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The challenge faced by the brain: uncertainty

is the cat going up or down?



•  Humans & animals operate  in a world of sensory 

 uncertainty and ambiguity: 

- e.g. mapping of 3D objects to 2D image  

- intrinsic limitations of the sensory systems  

-> multiple interpretations about the world are possible; 

• The brain must deal with this uncertainty to generate perceptual representations 

and guide actions. 

• Perception must work backwards to extract underlying cause of noisy inputs :  

unconscious, probabilistic inference

• The brain as a guessing machine.

Uncertainty everywhere



• Bayesian Statistics (mathematics): Thomas Bayes (1702-1761), 

Pierre-Simon Laplace (1749-1827),  Harold Jeffreys (1891-1989), 

Richard Cox (1898-1991), Edwin Jaynes (1922-1998) 

• 1860s: Helmholtz : perception as unconscious inference, 

making assumptions and conclusions from incomplete data, 

based on previous experiences. 

• 1990s : Geoff Hinton, Peter Dayan - brain as generative model. 

• 2000s --> enters experimental (psychophysics) world, spreads 

in theoretical world, now physiology?

The Uncertain History of the Bayesian Brain



Q: What is the chance that it will rain 
today?

What is Bayes’ theorem about ?

Compute P(h|e):

•   probability that it is going to rain given the 

evidence (e.g. the clouds look dark) 

you use

• P(e|h) : probability of the evidence (that the 

clouds look dark) when it is actually going to rain 

(from previous measurements - model of the 

world).

• P(h): prior knowledge or bias about the 

probability of rain (before observing any data)

P (h1|e) =
P (e|h1)P (h1)

P (e)

Bayes’ theorem



• Purpose of the brain: infer state of the world from noisy 

and incomplete data. 

• Information has the form of a conditional prob. density 

function  

e.g. the position of an object is represented not by a single 

number, x, but P(x|Z), where Z is the available data  

• Brain learns & stores likelihoods, P(Z|x), and prior knowledge 

P(x). 

• Given new data Z, the brain computes & updates P(x|Z) using

P(x|Z)

v

- Bayes theorem -P (x|Z) =
P (x, Z)
P (Z)

=
P (Z|x)P (x)

P (Z)

A Bayesian theory of the Brain



• Benefits:  
-  integrate information optimally over space & time  
-  and from different sensory cues and modalities 
- propagate information without committing too early to particular 
interpretations.  

• Commit as late as possible, then collapsing the distribution into a single 
number = decision, or action taken.  
e.g. take the max of the posterior P(x|Z)

x

x̂

A Bayesian theory of the Brain



Best option depends on cost function : 

Cost functions - Bayesian Decision Theory

x̂ = argmaxxP (x|Z)

max of the posterior

P(x|Z)

x

x̂• Taking the max of the posterior

• another option is to take the mean of the posterior:

optimizes a cost function that is 0 when                      
and e=cst otherwise.

minimizes the mean squared error 

x̂ = x

(x̂� x)2
ŝ =

�
xp(x|Z)dx

• another option : samples from the posterior.



1) Do people behave as Bayesian Observers? 
a - Evidence from multi-sensory integration 
b - What priors does the brain use?  

2) A new way to understand Mental Illness? 

3)  What does this tell us about the Brain?  
Controversies and possible implementation ideas 

This series of lectures



1) Do People behave as Bayesian Observers? 
• Bayesian hypothesis as a benchmark for performance.



• Humans not optimal / achieving the level of performance afforded by 
the uncertainty in the physical stimulus (e.g. movies)

• The question is:  
1 -  Do neural computations take into account the uncertainty of 
measurements at each stage of processing?  
2 - Combine it optimally with previous experience?  
 

• Testable predictions at the behavioural level

• (distinguish between Probabilistic vs Bayesian vs Optimal. Ma 2012) 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Is the Human Brain “Bayesian-optimal”?



a) - Do brains take into account measurement uncertainty 
when combining different (simultaneous) information?   
Combine different sources optimally?



• We unconsciously combine information 
all the time, and visual information can 
greatly influence auditory information  
Examples: McGurk effect, Ventriloquism 

Example: integrating vision and audition

https://www.youtube.com/watch?v=G-lN8vWm3m0&t=33s 

https://www.youtube.com/watch?v=G-lN8vWm3m0&t=33s
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• e.g. integration between visual and 
auditive information for localisation  

• prediction 1 (position): if visual cue 
is more reliable, then final estimate 
is shifted towards visual cue. 

• prediction 2 (variance or 
discrimination threshold): Final 
discrimination threshold lower than 
that for each modality ; varies if 
reliability of one modality varies.

Bayesian Cue Integration (1): Predictions

sources in auditory and visual mechanisms are statisti-
cally independent, we can decompose the likelihood
function into the product of likelihood functions associated
with the visual and auditory cues, respectively:

PðV;A=XÞZpðV=XÞpðA=XÞ (Equation 2)

p(V/X) and p(A/X) fully represent the information provided
by the visual and auditory data about the position of the
target. The posterior density function is therefore pro-
portional to the product of three functions: the likelihood
functions associated with each cue and the prior density
function representing the relative probability of the target
being at any given position. An optimal estimator could pick
the peak of the posterior density function, the mean of the
function or any of several other choices, depending on the
cost associated with making different types of errors [24].

For our purposes, the point of the example is that an
optimal integrator must take into account the relative
uncertainty of each cue when deriving an integrated
estimate. When one cue is less certain than another, the
integrated estimate should be biased toward the more

reliable cue. Assuming that a system can accurately
compute and represent likelihood functions, the calcu-
lation embodied in equations 1 and 2 implicitly enforces
this behavior (Figure 1). Although other estimation
schemes can show the same performance as an optimal
Bayesian observer (e.g. a weighted sum of estimates
independently derived from each cue), computing with
likelihood functionsprovides themost directmeansavailable
to account ‘automatically’ for the large range of differences in
cue uncertainty that an observer is likely to face.

This is the basic premise on which Bayesian theories of
cortical processing will succeed or fail – that the brain
represents information probabilistically, by coding and
computing with probability density functions or approxi-
mations to probability density functions. We will refer to
this as the ‘Bayesian coding hypothesis’. The opposing
view is that neural representations are deterministic and
discrete, which might be intuitive but also misleading.
This intuition might be due to the apparent ‘oneness’ of
our perceptual world and the need to ‘collapse’ perceptual
representations into discrete actions, such as decisions or
motor behaviors. The principle data on the Bayesian
coding hypothesis are behavioral results showing the
many different ways in which humans perform as
Bayesian observers.

Are human observers Bayes’ optimal?
What does it mean to say that an observer is ‘Bayes’
optimal’? Humans are clearly not optimal in the sense that
they achieve the level of performance afforded by the
uncertainty in the physical stimulus. Absolute efficiencies
(a measure of performance relative to a Bayes’ optimal
observer) for performing high-level perceptual tasks are
generally low and vary widely across tasks. In some cases,
this inefficiency is entirely due to uncertainty in the
coding of sensory primitives that serve as inputs to
perceptual computations [6]; in others, it is due to a
combination of sensory, perceptual and cognitive factors
[25]. The real test of the Bayesian coding hypothesis is in
whether the neural computations that result in perceptual
judgments or motor behavior take into account the
uncertainty in the information available at each stage of
processing. Psychophysical work in several areas suggests
that this is the case.

Cue integration
Perhaps the most persuasive evidence for the Bayesian
coding hypothesis comes from work on sensory cue
integration. When the uncertainty associated with each
of a set of cues is approximated by a Gaussian likelihood
function, the average estimate derived from an optimal
Bayesian integrator is a weighted average of the average
estimates that would be derived from each cue alone
(Figure 1). The reliability of different cues changes as a
function of many scene and viewing parameters (e.g. the
reliability of stereo disparity decreases with viewing
distance). When these parameters vary from trial to trial
in a psychophysical experiment, an optimal Bayesian
observer would appear to weight cues differently on
different trials. Studies of human cue integration, both
within modality (e.g. stereo and texture) [26–28] and
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Figure 1. Two examples in which auditory and visual cues provide ‘conflicting’
information about the direction of a target. The conflict is apparent in the difference
in means of the likelihood functions associated with each cue, although the
functions overlap. Such conflicts are always present, owing to noise in the sensory
systems. To integrate visual and auditory information optimally, a multimodal area
must take into account the uncertainty associated with each cue. (a) When the
vision cue is most reliable, the peak of the posterior distribution is shifted toward
the direction suggested by the vision cue. (b) When the reliabilities of the cues are
more similar, for example when the stimulus is in the far periphery, the peak is
shifted toward the direction suggested by the auditory cue. When both likelihood
functions are Gaussian, themost likely direction of the target is given by a weighted
sum of the most likely directions (m) given the visual (V) and auditory (A) cues
individually: mV,AZwVmVCwAmA. The weights (w) are inversely proportional to the
variances of the likelihood functions.

Opinion TRENDS in Neurosciences Vol.27 No.12 December 2004 713

www.sciencedirect.com



• Theory tells us how posterior depends on individual likelihoods:multisensory integration
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• Assuming that the likelihood are gaussian, i.e.

• We can determine mean and width of posterior (gaussian):

multisensory integration
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Bayesian Cue Integration (2): Theory



•  If we know mean estimate and variance for each modality in 
isolation, we can deduce mean of bimodal estimate: 

•  and discrimination threshold 

multisensory integration
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Bayesian Cue Integration (2): Theory



• visual + haptic cues 

• vary noise level / visual cue

• compute discrimination threshold for 
each cue alone, or when both are present.

Bayesian Cue Integration (4): Ernst & Banks, Nature, 2002
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• optimal integration of visual and haptic cues.

• ‘visual capture’ for low visual noise, ‘haptic capture’ for high visual noise

• instantaneous ‘switch’

• numerous studies replicate this result in a variety of paradigms  

(e.g. Alais & Burr, 2004). 

Bayesian Cue Integration (5): Ernst & Banks, Nature, 2002
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---:  auditory alone 
o : visual alone 
o : prediction



• Vision often dominates other 
modalities but .. capture of 
vision by sound also exists.

• Double flash illusion  
Shams et al, Nature, 2000.

http://shamslab.psych.ucla.edu/demos/

iment. The performance of non-naive sub-
jects (results not shown) indicated that the
illusion persisted even when subjects were
aware of the fact that the disk was actually
flashed only once.

We next investigated the temporal prop-
erties of this illusion by varying the relative

timing of visual and auditory stimuli. The
illusory flashing effect declined from 70
milliseconds separation onwards. However,
illusory flashing occurred as long as the
beep and flash were within approximately
100 milliseconds of each other, which is
consistent with the integration time of pol-
ysensory neurons in the brain1,2.

Our results indicate that the illusory
flashing is caused by an alteration of visual
perception by auditory stimuli. The modifi-
cation of the visual percept by sound, how-
ever, was not categorical. It was rather
selective, as sound did not have a fusing
effect when multiple flashes were accompa-
nied by a single beep. We suggest therefore
that the direction of cross-modal interac-
tions is partly dependent on the type of
stimulus. Consistent with previous obser-
vations in other modalities3, we propose
that the percept of a continuous stimulus in
one modality is rendered more malleable
by a discontinuous stimulus in another
modality than vice versa.  

The influence of auditory cues on visual
perception has been demonstrated in other
settings, in which perceived visual intensity
is affected by the presence of an auditory
stimulus4. This influence, however, is quan-
titative and does not alter the phenomeno-
logical quality of the percept. Others have
shown that the perceived direction of
ambiguous visual motion is influenced by
auditory stimulation5. 

Our results extend these previous find-
ings by showing that visual perception can
be qualitatively altered by sound even when
the visual stimulus is not ambiguous. The
conditions under which this alteration
occurs — the stimulus configuration and
the task — are very simple. The illusion is
also surprisingly robust to variation in the
many parameters we manipulated (includ-
ing disk eccentricity and contrast, spatial
disparity between sound and flash, shape
and texture of the flashing pattern, flash
and beep durations). The simplicity and
robustness of the illusory flashing phenom-
enon indicate that it reflects a fundamental
and widespread property of polysensory
mechanisms in the brain. 
Ladan Shams*, Yukiyasu Kamitani*,
Shinsuke Shimojo*†
*California Institute of Technology, 
Division of Biology, MC 139-74, Pasadena,
California 91125, USA
e-mail: ladan@caltech.edu
†NTT Communication Science Laboratories,
Human and Information Science Laboratory,
Atsugi, Kanagawa 243-0198, Japan
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Illusions

What you see 
is what you hear

V ision is believed to dominate our
multisensory perception of the world.
Here we overturn this established view

by showing that auditory information can
qualitatively alter the perception of an
unambiguous visual stimulus to create a
striking visual illusion. Our findings indi-
cate that visual perception can be manipu-
lated by other sensory modalities.

We have discovered a visual illusion that
is induced by sound: when a single visual
flash is accompanied by multiple auditory
beeps, the single flash is incorrectly per-
ceived as multiple flashes. These results
were obtained by flashing a uniform white
disk (subtending 2 degrees at 5 degrees
eccentricity) for a variable number of times
(50 milliseconds apart) on a black back-
ground. Flashes were accompanied by a
variable number of beeps, each spaced 57
milliseconds apart. Observers were asked to
judge how many visual flashes were pre-
sented on each trial. The trials were ran-
domized and each stimulus combination
was run five times on eight naive observers. 

Surprisingly, observers consistently and
incorrectly reported seeing multiple flashes
whenever a single flash was accompanied
by more than one beep (Fig. 1a). Control
conditions and catch trials (Fig. 1 legend)
indicate that the illusory flashing phenome-
non is a perceptual illusion and is not due
to the difficulty of the task, cognitive bias or
other factors. 

Figure 1b shows that observers’ perfor-
mance was the same, irrespective of
whether a single flash was accompanied by
two beeps, or two flashes by one or no
beeps, suggesting that the illusory double
flash is perceptually equivalent to the physi-
cal double flash. This was confirmed by the
testimonies of the observers after the exper-
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Figure 1 Illusory flashing. a, Perceived number of visual flashes

by eight observers plotted as a function of the number of auditory

beeps for a single flash. The number of perceived flashes did not

increase linearly with the third and fourth beeps because they fell

outside the optimal window of audiovisual integration, as revealed

by our next experiment. b, Perceived number of flashes by eight

observers plotted as a function of the actual number of flashes

presented for trials with no sound (dashed line), and trials with

single beeps corresponding to catch trials (grey line). Observers

performed the task very well in the absence of sound (dashed

line). The results of the catch trials (grey line) confirm that the

observers’ responses were not determined by their auditory per-

cepts. The curve in a (for a single flash) is superimposed for com-

parison. Further details can be obtained from L.S.  

reduced by the 1996 feed ban but remained
constant, I estimate that only two late-stage
infected animals under 30 months old will
be slaughtered for consumption in France.

In summary, robust cohort-based epi-
demiological analyses should form a suit-
able framework for re-examination of the
potential risks posed by the consumption
of beef from countries with native-born
BSE cases. 
Christl A. Donnelly
Department of Infectious Disease Epidemiology,
Imperial College School of Medicine, St Mary’s
Campus, Norfolk Place, London W2 1PG, UK
e-mail: c.donnelly@ic.ac.uk
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Bayesian Cue Integration (7)

http://shamslab.psych.ucla.edu/demos/


• If spatial disparity is too large: integration no longer appropriate  

-> segmentation.

• A problem of causal inference: humans infer the causal structure (i.e. 

presence of one cause or several causes) as well as the location of causes 

[Körding et al 2007; Shams & Beierholm]

Cue Integration (8): when not to integrate?



When is cue combination sub-optimal?
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• The world we navigate is characterised by uncertainty and ambiguity.

• According to Bayesian Brain theory, our brain automatically learns and 
uses probability distributions to model our environment, infer what is 
around us, and compute actions.  

• Psychophysical studies investigating multi-sensory integration and 
causal inference show that our brain takes into account uncertainty of 
measurements, in a way compatible with Bayesian models. 

• Deviations from Bayesian optimal can be measured in individual 
participants and give insights into psychopathology. 

Intermediate conclusions


