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A New Model for Mental Illness

Mental illness is the result of an 

impairment in prediction, due to 

having a distorted internal model of 

the world, possibly due to an 

impairment in learning. 



Applications of RL models to Computational Psychiatry

• RL models have been used to model almost all psychiatric disorders. 

• idea: disorder can be understood as impairment in learning/decision-

making.  

• In the following 2 lectures, two examples: 
- Substance Addiction 
- Depression



• Nearly 23 million Americans—almost one in 10—are addicted to 
alcohol or other drugs. 

• More than two-thirds of people with addiction abuse alcohol. 

• The top three drugs causing addiction are marijuana, opioid (narcotic) 
pain relievers, and cocaine.
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Substance Addiction: Diagnosis



Person must demonstrate two of the following criteria within a 12-month period: 

• regularly consuming larger amounts of a substance than intended or for a longer amount of 
time than planned 

• often attempting to or expressing a wish to moderate the intake of a substance without 
reducing consumption 

• spending long periods trying to get hold of a substance, use it, or recover from use 
• craving the substance, or expressing a strong desire to use it 
• failing to fulfil professional, educational, and family obligations 
• regularly using a substance in spite of any social, emotional, or personal issues it may be 

causing or making worse 
• giving up pastimes, passions, or social activities as a result of substance use 
• consuming the substance in places or situations that could cause physical injury 
• continuing to consume a substance despite being aware of any physical or psychological 

harm it is likely to have caused 
• increased tolerance, meaning that a person must consume more of the substance to achieve 

intoxication 
• withdrawal symptoms, or a physical response to not consuming the substance that is different 

for varying substances but might include sweating, shaking and nausea

> 2= mild;  > 4=moderate; > 6=severe

Substance Addiction: Diagnosis



 Addiction

Controlled Drug Use

Loss of Behavioural Control
?



Systems involved: the Reward System
Neuron
468

and stereotypy (Giros et al., 1996). However, such dopa-Table 1. Neurobiological Substrates for the Acute Reinforcing
mine transporter–deficient mice still could be trained toEffects of Drugs of Abuse
self-administer cocaine despite persistently high levels

Drug of Abuse Neurotransmitter Sites
of extracellular dopamine in dopaminergic terminal

Cocaine and Dopamine Nucleus accumbens fields, suggesting a more complex basis for the psycho-
amphetamines Serotonin Amygdala stimulant reinforcement (Rocha et al., 1998). Besides

Opiates Dopamine Ventral tegmental area inhibiting the dopamine transporter, psychostimulants
Opioid peptides Nucleus accumbens

also inhibit the reuptake of serotonin and noradrenaline,Nicotine Dopamine Ventral tegmental area
which may contribute to their reinforcing actions possi-Opioid peptides? Nucleus accumbens

Amygdala? bly in part by modulating dopamine neurotransmission
THC Dopamine Ventral tegmental area (Parsons et al., 1995; Tanda et al., 1997b).

Opioid peptides? Much like psychostimulants, opiate drugs are readily
Ethanol Dopamine Ventral tegmental area self-administered intravenously by animals, and the sys-

Opioid peptides Nucleus accumbens
temic and central administration of competitive opiateSerotonin Amygdala
antagonists will decrease opiate reinforcement (re-GABA

Glutamate viewed by Koob and Bloom, 1988; Di Chiara and North,
1992). The reinforcing actions of opiates appear to be
largelymediatedby the�opioid receptor since selective

the dopamine fibers of the region of the nucleus accum- � antagonists decrease opioid reinforcement in a dose-
bens (Roberts et al., 1980). Multiple receptor subtypes dependentmanner (Negus et al., 1993). In addition,mor-
exist for transducing the increase in extracellular dopa- phine reinforcement is abolished inmice with a targeted
mine induced by psychomotor stimulants into behav- disruption of the � opioid receptor gene (Matthes et al.,
ioral action. Antagonists for the dopamine D1, D2, and 1996).
D3 receptor subtypes all decrease the reinforcing prop- The reinforcing properties of opiates utilize the same
erties of cocaine (Woolverton and Johnson, 1992; Caine circuitry implicated in the actions of cocaine and am-
et al., 1995; Koob and Le Moal, 1997; Epping-Jordan et phetamine stimulants but may involve additional sites
al., 1998a).

of interaction (Koob and Bloom, 1988) (Table 1). Block-
The neuronal interaction responsible for cocaine rein-

ade of opioid receptors either in the VTA or the nucleus
forcement and the motivation to seek the drug appears accumbens will decrease heroin self-administration.
to reside within the nucleus accumbens (Chang et al., Furthermore, rats will lever press to administer opioid
1994; Carelli and Deadwyler, 1996; Peoples et al., 1997).

peptides in their nucleus accumbens or VTA, and opiateElectrophysiological recordings in animals receiving in-
administration into these restricted brain regions willtravenous cocaine by self-administration have identified
reinforce drug-seeking behavior (reviewed by Di Chiaraseveral patterns of neuronal responses in the nucleus
and North, 1992; Shippenberg et al., 1992). Opiates, likeaccumbens, all time-locked to the self-administered
other drugs of abuse, increase dopamine release in thedrug infusion. One group of neurons fires just before
nucleus accumbens (Di Chiara and Imperato, 1988;Pon-the lever press, and this anticipatory response may be
tieri et al., 1995) (see below). However, the reinforcingan initiation or trigger mechanism. A second group of
effect of opiates in the nucleus accumbens persistsneurons appears to change firing rate only after the
when all dopamine projections there are destroyed, sug-cocaine infusion, and these neurons may represent the
gesting that their reinforcing actions may involve bothdirect effects of reinforcement (Carelli and Deadwyler,
a dopamine-dependent (VTA) and a dopamine-inde-1996). Other neurons fire in proportion to the interinfu-
pendent (nucleus accumbens) mechanism (Koob andsion interval between consecutive self-administration
Bloom, 1988).responses (Peoples and West, 1996). However, there
Sedative-hypnotics, including ethanol, are thought toappears to be a fourth type of neuronal firing pattern

produce their reinforcing actions through multiple neu-unique to cocaine self-administration; these “cocaine-
rotransmitter systems (Engel et al., 1992) (Table 1). Onespecific cells” fire both before and after the cocaine-
of the major sites proposed for ethanol reinforcementreinforced response (Carelli and Deadwyler, 1996). Even
is modulation of GABA receptors (Liljequist and Engel,more intriguing is the observation that this subset of
1982; Samson and Harris, 1992). GABA antagonists re-neurons also fires to sensory stimuli (sounds or lights)
versemanyof the behavioral effects of ethanol (Liljequistthat have been experimentally paired with cocainedeliv-
and Engel, 1982; Samson and Harris, 1992). Further-ery. Nucleusaccumbens neuronsmay thereforemediate
more, the benzodiazepine R0 15–4513 (termed an in-conditioned drug responses (Carelli and Deadwyler,
verse agonist because it produces effects opposite to1996). Similarly, conditioned sensory stimuli are strong
those of typical benzodiazepines) will reverse some ofelicitors of “craving” in cocaine-taking humans.
the behavioral effects of ethanol, and dose-dependentlyRecent studies using recombinant DNA techniques to
reduces oral ethanol self-administration in rats (Samson“knock out” specific genes involved in dopaminergic
and Harris, 1992). When potent GABA antagonists areneurotransmission may provide evidence of some re-
microinjected into the brain, the most effective site todundancy in the neurochemical basis of cocaine rein-
reduce ethanol consumption is the central nucleus offorcement. In a mouse strain in which the gene for the
the amygdala (Hyttia and Koob, 1995).dopamine transporter was disrupted by homologous re-
Ethanol reinforcement also appears to involve activa-combination, psychostimulants failed to alter baseline

tion of brain dopamine systems. Acutely, ethanol con-extracellular dopamine levels and failed to induce be-
havioral effects such as enhanced locomotor activity sumption or systemic injection reduces the firing rate

•  Mesolimbic Dopaminergic system - 
increase of dopamine release  

• DA system: originates in the ventral 
tegmental area (VTA) of the midbrain, 
and projects to the nucleus accumbens 
(NA - ventral striatum).  
The amygdala (A), hippocampus (HC) 
and medial prefrontal cortex (PFC) 
send excitatory projections to the 
nucleus accumbens. 

• Drug seeking behaviour induced by 
Glutamatergic projections from the 
prefrontal cortex to the NAc. 



Theories of Addiction

• In the past 30 years, lots of theories, e.g.
• compulsion zone: self administration is automatically induced when brain drug 
levels within a specific range.
• set-point model (or allostasis): drugs decrease baseline level of reward 
sensitivity
• opponent-process theory: drug addiction = result of emotional pairing between 
pleasure and symptoms of withdrawal. Motivation is first related to pleasure, and 
then to relief from withdrawal.
• impulsivity (discounting): Incapacity to consider long-term costs, prefer 
immediate rewards (drugs) over larger delayed rewards (e.g., long-term health).
 

 recently, addiction as a vulnerability in the decision process;
Inspiration from reinforcement learning
→



TD learning  -- 101

ADR Computational processes of addiction

Discounting parameter uniform distribution, 0 001 γ 0 999
Number of Agents 1000
Learning rate (η) 0.05
Softmax selection parameter (m) 4

TABLE S1: Parameters used in all simulations.

Simulation details: Selection of drug-reward over non-drug reward

S0
Action
allowed

S1
Delay

3 ts

S3

1 ts
On action a1

Receive 
food

S2
Delay

3 ts

S4

1 ts

Receive
drug

On action a2

ITI
d=20 ts

FIGURE S1: State space for selection simulations.

Simulations were based on the 6-state world-model (Figure S1). The five main states S0 S1 S2 S3 S4

were fully observable (providing unique observations O0 O1 O2 O3 O4 respectively); the ITI state was

implemented as 1000 identical states, each providing observation O5. At the beginning of each simu-

lation, the agent began in state S0. The agent remained in state S0 until it took an action. On taking

action a1, the world changed to state S1, where it remained for 3 time-steps, after which it provided a

reward R S3 to the agent. On taking action a2, the world changed to state S2, where it remained for

3 time-steps, after which it provided drug R S4 D S4 to the agent. After 1 time-step in either state

S3 or S4 (as appropriate) the world entered the ITI state. Actually, the world entered one of the 1000

possible ITI states, but the agent distributed it’s belief across those states. After 20 time-steps, the world

transitioned to state S0.

This world-model simulates a standard two-lever choice paradigm in which an agent must push one

lever to receive food reward and one lever to receive drug, each of which is delivered as appropriate

after a short delay. The ITI state models the agents lack of knowledge about inter-trial intervals and

provides for more realistic simulations in the Agent model (S13).

All non-reward related parameters were held constant. Figure 1 in the main paper shows how the

probabilty of selecting the drug-reward depended on number of times the agent reached the drug-receipt

state (S4) and on the size of the contrasting reward R S3 . The selection probability also depended

on the size of the drug reward R S4 D S4 . For the figure in the main paper, R S4 1 0 D S4
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•  World: states, actions and rewards;
actions are selected so as to maximize future 
rewards.
• States are associated with value functions 
defined as expected future reward

Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in

Department of Neuroscience, 6-145 Jackson Hall, 321
Church Street SE, University of Minnesota, Minneap-
olis, MN 55455, USA. E-mail: redish@ahc.umn.edu
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•  Goal of TD learning : correctly learn the values. To do this, iteratively use the 
difference between expected and observed change in value -- the prediction error:

Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
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Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in

Department of Neuroscience, 6-145 Jackson Hall, 321
Church Street SE, University of Minnesota, Minneap-
olis, MN 55455, USA. E-mail: redish@ahc.umn.edu

R E P O R T S

10 DECEMBER 2004 VOL 306 SCIENCE www.sciencemag.org1944

 o
n
 J

u
ly

 8
, 
2
0
0
8
 

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f
ro

m
 

•  Value is then updated using:

• Once the value correctly predicts the reward, learning stops.
• a powerful learning algorithm in machine learning



Phasic dopamine signals prediction error 

• the “largest success of computational 
neuroscience” [Niv] 
 
Phasic DA = Prediction Error 
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A Neural Substrate of
Prediction and Reward

Wolfram Schultz, Peter Dayan, P. Read Montague*

The capacity to predict future events permits a creature to detect, model, and manipulate
the causal structure of its interactions with its environment. Behavioral experiments
suggest that learning is driven by changes in the expectations about future salient events
such as rewards and punishments. Physiological work has recently complemented these
studies by identifying dopaminergic neurons in the primate whose fluctuating output
apparently signals changes or errors in the predictions of future salient and rewarding
events. Taken together, these findings can be understood through quantitative theories
of adaptive optimizing control.

An adaptive organism must be able to
predict future events such as the presence of
mates, food, and danger. For any creature,
the features of its niche strongly constrain
the time scales for prediction that are likely
to be useful for its survival. Predictions give
an animal time to prepare behavioral reac-
tions and can be used to improve the choic-
es an animal makes in the future. This
anticipatory capacity is crucial for deciding
between alternative courses of action be-
cause some choices may lead to food where-
as others may result in injury or loss of
resources.

Experiments show that animals can pre-
dict many different aspects of their environ-
ments, including complex properties such as
the spatial locations and physical character-
istics of stimuli (1). One simple, yet useful
prediction that animals make is the proba-
ble time and magnitude of future rewarding
events. “Reward” is an operational concept
for describing the positive value that a crea-
ture ascribes to an object, a behavioral act,

or an internal physical state. The function
of reward can be described according to the
behavior elicited (2). For example, appeti-
tive or rewarding stimuli induce approach
behavior that permits an animal to con-
sume. Rewards may also play the role of
positive reinforcers where they increase the
frequency of behavioral reactions during
learning and maintain well-established ap-
petitive behaviors after learning. The re-
ward value associated with a stimulus is not
a static, intrinsic property of the stimulus.
Animals can assign different appetitive val-
ues to a stimulus as a function of their
internal states at the time the stimulus is
encountered and as a function of their ex-
perience with the stimulus.

One clear connection between reward
and prediction derives from a wide variety
of conditioning experiments (1). In these
experiments, arbitrary stimuli with no in-
trinsic reward value will function as reward-
ing stimuli after being repeatedly associated
in time with rewarding objects—these ob-
jects are one form of unconditioned stimu-
lus (US). After such associations develop,
the neutral stimuli are called conditioned
stimuli (CS). In the descriptions that fol-
low, we call the appetitive CS the sensory
cue and the US the reward. It should be
kept in mind, however, that learning that
depends on CS-US pairing takes many dif-
ferent forms and is not always dependent on
reward (for example, learning associated

with aversive stimuli). In standard condi-
tioning paradigms, the sensory cue must
consistently precede the reward in order for
an association to develop. After condition-
ing, the animal’s behavior indicates that the
sensory cue induces a prediction about the
likely time and magnitude of the reward
and tends to elicit approach behavior. It
appears that this form of learning is associ-
ated with a transfer of an appetitive or
approach-eliciting component of the re-
ward back to the sensory cue.

Some theories of reward-dependent
learning suggest that learning is driven by
the unpredictability of the reward by the
sensory cue (3, 4). One of the main ideas is
that no further learning takes place when
the reward is entirely predicted by a sensory
cue (or cues). For example, if presentation
of a light is consistently followed by food, a
rat will learn that the light predicts the
future arrival of food. If, after such training,
the light is paired with a sound and this pair
is consistently followed by food, then some-
thing unusual happens—the rat’s behavior
indicates that the light continues to predict
food, but the sound predicts nothing. This
phenomenon is called “blocking.” The pre-
diction-based explanation is that the light
fully predicts the food that arrives and the
presence of the sound adds no new predic-
tive (useful) information; therefore, no as-
sociation developed to the sound (5). It
appears therefore that learning is driven by
deviations or “errors” between the predicted
time and amount of rewards and their ac-
tual experienced times and magnitudes [but
see (4)].

Engineered systems that are designed to
optimize their actions in complex environ-
ments face the same challenges as animals,
except that the equivalent of rewards and
punishments are determined by design
goals. One established method by which
artificial systems can learn to predict is
called the temporal difference (TD) algo-
rithm (6). This algorithm was originally
inspired by behavioral data on how animals
actually learn predictions (7). Real-world
applications of TD models abound. The
predictions learned by TD methods can also
be used to implement a technique called
dynamic programming, which specifies how
a system can come to choose appropriate
actions. In this article, we review how these
computational methods provide an inter-
pretation of the activity of dopamine neu-
rons thought to mediate reward-processing
and reward-dependent learning. The con-
nection between the computational theory
and the experimental results is striking and
provides a quantitative framework for future
experiments and theories on the computa-
tional roles of ascending monoaminergic
systems (8–13).
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the causal structure of its interactions with its environment. Behavioral experiments
suggest that learning is driven by changes in the expectations about future salient events
such as rewards and punishments. Physiological work has recently complemented these
studies by identifying dopaminergic neurons in the primate whose fluctuating output
apparently signals changes or errors in the predictions of future salient and rewarding
events. Taken together, these findings can be understood through quantitative theories
of adaptive optimizing control.
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predict future events such as the presence of
mates, food, and danger. For any creature,
the features of its niche strongly constrain
the time scales for prediction that are likely
to be useful for its survival. Predictions give
an animal time to prepare behavioral reac-
tions and can be used to improve the choic-
es an animal makes in the future. This
anticipatory capacity is crucial for deciding
between alternative courses of action be-
cause some choices may lead to food where-
as others may result in injury or loss of
resources.

Experiments show that animals can pre-
dict many different aspects of their environ-
ments, including complex properties such as
the spatial locations and physical character-
istics of stimuli (1). One simple, yet useful
prediction that animals make is the proba-
ble time and magnitude of future rewarding
events. “Reward” is an operational concept
for describing the positive value that a crea-
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of reward can be described according to the
behavior elicited (2). For example, appeti-
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sume. Rewards may also play the role of
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learning and maintain well-established ap-
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ward value associated with a stimulus is not
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Animals can assign different appetitive val-
ues to a stimulus as a function of their
internal states at the time the stimulus is
encountered and as a function of their ex-
perience with the stimulus.

One clear connection between reward
and prediction derives from a wide variety
of conditioning experiments (1). In these
experiments, arbitrary stimuli with no in-
trinsic reward value will function as reward-
ing stimuli after being repeatedly associated
in time with rewarding objects—these ob-
jects are one form of unconditioned stimu-
lus (US). After such associations develop,
the neutral stimuli are called conditioned
stimuli (CS). In the descriptions that fol-
low, we call the appetitive CS the sensory
cue and the US the reward. It should be
kept in mind, however, that learning that
depends on CS-US pairing takes many dif-
ferent forms and is not always dependent on
reward (for example, learning associated

with aversive stimuli). In standard condi-
tioning paradigms, the sensory cue must
consistently precede the reward in order for
an association to develop. After condition-
ing, the animal’s behavior indicates that the
sensory cue induces a prediction about the
likely time and magnitude of the reward
and tends to elicit approach behavior. It
appears that this form of learning is associ-
ated with a transfer of an appetitive or
approach-eliciting component of the re-
ward back to the sensory cue.

Some theories of reward-dependent
learning suggest that learning is driven by
the unpredictability of the reward by the
sensory cue (3, 4). One of the main ideas is
that no further learning takes place when
the reward is entirely predicted by a sensory
cue (or cues). For example, if presentation
of a light is consistently followed by food, a
rat will learn that the light predicts the
future arrival of food. If, after such training,
the light is paired with a sound and this pair
is consistently followed by food, then some-
thing unusual happens—the rat’s behavior
indicates that the light continues to predict
food, but the sound predicts nothing. This
phenomenon is called “blocking.” The pre-
diction-based explanation is that the light
fully predicts the food that arrives and the
presence of the sound adds no new predic-
tive (useful) information; therefore, no as-
sociation developed to the sound (5). It
appears therefore that learning is driven by
deviations or “errors” between the predicted
time and amount of rewards and their ac-
tual experienced times and magnitudes [but
see (4)].

Engineered systems that are designed to
optimize their actions in complex environ-
ments face the same challenges as animals,
except that the equivalent of rewards and
punishments are determined by design
goals. One established method by which
artificial systems can learn to predict is
called the temporal difference (TD) algo-
rithm (6). This algorithm was originally
inspired by behavioral data on how animals
actually learn predictions (7). Real-world
applications of TD models abound. The
predictions learned by TD methods can also
be used to implement a technique called
dynamic programming, which specifies how
a system can come to choose appropriate
actions. In this article, we review how these
computational methods provide an inter-
pretation of the activity of dopamine neu-
rons thought to mediate reward-processing
and reward-dependent learning. The con-
nection between the computational theory
and the experimental results is striking and
provides a quantitative framework for future
experiments and theories on the computa-
tional roles of ascending monoaminergic
systems (8–13).
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Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in
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Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V
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gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in
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value in taking action Sk Y
ai

Sl counter-
balances the reward achieved on entering
state Sl. When this happens, d 0 0. Taking
transient dopamine as the d signal (4, 5, 7)
correctly predicted rewards produce no do-
pamine signal (16, 17).

However, cocaine and other addictive drugs
produce a transient increase in dopamine
through neuropharmacological mechanisms
(1, 2, 8). The concept of a neuropharmaco-
logically produced dopamine surge can be
modeled by assuming that these drugs induce
an increase in d that cannot be compensated by
changes in the value (19). In other words, the
effect of addictive drugs is to produce a
positive d independent of the change in value
function, making it impossible for the agent to
learn a value function that will cancel out the
drug-induced increase in d. Equation 2 is thus
replaced with

d 0 maxAgdERðSlÞ þ V ðSlÞ^

j VðSkÞ þ DðSlÞ; DðSlÞZ ð4Þ

where D(Sl) indicates a dopamine surge oc-
curring on entry into state Sl. Equation 4 re-
duces to normal TDRL (Eq. 2) when D(Sl) 0 0
but decreases asymptotically to a minimum d
of D(Sl) when D(Sl) 9 0. This always pro-
duces a positive reward-error signal. Thus,
the values of states leading to a dopamine
surge, D 9 0, will approach infinity.

When given a choice between two ac-
tions, S0 Y

a1 S1 and S0 Y
a2 S2, the agent

chooses actions proportional to the values of
the subsequent states, S1 and S2. The more
valuable the state taking an action leads to,
the more likely the agent is to take that
action. In TDRL, the values of states leading
to natural rewards asymptotically approach a
finite value (the discounted, total expected
future reward); however, in the modified
model, the values of states leading to drug
receipt increase without bound. Thus, the
more the agent traverses the action sequence
leading to drug receipt, the larger the value
of the states leading to that sequence and the
more likely the agent is to select an action
leading to those states.

In this model, drug receipt produces a d 9 0
signal, which produces an increase in the
values of states leading to the drug receipt.
Thus, the values of states leading to drug
receipt increase without bound. In contrast,
the values of states leading to natural reward
increase asymptotically to a value approxi-
mating Eq. 1. This implies that the selection
probability between actions leading to natu-
ral rewards will reach an asymptotic balance.
However, the selection probability of actions
leading to drug receipt will depend on the
number of experiences. Simulations bear this
out (Fig. 1).

In the simulations, drug receipt entails a
normal-sized reward R(s) that can be com-

pensated by changes in value and a small
dopamine signal D(s) that cannot (14). Early
use of drugs occurs because they are highly
rewarding (1, 3, 20), but this use transitions
to a compulsive use with time (1, 3, 20–22).
In the model, the R(s) term provides for the
early rewarding component, whereas the grad-
ual effect of the D(s) term provides for the
eventual transition to addiction. This model
thus shows that a transition to addiction can
occur without any explicit sensitization or
tolerance to dopamine, at least in principle.

The unbounded increase in value of states
leading to drug reward does not mean that
with enough experience, drugs of abuse are
always selected over nondrug rewards. In-
stead, it predicts that the likelihood of
selecting the drug over a nondrug reward
will depend on the size of the contrasting
nondrug reward relative to the current value
of the states leading to drug receipt (Fig. 1).

When animals are given a choice be-
tween food and cocaine, the probability of
selecting cocaine depends on the amount of
food available as an alternative and the cost
of each choice (23, 24). Similarly, humans
given a choice between cocaine and money
will decrease their cocaine selections with
increased value of the alternative (25). This
may explain the success of vouchers in
treatment (25). This will continue to be true
even in well-experienced (highly addicted)

subjects, but the sensitivity to the alternate
should decrease with experience (see below).
This may explain the incompleteness of the
success of vouchers (25).

Natural rewards are sensitive to cost in
that animals (including humans) will work
harder for more valuable rewards. This level
of sensitivity is termed elasticity in econom-
ics. Addictive drugs are also sensitive to cost in
that increased prices decrease usage (26, 27).
However, whereas the use of addictive drugs
does show sensitivity to cost, that sensitivity
is inelastic relative to similar measures ap-
plied to natural rewards (26, 28). The TDRL
model proposed here produces just such an
effect: Both modeled drugs and natural
rewards are sensitive to cost, but drug reward
is less elastic than natural rewards (Fig. 2).

In TDRL, the values of states leading to
natural rewards decrease asymptotically to a
stable value that depends on the time to the
reward, the reward level, and the discounting
factors. However, in the modified TDRL
model, the values of states leading to drug
rewards increase without bound, producing a
ratio of a constant cost to increasing values.
This decreasing ratio predicts that the elas-
ticity of drugs to cost should decrease with
experience, whereas it should not for natural
rewards (fig. S4).

The hypothesis that values of states
leading to drug receipt increase without

Fig. 1. Probability of selecting a
drug-receipt pathway depends on
an interaction between drug level,
experience, and contrasting reward.
Each line shows the average proba-
bility of selecting the drug-receipt
pathway, S0 Y

a2 S2, over the contrast-
ing reward pathway, S0 Y

a1 S1, as a
function of the size of the contrasting
reward R(S3). (State space is shown in
fig. S1.) Drug receipt on entering state
S4 was R(S4) 0 1.0 and D(S4) 0 0.025.
Individual simulations are shown by
dots. Additional details provided in
(14).
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• Cocaine and other drugs produce a transient increase in dopamine
• idea: this dopamine surge induce an increase in prediction error δ that can’t be 
compensated by changes in values

 where D(Sl) indicates a dopamine surge occurring on entry into Sl.
Consequence: values of states leading to the drug increase without bound.



Addiction as a Computational
Process Gone Awry

A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems. These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine. TDRL learns to predict reward by driving that reward-error
signal to zero. By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational model of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms used by normal
reinforcement-learning systems (1–3), then it
should be possible to construct a computational
model based on current reinforcement-learning
theories (4–7) that inappropriately selects an
Baddictive[ stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means. Many
drugs of abuse increase dopamine levels
either directly Ee.g., cocaine (8)^ or indirectly
Ee.g., nicotine (9, 10) and heroin (11)^. A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the sensitiv-
ity of the probability of selection of drug
receipt to prior drug experience, to the size
of the contrasting nondrug reward, and the
sensitivity but inelasticity of drugs of abuse
to cost.

The proposed model has its basis in
temporal-difference reinforcement models
in which actions are selected so as to
maximize future reward (6, 7). This is done
through the calculation of a value function
V Es(t)^, dependent on the state of the world
s(t). The value function is defined as the
expected future reward, discounted by the
expected time to reward:

VðtÞ 0
Z V

t

gtjtEERðtÞ^dt ð1Þ

where EER(t)^ is the expected reward at time
t and g is a discounting factor (0 G g G 1)
reducing the value of delayed rewards.
Equation 1 assumes exponential discounting

in order to accommodate the learning algo-
rithm (6, 7); however, animals (including
humans) show hyperbolic discounting of
future rewards (12, 13). This will be
addressed by including multiple discounting
time scales within the model (14).

In temporal-difference reinforcement
learning (TDRL), an agent (the subject)
traverses a world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (i.e., external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers a reward to the
agent. This is an example of changing state
because of processes external to the agent. In
contrast, in a model of FR1 conditioning, an
agent may be in an action-available state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state until the
agent takes the action (of pushing the lever),
which will move the world into a reward
state. For simplicity later, an available action
will be written as Sk Y

ai
Sl, which indicates

that the agent can achieve state Sl if it is in
state Sk and selects action ai. Although the
model in this paper is phrased in terms of the
agent taking Baction[ ai, addicts have very
flexible methods of finding drugs. It is not
necessary for the model actions to be simple
motor actions. Sk Y

ai
Sl indicates the avail-

ability of achieving state Sl from state Sk.
The agent selects actions proportional to the
expected benefit that would be accrued from
taking the action; the expected benefit can be
determined from the expected change in
value and reward (4, 6, 14, 15).

The goal of TDRL is to correctly learn
the value of each state. This can be learned
by calculating the difference between ex-

pected and observed changes in value (6).
This signal, termed d, can be used to learn
sequences that maximize the amount of
reward received over time (6). d is not equiv-
alent to pleasure; instead, it is an internal
signal indicative of the discrepancy between
expectations and observations (5, 7, 15).
Essentially, if the change in value or the
achieved reward was better than expected
(d 9 0), then one should increase the value of
the state that led to it. If it was no different
from expected (d 0 0), than the situation is
well learned and nothing needs to be changed.
Because d transfers backward from reward
states to anticipatory states with learning,
actions can be chained together to learn se-
quences (6). This is the heart of the TDRL
algorithm (4–7).

TDRL learns the value function by
calculating two equations as the agent takes
each action. If the agent leaves state Sk and
enters state Sl at time t, at which time it
receives reward R(Sl), then

dðtÞ 0 gdERðSlÞ þ VðSlÞ^ j V ðSkÞ ð2Þ

where gd indicates raising the discounting
factor g by the delay d spent by the animal in
state Sk (14). V(Sk) is then updated as

V ðSkÞ @ VðSkÞ þ hVd ð3Þ

where hV is a learning rate parameter.
Phasic increases in dopamine are seen

after unexpected natural rewards (16); how-
ever, with learning, these phasic increases
shift from the time of reward delivery to
cuing stimuli (16). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (i.e., unexpect-
ed changes in value) (4, 16). These increases
can occur either with unexpected reward or
with unexpected cue stimuli known to sig-
nal reward (16) and have been hypothesized
to signal d (4, 7, 16). Models of dopamine
signaling as d have been found to be
compatible with many aspects of the data
(4, 5, 16, 17).

The results simulated below follow from
the incorporation of neuropharmacologically
produced dopamine into temporal difference
models. The figures below were generated
from a simulation by using a TDRL instan-
tiation that allows for action selection within
a semi-Markov state space, enabling simu-
lations of delay-related experiments (14).
The model also produces hyperbolic dis-
counting under normal conditions, consistent
with experimental data (12, 13), by a sum-
mation of multiple exponential discounting
components (14), a hypothesis supported by
recent functional magnetic resonance imag-
ing data (18).

The key to TDRL is that, once the value
function correctly predicts the reward, learn-
ing stops. The value function can be said to
compensate for the reward: The change in
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value in taking action Sk Y
ai

Sl counter-
balances the reward achieved on entering
state Sl. When this happens, d 0 0. Taking
transient dopamine as the d signal (4, 5, 7)
correctly predicted rewards produce no do-
pamine signal (16, 17).

However, cocaine and other addictive drugs
produce a transient increase in dopamine
through neuropharmacological mechanisms
(1, 2, 8). The concept of a neuropharmaco-
logically produced dopamine surge can be
modeled by assuming that these drugs induce
an increase in d that cannot be compensated by
changes in the value (19). In other words, the
effect of addictive drugs is to produce a
positive d independent of the change in value
function, making it impossible for the agent to
learn a value function that will cancel out the
drug-induced increase in d. Equation 2 is thus
replaced with

d 0 maxAgdERðSlÞ þ V ðSlÞ^

j VðSkÞ þ DðSlÞ; DðSlÞZ ð4Þ

where D(Sl) indicates a dopamine surge oc-
curring on entry into state Sl. Equation 4 re-
duces to normal TDRL (Eq. 2) when D(Sl) 0 0
but decreases asymptotically to a minimum d
of D(Sl) when D(Sl) 9 0. This always pro-
duces a positive reward-error signal. Thus,
the values of states leading to a dopamine
surge, D 9 0, will approach infinity.

When given a choice between two ac-
tions, S0 Y

a1 S1 and S0 Y
a2 S2, the agent

chooses actions proportional to the values of
the subsequent states, S1 and S2. The more
valuable the state taking an action leads to,
the more likely the agent is to take that
action. In TDRL, the values of states leading
to natural rewards asymptotically approach a
finite value (the discounted, total expected
future reward); however, in the modified
model, the values of states leading to drug
receipt increase without bound. Thus, the
more the agent traverses the action sequence
leading to drug receipt, the larger the value
of the states leading to that sequence and the
more likely the agent is to select an action
leading to those states.

In this model, drug receipt produces a d 9 0
signal, which produces an increase in the
values of states leading to the drug receipt.
Thus, the values of states leading to drug
receipt increase without bound. In contrast,
the values of states leading to natural reward
increase asymptotically to a value approxi-
mating Eq. 1. This implies that the selection
probability between actions leading to natu-
ral rewards will reach an asymptotic balance.
However, the selection probability of actions
leading to drug receipt will depend on the
number of experiences. Simulations bear this
out (Fig. 1).

In the simulations, drug receipt entails a
normal-sized reward R(s) that can be com-

pensated by changes in value and a small
dopamine signal D(s) that cannot (14). Early
use of drugs occurs because they are highly
rewarding (1, 3, 20), but this use transitions
to a compulsive use with time (1, 3, 20–22).
In the model, the R(s) term provides for the
early rewarding component, whereas the grad-
ual effect of the D(s) term provides for the
eventual transition to addiction. This model
thus shows that a transition to addiction can
occur without any explicit sensitization or
tolerance to dopamine, at least in principle.

The unbounded increase in value of states
leading to drug reward does not mean that
with enough experience, drugs of abuse are
always selected over nondrug rewards. In-
stead, it predicts that the likelihood of
selecting the drug over a nondrug reward
will depend on the size of the contrasting
nondrug reward relative to the current value
of the states leading to drug receipt (Fig. 1).

When animals are given a choice be-
tween food and cocaine, the probability of
selecting cocaine depends on the amount of
food available as an alternative and the cost
of each choice (23, 24). Similarly, humans
given a choice between cocaine and money
will decrease their cocaine selections with
increased value of the alternative (25). This
may explain the success of vouchers in
treatment (25). This will continue to be true
even in well-experienced (highly addicted)

subjects, but the sensitivity to the alternate
should decrease with experience (see below).
This may explain the incompleteness of the
success of vouchers (25).

Natural rewards are sensitive to cost in
that animals (including humans) will work
harder for more valuable rewards. This level
of sensitivity is termed elasticity in econom-
ics. Addictive drugs are also sensitive to cost in
that increased prices decrease usage (26, 27).
However, whereas the use of addictive drugs
does show sensitivity to cost, that sensitivity
is inelastic relative to similar measures ap-
plied to natural rewards (26, 28). The TDRL
model proposed here produces just such an
effect: Both modeled drugs and natural
rewards are sensitive to cost, but drug reward
is less elastic than natural rewards (Fig. 2).

In TDRL, the values of states leading to
natural rewards decrease asymptotically to a
stable value that depends on the time to the
reward, the reward level, and the discounting
factors. However, in the modified TDRL
model, the values of states leading to drug
rewards increase without bound, producing a
ratio of a constant cost to increasing values.
This decreasing ratio predicts that the elas-
ticity of drugs to cost should decrease with
experience, whereas it should not for natural
rewards (fig. S4).

The hypothesis that values of states
leading to drug receipt increase without

Fig. 1. Probability of selecting a
drug-receipt pathway depends on
an interaction between drug level,
experience, and contrasting reward.
Each line shows the average proba-
bility of selecting the drug-receipt
pathway, S0 Y

a2 S2, over the contrast-
ing reward pathway, S0 Y

a1 S1, as a
function of the size of the contrasting
reward R(S3). (State space is shown in
fig. S1.) Drug receipt on entering state
S4 was R(S4) 0 1.0 and D(S4) 0 0.025.
Individual simulations are shown by
dots. Additional details provided in
(14).
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Fig. 2. Elasticity of drug receipt and
natural rewards. Both drug receipt and
natural rewards are sensitive to costs,
but natural rewards are more elastic.
Each dot indicates the number of
choices made within a session. Sessions
were limited by simulated time. The
curves have been normalized to the
mean number of choices made at zero
cost.
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Redish’s (Science, 2004) model

•  Drug is hijacking the learning pathways, 
creating a prediction error where there 
should be none.



bound implies that the elasticity to cost
should decrease with use, whereas the
elasticity of natural rewards should not. This
also suggests that increasing the reward for
not choosing the drug Esuch as vouchers
(25)^ will be most effective early in the
transition from casual drug use to addiction.

The hypothesis that cocaine produces a
d 9 0 dopamine signal on drug receipt implies
that cocaine should not show blocking. Block-
ing is an animal-learning phenomenon in
which pairing a reinforcer with a conditioning
stimulus does not show association if the rein-
forcer is already predicted by another stimulus
(17, 29, 30). For example, if a reinforcer X is
paired with cue A, animals will learn to
respond to cue A. If X is subsequently paired
with simultaneously presented cues A and B,
animals will not learn to associate X with B.
This is thought to occur because X is com-
pletely predicted by A, and there is no error
signal (d 0 0) to drive the learning (17, 29, 30).
If cocaine is used as the reinforcer instead of
natural rewards, the dopamine signal should
always be present (d 9 0), even for the AB
stimulus. Thus, cocaine (and other drugs of
abuse) should not show blocking.

The hypothesis that the release of dopa-
mine by cocaine accesses TDRL systems
implies that experienced animals will show a
double dopamine signal in cued-response
tasks (14). As with natural rewards, a tran-
sient dopamine signal should appear to a
cuing signal that has been associated with
reward (16). However, whereas natural
rewards only produce dopamine release if
unexpected (16, 17), cocaine produces dopa-
mine release directly (8), thus, after learning
both the cue and the cocaine should produce
dopamine (Fig. 3). Supporting this hypothe-
sis, Phillips et al. (31) found by using fast-
scan cyclic voltammetry that, in rats trained
to associate an audiovisual signal with co-
caine, both the audiovisual stimulus and the
cocaine itself produced dramatic increases

in the extracellular concentration of dopa-
mine in the nucleus accumbens.

Substance abuse is a complex disorder.
TDRL explains some phenomena that arise
in addiction and makes testable predictions
about other phenomena. The test of a theory
such as this one is not whether it encom-
passes all phenomena associated with addic-
tion, but whether the predictions that follow
from it are confirmed.

This model has been built on assump-
tions about cocaine, but cocaine is far from
the only substance that humans (and other
animals) abuse. Many drugs of abuse indi-
rectly produce dopamine signals, including
nicotine (10) and heroin and other opiates
(11). Although these drugs have other effects
as well (1), the effects on dopamine should
produce the consequences described above,
leading to inelasticity and compulsion.

Historically, an important theoretical ex-
planation of addictive behavior has been that
of rational addiction (32), in which the user
is assumed to maximize value or Butility[
over time, but because long-term rewards for
quitting are discounted more than short-term
penalties, the maximized function entails re-
maining addicted. The TDRL theory proposed
in this paper differs from that of rational
addiction because TDRL proposes that addic-
tion is inherently irrational: It uses the same
mechanisms as natural rewards, but the sys-
tem behaves in a nonoptimal way because of
neuropharmacological effects on dopamine.
Because the value function cannot compen-
sate for the D(s) component, the D(s) com-
ponent eventually overwhelms the R(s)
reward terms (from both drug and contrast-
ing natural rewards). Eventually, the agent
behaves irrationally and rejects the larger
rewards in favor of the (less rewarding)
addictive stimulus. The TDRL and rational-
addiction theories make testably different
predictions: Although rational addiction pre-
dicts that drugs of abuse will show elasticity

to cost similar to those of natural rewards,
the TDRL theory predicts that drugs of
abuse will show increasing inelasticity with
use.

The rational addiction theory (32) as-
sumes exponential discounting of future
rewards, whereas humans and other animals
consistently show hyperbolic discounting of
future rewards (12, 13). Ainslie (13) has sug-
gested that the Bcross-over[ effect that occurs
with hyperbolic discounting explains many
aspects of addiction. The TDRL model used
here also shows hyperbolic discounting (14)
and so accesses the results noted by Ainslie
(13). However, in the theory proposed here,
hyperbolic discounting is not the fundamen-
tal reason for the agent getting trapped in a
nonoptimal state. Rather, the TDRL theory
hypothesizes that it is the neuropharmaco-
logical effect of certain drugs on dopamine
signals that drives the agent into the nonop-
timal state.

Robinson and Berridge (22) have sug-
gested that dopamine mediates the desire to
achieve a goal (Bwanting[), differentiating
wanting from the hedonic desire of Bliking.[
As noted by McClure et al. (15), Robinson
and Berridge_s concept of incentive salience
(22) has a direct correspondence to variables
in TDRL: the value of a state reachable by
an action. If an agent is in state S0 and can
achieve state S1 via action S0 Y

ai
S1 and if

state S1 has a much greater value than state
S0, then S0 Y

ai
S1 can be said to be a pathway

with great incentive salience. The value func-
tion is a means of guiding decisions and thus is
more similar to wanting than to liking in
the terminology of Robinson and Berridge
(15, 22). In TDRL, dopamine does not
directly encode wanting, but because learning
an appropriate value function depends on an
accurate d signal, dopamine will be necessary
for acquisition of wanting.

Many unmodeled phenomena play impor-
tant roles in the compulsive self-administration
of drugs of abuse (1), including titration of
internal drug levels (33), sensitization and
tolerance (34), withdrawal symptoms and
release from them (20), and compensation
mechanisms (35, 36). Additionally, individ-
uals show extensive interpersonal variability
(37, 38). Although these aspects are not ad-
dressed in the model presented here, many of
these can be modeled by adding parameters
to the model: for example, sensitization can
be included by allowing the drug-induced d
parameter D(s) to vary with experience.

TDRL forms a family of computational
models with which to model addictive
processes. Modifications of the model can
be used to incorporate the unmodeled exper-
imental results from the addiction literature.
For example, an important question in this
model is whether the values of states leading
to drug receipt truly increase without bound.
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Fig. 3. Dopamine signals. (Left) With natural rewards, dopamine initially occurs primarily at
reward receipt (on entry into reward state S1) and shifts to the conditioned stimulus [on entry into
interstimulus-interval (ISI) state S0] with experience. (State space is shown in fig. S7.) (Right) With
drugs that produce a dopamine signal neuropharmacologically, dopamine continues to occur at
the drug receipt (on entry into reward state S1) even after experience, as well as shifting to the
conditioned stimulus (on entry into ISI state S0), thus producing a double dopamine signal.
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Redish’s (2004) model

•  Drug is hijacking the learning pathways, creating a prediction error where there 
should be none.



Redish’s (2004) model: Predictions

•  With repeated experience, drug choice becomes: 
1) less sensitive to alternative non drug reinforcers [some evidence];  
2) more inelastic to costs [confirmed]

value in taking action Sk Y
ai

Sl counter-
balances the reward achieved on entering
state Sl. When this happens, d 0 0. Taking
transient dopamine as the d signal (4, 5, 7)
correctly predicted rewards produce no do-
pamine signal (16, 17).

However, cocaine and other addictive drugs
produce a transient increase in dopamine
through neuropharmacological mechanisms
(1, 2, 8). The concept of a neuropharmaco-
logically produced dopamine surge can be
modeled by assuming that these drugs induce
an increase in d that cannot be compensated by
changes in the value (19). In other words, the
effect of addictive drugs is to produce a
positive d independent of the change in value
function, making it impossible for the agent to
learn a value function that will cancel out the
drug-induced increase in d. Equation 2 is thus
replaced with

d 0 maxAgdERðSlÞ þ V ðSlÞ^

j VðSkÞ þ DðSlÞ; DðSlÞZ ð4Þ

where D(Sl) indicates a dopamine surge oc-
curring on entry into state Sl. Equation 4 re-
duces to normal TDRL (Eq. 2) when D(Sl) 0 0
but decreases asymptotically to a minimum d
of D(Sl) when D(Sl) 9 0. This always pro-
duces a positive reward-error signal. Thus,
the values of states leading to a dopamine
surge, D 9 0, will approach infinity.

When given a choice between two ac-
tions, S0 Y

a1 S1 and S0 Y
a2 S2, the agent

chooses actions proportional to the values of
the subsequent states, S1 and S2. The more
valuable the state taking an action leads to,
the more likely the agent is to take that
action. In TDRL, the values of states leading
to natural rewards asymptotically approach a
finite value (the discounted, total expected
future reward); however, in the modified
model, the values of states leading to drug
receipt increase without bound. Thus, the
more the agent traverses the action sequence
leading to drug receipt, the larger the value
of the states leading to that sequence and the
more likely the agent is to select an action
leading to those states.

In this model, drug receipt produces a d 9 0
signal, which produces an increase in the
values of states leading to the drug receipt.
Thus, the values of states leading to drug
receipt increase without bound. In contrast,
the values of states leading to natural reward
increase asymptotically to a value approxi-
mating Eq. 1. This implies that the selection
probability between actions leading to natu-
ral rewards will reach an asymptotic balance.
However, the selection probability of actions
leading to drug receipt will depend on the
number of experiences. Simulations bear this
out (Fig. 1).

In the simulations, drug receipt entails a
normal-sized reward R(s) that can be com-

pensated by changes in value and a small
dopamine signal D(s) that cannot (14). Early
use of drugs occurs because they are highly
rewarding (1, 3, 20), but this use transitions
to a compulsive use with time (1, 3, 20–22).
In the model, the R(s) term provides for the
early rewarding component, whereas the grad-
ual effect of the D(s) term provides for the
eventual transition to addiction. This model
thus shows that a transition to addiction can
occur without any explicit sensitization or
tolerance to dopamine, at least in principle.

The unbounded increase in value of states
leading to drug reward does not mean that
with enough experience, drugs of abuse are
always selected over nondrug rewards. In-
stead, it predicts that the likelihood of
selecting the drug over a nondrug reward
will depend on the size of the contrasting
nondrug reward relative to the current value
of the states leading to drug receipt (Fig. 1).

When animals are given a choice be-
tween food and cocaine, the probability of
selecting cocaine depends on the amount of
food available as an alternative and the cost
of each choice (23, 24). Similarly, humans
given a choice between cocaine and money
will decrease their cocaine selections with
increased value of the alternative (25). This
may explain the success of vouchers in
treatment (25). This will continue to be true
even in well-experienced (highly addicted)

subjects, but the sensitivity to the alternate
should decrease with experience (see below).
This may explain the incompleteness of the
success of vouchers (25).

Natural rewards are sensitive to cost in
that animals (including humans) will work
harder for more valuable rewards. This level
of sensitivity is termed elasticity in econom-
ics. Addictive drugs are also sensitive to cost in
that increased prices decrease usage (26, 27).
However, whereas the use of addictive drugs
does show sensitivity to cost, that sensitivity
is inelastic relative to similar measures ap-
plied to natural rewards (26, 28). The TDRL
model proposed here produces just such an
effect: Both modeled drugs and natural
rewards are sensitive to cost, but drug reward
is less elastic than natural rewards (Fig. 2).

In TDRL, the values of states leading to
natural rewards decrease asymptotically to a
stable value that depends on the time to the
reward, the reward level, and the discounting
factors. However, in the modified TDRL
model, the values of states leading to drug
rewards increase without bound, producing a
ratio of a constant cost to increasing values.
This decreasing ratio predicts that the elas-
ticity of drugs to cost should decrease with
experience, whereas it should not for natural
rewards (fig. S4).

The hypothesis that values of states
leading to drug receipt increase without

Fig. 1. Probability of selecting a
drug-receipt pathway depends on
an interaction between drug level,
experience, and contrasting reward.
Each line shows the average proba-
bility of selecting the drug-receipt
pathway, S0 Y

a2 S2, over the contrast-
ing reward pathway, S0 Y

a1 S1, as a
function of the size of the contrasting
reward R(S3). (State space is shown in
fig. S1.) Drug receipt on entering state
S4 was R(S4) 0 1.0 and D(S4) 0 0.025.
Individual simulations are shown by
dots. Additional details provided in
(14).
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Redish’s (2004) model: testing the predictions

• Double surge of dopamine in drug experiments 
> validated but in different structures of the nucleus accumbens [Aragona et al 
2009] 

• Drugs would not show Blocking (when drugs are the reward)  
[Panilio et al 2007, Jaffe et al 2014] 
> a subset of animals don’t show blocking with nicotine.How do we know that animals use an 

error-correcting learning rule?

25

+

Phase 1 Phase II

Blocking
(NB. Also in humans)



- A lever delivers high dose of cocaine,  then reduced to lower dose :  
Does the rat adapt how he values the lever (lower their reward expectation)?  

- Redish’s model predicts that he shouldn’t. 
> Theory not validated. But maybe a subset problem again? 

Redish’s (2004) model: testing the predictions



Questions and extensions 

• Redish’s model, extensions  and RL framework
 -->  a new generation of models and model-driven experiments.

Lots of remaining challenges:
• addiction to ordinary rewards such as fatty foods, which unlike cocaine 
produce a dopamine signal that can be accommodated
• addiction to non-stimulant substances which depend less on mesolimbic 
dopamine (e.g. alcohol)
• describing withdrawal symptoms -- opponent mechanisms
• why do people want to get sober?
• why do people relapse?; accounting for effect of stress.
• vulnerability: only a minority of people become addicted -- while other 
people can enjoy casual use, why? (drug use and drug addition are two 
different things !).



Multi-systems theories: Model-based vs Model-Free

• TD learning models are called “model-

free” because the structure of the 

environment is not learnt explicitly (i.e. 

transition prob., reward prob.) 

• Debated how much human learning/ 

decision-making is “model-free” vs 

“model-based” 

• model-based correspond to planning, 

deliberative 

• model-free corresponds to habit, 

inflexible, procedural 

• possibly relevant to pathology



• It might be possible to  execute the same task with one or the other of the 

systems. 

• Damage to one system can drive behaviour to be controlled by the other 

• There are multiple failure models in each system and interaction.

• Drug addiction could correspond to a disruption of the model-based 

system and shift to model-free/ habitual system.

habitual system goal-directed system

Multi-systems theories: Model-based vs Model-Free
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Two-Steps Decision Task

• How can we assess the relative involvement of both systems in humans? 

(Daw et al. 2011) 

• On each trial, choosing between 2 stimuli leads with fixed probabilities to one 

of 2 pairs of stimuli in stage 2.  

• Each of the four 2nd-stage stimuli is associated with a probabilistic outcome 

(money $$).  

• Those probabilities change slowly and independently across the trials. 
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Two-Steps Decision Task

• Model-based and model-free strategies make different predictions 

about the influence of the outcome obtained after the second stage 

onto subsequent first-stage choices.
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Two-Steps Decision Task

• Model-based and model-free strategies make different predictions 

about the influence of the outcome obtained after the second stage 

onto subsequent first-stage choices.
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Two-Steps Decision Task

• Model-based and model-free strategies make different predictions 

about the influence of the outcome obtained after the second stage 

onto subsequent first-stage choices.
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Two-Steps Decision Task

• Model-based and model-free strategies make different predictions 

about the influence of the outcome obtained after the second stage 

onto subsequent first-stage choices.

$$$$



26

Two-Steps Decision Task

• Model-based and model-free strategies make different predictions 

about the influence of the outcome obtained after the second stage 

onto subsequent first-stage choices.

$$$$

habit system: increase value of 
choice that led to the action
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Two-Steps Decision Task

• Model-based and model-free strategies make different predictions 

about the influence of the outcome obtained after the second stage 

onto subsequent first-stage choices.

$$$$

planning system: increase value 
of choice that is most likely to 

allow that action
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Two-Steps Decision Task

• Model-based and model-free strategies make different predictions about the 

patterns of responses 

•  Comparison to those patterns and fitting models to participants responses can 

be used to quantify the contribution of each system in humans.
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•  Deficits in goal-directed decision-making have been linked to 
compulsive behaviour and intrusive thoughts (Gillian et al 2016). 



Conclusions

•  Psychiatric disorders are increasingly viewed as deficits in learning and 
decision-making 

• This makes RL tasks and modelling relevant to their study. 

• Prominent models of addiction suggest that drug intake hijacks the 
learning processes (because dopamine surges interferes with the 
representation of prediction errors), hence leading to aberrant valuation of 
states leading to the drug.

• Decision-making depends on multiple systems acting concurrently.  
Drug addiction could correspond to a disruption of the model-based 
system and shift to model-free/ habitual system.


