

peeling chain star

Fungibility and Privacy

● Fungibility: Coins are interchangeable
● However, each “satoshi” has its whole history in the Bitcoin blockchain

○ satoshi fungibility is debatable

Transaction Anonymization
Techniques

Blind-Signatures

Signer

signing
key (sk)

User
message

signing
protocol

public
key (vk) 1. Signature σ that can be verified

against m, vk
2. Signer doesn’t see the message
3. Signer cannot link two published

(m, σ) with which users requested
them

Chaum’s E-cash

BankBlind
Signature

User Shop

1. Show (blinded)
E-coin, nonce, id

Chaum’s E-cash

BankBlind
Signature

User Shop

1. Show (blinded)
E-coin, nonce, id 2. sign$5-Bank(E-coin,

nonce)

Chaum’s E-cash

BankBlind
Signature

User Shop

1. Show (blinded)
E-coin, nonce, id 2. sign$5-Bank(E-coin,

nonce)

3. Show signed E-coin

Chaum’s E-cash

BankBlind
Signature

User Shop

1. Show (blinded)
E-coin, nonce, id 2. sign$5-Bank(E-coin,

nonce)

3. Show signed E-coin

4. Verify E-coin
is not spent

Chaum’s E-cash

BankBlind
Signature

User Shop

1. Show (blinded)
E-coin, nonce, id 2. sign$5-Bank(E-coin,

nonce)

3. Show signed E-coin

4. Verify E-coin
is not spent

5. Validate
E-coin’s structure
and signature

Chaum’s E-cash

BankBlind
Signature

User Shop

1. Show (blinded)
E-coin, nonce, id 2. sign$5-Bank(E-coin,

nonce)

3. Show signed E-coin

4. Verify E-coin
is not spent

5. Validate
E-coin’s structure
and signature

6. Finalize payment

Anonymizing Bitcoin Payments via E-cash

TrusteeBlind
Signature

User Shop

1. Give 1 BTC

2. Receive E-Coin
(worth 1BTC)

3. Show E-Coin

4. Verify E-coin has
not been spent

5. Send 1 BTC

6. Receive service

Fair
swap

Trustee is trusted to
honor its E-coins.

● Alice and Bob would like to exchange secrets s.t.:
○ either none of them gets their output
○ or both do

● Classical problem
● Impossible to solve under standard network assumptions!
● Going around the impossibility:

○ optimistic fair exchange
○ resource-based fair exchange
○ fair swaps with penalties

Fair Swaps

● Using a blockchain that supports smart contracts
● A contract that both parties fund to accept their secrets
● The parties are rational

○ The security argument will be game theoretic
● Key requirements:

○ parties lock up some funds in deposits
○ secret submission should be verifiable by the contract’s code

● Fair swap variation:
○ Either both parties get their output
○ Or the offending party is penalized financially

Fair Swaps - Construction

Coinjoin

Anonymising Transactions - Centralized

Trusted
Party

a1

a2

an

atx1

tx2

txn

b1

b2

bm

txn+m

txn+2

txn+1

Anonymising Transactions - Centralized

Trusted
Party

a1

a2

an

atx1

tx2

txn

b1

b2

bm

txn+m

txn+2

txn+1

Anonymity set of
size n

TP may disappear
with the money

Anonymizing Transactions - CoinJoin

Alice

Transaction 1

 In: 2 BTC Out: 1 BTC

Out: 1 BTC

Transaction 2

 In: 3 BTC Out: 1 BTC

Out: 2 BTC
Charlie

Bob

David

Change

Change

Without Coinjoin

Anonymizing Transactions - CoinJoin

Alice

Transaction 1

 In: 2 BTC Out: 1 BTC

Out: 1 BTC

Transaction 2

 In: 3 BTC Out: 1 BTC

Out: 2 BTC

Without Coinjoin With Coinjoin

Charlie

Bob

David

Coinjoin Transaction

 In: 2 BTC Out: 1 BTC

Out: 1 BTC

 In: 3 BTC Out: 1 BTC

Out: 2 BTC

Bob

David

Alice

Charlie

Change

Change

Change

Change

Anonymizing Transactions - CoinJoin

With Coinjoin

Coinjoin Transaction

 In: 2 BTC Out: 1 BTC

Out: 1 BTC

 In: 3 BTC Out: 1 BTC

Out: 2 BTC

Bob

David

Alice

Charlie
Change

Change

Anonymizing Transactions - CoinJoin

Alice

Transaction 1

 In: 2 BTC Out: 2 BTC

Out: 0 BTC

Transaction 2

 In: 3 BTC Out: 1 BTC

Out: 1 BTC

Without Coinjoin With Coinjoin

Charlie

charlie

David

Coinjoin Transaction

 In: 2 BTC Out: 1 BTC

Out: 1 BTC

 In: 3 BTC Out: 1 BTC

Out: 2 BTC

Bob

David

Alice

Charlie

Change

Change

Change

Bob

Out: 1 BTC
Alice

Multiple Input Transactions - Setup

● Parties:
○ n participants
○ one designated leader

● The i-th party sends to the leader:
○ the recipient address bi

○ the return (change) address ci

○ the corresponding amounts

● When all n parties complete this step, the multiple input transaction is formed
by the leader and sent to all n parties

● Each party sends a signature on the multiple input tx to the leader
● When all n signatures are received, the multiple input tx is posted on the

blockchain by the leader
● If any of the n parties aborts the protocol, the transaction cannot be validated
● If the leader is adversarial, transaction cannot be published/validated

Question: Can we ensure that an adversary does not correlate the IP address
of the sender and the receiver?

Multiple Input Transactions - Sign and Publish

Mix-net

● A mix-net facilitates hiding the sender and the receiver of a given message
● Decryption mix-nets
● Re-encryption mix-nets

Mix-net: simplified scenario (hiding only the sender)

S1

S2

A

B

C

Rm1

m2

m1

m2

Not possible to relate if S1 sent m1 or m2 (and vice versa for S2) - as long as there is one honest
node (even if the adversary can look at what all the nodes receive and output).

Routing via a Mix-net

sender A (PKA) B (PKB) C (PKc) receiver

Sample 3 encryption keys
Sym_key1, Sym_key2,Sym_key3

Decryption Mix-net

Encrypted with Public key of C
Deliver to R; sym_key3

Payload
destination / info

Encrypted with sym_key3

fixed
slock
size 1

fixed
block
size 2

Decryption Mix-net

Encrypted with Public key of C
Deliver to R; sym_key3

Encrypted with sym_key2

Encrypted with Public key of B
Send to C; sym_key2

Payload
destination / info

Encrypted with sym_key2

Encrypted with sym_key3

fixed
block
size 1

fixed
block
size 1

fixed
block
size 2

Decryption Mix-net

Encrypted with Public key of C
Deliver to R; sym_key3

Encrypted with sym_key2

Encrypted with sym_key1

Encrypted with Public key of B
Send to C; sym_key2

Encrypted with Public key of A
Send to B; sym_key1

Encrypted with sym_key1

Payload
destination / info

Encrypted with sym_key1

Encrypted with sym_key2

Encrypted with sym_key3

fixed
block
size 1

fixed
block
size 1

fixed
block
size 1

fixed
block
size 2

Routing via a Mix-net
sender

Routing via a Mix-net
sender

A

noise

Decrypted data
Send to B; sym_key1

Routing via a Mix-net
sender

A B
noise

noisenoise

Decrypted data
Send to C; sym_key2

Routing via a Mix-net
sender

A B
noise

noise

C

receiver

noise

Decrypted data
Deliver to R; sym_key3

Coordination

● CoinJoin and similar techniques require:
○ Coordination
○ Message passing between multiple parties

● How do parties find each other?
● How to prevent DoS attacks?
● Is it possible to improve with more advanced cryptographic techniques?

Anonymity and Digital
Signatures

Anonymity and Digital Signatures

● So far all digital signatures identify the signer
● Is it possible to hide the sender within a group?

Group Signatures

Key directory

● Alice: pkA
● Bob: pkB
● Charlie: pkC
● David: pkD
● Eric: pkE

Group
Manager

member

message

signature

Opening
Authority

member = Charlie

Verifier

(is convinced that a member
signed the message, but not

which one)

Traceable Signatures

Key directory

● Alice: pkA
● Bob: pkB
● Charlie: pkC
● David: pkD
● Eric: pkE

Group
Manager

member signature

Tracing
Authority

Charlie

Verifier

member signature Verifier

member signature Verifier

Opening
Authority

(is convinced
that a

member
signed the

message, but
not which

one)

Ring Signatures

Key directory

● Alice: pkA
● Bob: pkB
● Charlie: pkC
● David: pkD
● Eric: pkE

member

message

signature Verifier

(is convinced that a member of a
subset (e.g., Eric, Frank, or Bob) signed

the message, but not which one)

● Linkable ring signatures
● “Stealth” addresses
● For each payment, an anonymity set is selected with accounts of the same

monetary value
● A ring signature is issued on behalf of that set:

○ suitably restricted s.t. an account can only be used once
○ if an output is used twice, it is linkable

● Stealth addresses enable:
○ the sender to create unlinkable addresses for the receiver
○ the receiver to detect said addresses

Monero/Cryptonote

Is Monero Anonymous?

● There is potentially more uncertainty in the Monero blockchain compared to a
Bitcoin-like blockchain (even with Coinjoin transactions)

● However, it is not obvious how to quantify the level of anonymization
● De-anonymization is feasible in reasonable real-world threat models

○ e.g., the attacker “sprays” the ledger with transactions s.t. it commands a good number of
selected accounts

The importance of the anonymity set

Increasing and Safeguarding the anonymity set

● A larger anonymity set is most preferable
● In the techniques seen so far, transaction preparation work increases

linearly with the anonymity set
● Goal: use the set of all possible Unspent Transaction Outputs (UTxOs)

Zerocash

ZK-Snarks

● Zero-knowledge succinct arguments of knowledge
● Similar to “zero-knowledge proofs”
● Can prove possession of a witness for any public statement / predicate
● Zero-Knowledge

○ Nothing aside the fact that the statement is true is leaked.

● Computational soundness:
○ depends on the security of a “common reference string” (a structured cryptographic

information that is assumed to be honestly sampled)

● Succinctness:
○ the proof size and the verifier’s running time is efficient
○ proportional to the statement only

Constructing ZK-SNARKs

● There exist a SNARK for any NP-relation R

NP = { L | exists R: x in L iff (x, w) in R; R is polynomial time}

● The actual proof sizes are small (hundreds of bytes)
● Verification does not depend on the running time of R

Network security

Overlay Networks

● A reliable network is critical for blockchains and distributed ledger protocols to
operate

● Typically they utilize an overlay network
○ a network built on top of another network
○ virtual links connect the participating nodes

Overlay Networks

in a network, we would like
nodes to be fully connected

relevant operations :
1. point-to-point communication
2. broadcast

Network Requirements

● Synchronicity
● Reliable message transmission
● Reliable Broadcast

Bitcoin’s P2P Network

● A Peer-to-Peer (P2P) network over TCP/IP
● Peers are identified by their IP address
● Peers can diffuse messages to be propagated to the whole network
● Peers initiate a small number of outgoing connections
● Peers receive a limited number of incoming connections

Eclipse attack (overview)

Eclipse attack (overview)

Eclipse attack (overview)

Eclipse attack (overview)

Eclipse attack (overview)

Implications of the attack

● Controlling blocks propagation
● Splitting mining power
● Confirmation double spending

○ Send the merchants a tx T, but send T’ to the rest of the
network.

(Deeper look into eclipse attack) P2P Networks

● (In the case of Bitcoin) The requesting node contacts a DNS Seeder:
○ A node with a public IP address that can serve a list of IP addresses for Bitcoin nodes
○ Obtains those addresses via crawling

● If the connection fails, the node has a hardcoded set of IP addresses
● Peers exchange node IP addresses via ADDR messages that contain a

selection of a peer’s address book

Table maintenance

● Nodes maintain tables of peers that they have learned:
○ Nodes that have proven to be operational
○ Nodes for which the node has been informed about their existence, but they have not been

contacted yet

● Tables are updated on a regular basis
● Timestamp information is stored from the last connection attempt

Attacking the P2P layer - Key Observations

● A node will add an address to the ‘tried' table if it receives an incoming
connection from another node

● A node will accept unsolicited ADDR messages; these will be added to the
‘new’ table

● Nodes rarely solicit information from DNS seeders and other nodes

Eclipse Attack

● Victim is a node with a public IP
● Attacker makes outgoing connection to the node using adversarial nodes

○ ‘tried’ table gets full with fresh adversarial IP’s

● Attacker uses ADDR messages to insert trash IP’s into the ‘new’ table of the
victim

● Attacker waits for the victim node to restart (nodes maintain existing outgoing
connections)

○ Restarts can happen because of a software update or even deliberately by the attacker via a
DOS attack

Eclipse Attack

● The attacker can repetitively connect to victim node to ensure timestamps of
adversarial nodes are fresh

● If a ‘new’ address is selected:
○ injection of trash IPs ensures that, with some probability, the new node will not be responsive
○ another coin flip will be attempted for the connection, which can result to an adversarial IP

Eclipse Attack

● Attacker saturates the incoming connections of the victim
○ The protocol allows for the same IP to occupy all 117 incoming TCP/IP connections

● It becomes impossible for other nodes to connect to the victim
● As maximum number of connections is reached, the victim will deny any other

incoming connections

Eclipse Attack

● Once the eclipse takes place, all (incoming/outgoing) communication of the
victim is routed via the attacker nodes

○ victim’s transactions may be censored
○ victim’s blocks can be dropped
○ victim’s blockchain could be populated almost entirely by adversarial blocks!

● The rest of the network will eventually completely forget about the victim node
○ a function isTerrible is executed periodically on the tables to remove any node that has an

over-30-days old timestamp and too many failed connection attempts

Attack Countermeasures

● Many mitigation techniques can be used:
○ ban unsolicited ADDR messages
○ diversify incoming connections
○ test before evicting addresses from the tried table

● The possibility of an attack cannot be zeroed

Wallets

● Some wallets maintain the whole blockchain
● Full nodes:

○ Keep the whole blockchain history
○ Keep the whole UTxO set
○ Verify each tx
○ Verify each block
○ Relay every tx and block

Full nodes

Recall : Merkle trees of transactions

● Transactions not yet confirmed, but received by a
full node are collected into a data structure called
the mempool

● To build a block, the mempool transactions are
collected into a Merkle Tree in an (arbitrary, but
valid) order defined by the miner

● The application data in the block header, for
which the Proof-of-Work equation is solved, only
contain the root of this Merkle Tree: x

Advantages of using a Merkle tree

● Proof-of-Work difficulty does not depend on the number of confirmed
transactions

○ each miner is incentivized to include all transactions they can, which have a non-zero fee

● The PoW difficulty only depends on the target T
○ this allows better control of the mining rate

● It enables SPV (Simple Payment Verification) wallets!

SPV

● Simple Payment Verification
● A different type of wallet
● Useful for mobile, laptops etc.
● Doesn’t need to download the whole blockchain

○ Does not download all transactions
○ Much faster than standard (full) node

● Keeps only the block headers from genesis till today
● Connects to multiple untrusted servers
● Server is a full node which proves to the SPV wallet each claim

SPV

● Wallet sends to the SPV server the bitcoin addresses they have
○ Not the private keys!
○ The SPV server knows which transactions to send to the SPV client
○ The addresses are shared via a Bloom filter

● Wallet verifies each block’s PoW and authenticated ancestry
○ Keeps a longest chain as usual
○ Does not keep transactions

● Wallet verifies each transaction it receives
○ Signatures
○ Law of conservation

● Wallet verifies that the transaction belongs to the Merkle Tree root of a block

SPV Security

● SPV wallets
○ don’t keep a UTXO
○ don’t verify or receive transactions they are not interested in
○ don’t verify coinbase validity

● Have the same level of security as a regular full node
○ assuming honest majority

● What can a malicious SPV server achieve?
○ Temporary fork to invalid block (invalid coinbase, transactions, non-existing UTXO, double

spending...)

Wallet seeds and HD wallets

● Hierarchical Deterministic (HD) wallet
● An infinite sequence of wallet private keys can be generated from a single

“master private key” (BIP-32)
● A private key can be encoded as a human-readable seed
● Seed is sufficient to recover all the private keys of a wallet

○ Typically backed up on paper
○ Optionally encrypted with password

Seed Example:
deal smooth awful edit virtual monitor term sign start home shrimp wrestle

Hot and cold wallets

● Keys on an Internet-connected computer: Hot wallet
○ Easy to use
○ Can always spend my money immediately

● Private keys offline: Cold wallet
○ Kept on a computer not connected to the Internet or a hard drive
○ Keys cannot easily be stolen
○ Keys can be moved to a hot wallet when needed to spend
○ User can see balance and how much money they have using public keys kept (safely) online

Wallet classification

wallets

hot cold

hard drive brain paper hardware

Personal
computer

smartphone

References
● Chaum, David, Amos Fiat, and Moni Naor. "Untraceable electronic cash." Advances in Cryptology—CRYPTO’88: Proceedings 8.

Springer New York, 1990. https://link.springer.com/content/pdf/10.1007/0-387-34799-2_25.pdf
● Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza, Zerocash:

Decentralized Anonymous Payments from Bitcoin, proceedings of the IEEE Symposium on Security & Privacy (Oakland) 2014,
459-474, IEEE, 2014. http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf

● Reed, Michael G., Paul F. Syverson, and David M. Goldschlag. "Anonymous connections and onion routing." IEEE Journal on
Selected areas in Communications 16.4 (1998): 482-494.
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-alexopoulos.pdf

● Bitcoin Network: https://en.bitcoin.it/wiki/Network
● Heilman, Ethan, et al. "Eclipse attacks on {Bitcoin’s}{peer-to-peer} network." 24th USENIX security symposium (USENIX security

15). 2015. https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
● For zero-knowledge: References from the book of Goldreich Oded: “Foundations of Cryptography: Volume 1, Basic Tools”

○ Sec. 4.2 until (included) Sec. 4.2.2
○ Sec. 4.3 until (included) Sec. 4.3.2
○ Sec. 4.7 until (included) Definition 4.7.2

● For the notions of commitment schemes, pseudorandom functions, and the Merkle tree construction please check the book
“Introduction to Modern Cryptography” by Jonathan Katz Yehuda Lindell.

