
Do people form new priors for everything? How fast? 

• On each trial, participants were 
presented with either a low contrast 
random dot motion stimulus (100% 
coherence) or a blank screen.


• Participants reported direction of 
motion (estimation), before reporting 
whether a stimulus was present 
(detection).

Behavioural Task

DOTSNO DOTS

Fixate
400 ms

E s t i m a t i o n t a s k : 
subjects report motion 
direction

Detection task:
s u b j e c t s r e p o r t 
whether motion was 
present

[Chalk, Seitz and Seriès, JOV 2010]





Questions

1. Are participants going to learn implicitly which directions are most likely to 
be presented?


2. How would these learned expectations bias their perception of 
subsequently presented motion stimuli?
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• Two motion directions were presented 

in a larger number of trials than other 
directions.



Result 1/3: Detection is better and faster for the 
expected directions

• Detection performance was best for most 
frequently presented directions 


• Reaction times were shorter


• Similar to the effects of selective attention 
(Posner et al. 1980) - suggesting that subjects 
were attending to expected directions.


• Knowledge about the statistics of the stimulus 
was however not conscious.

For Peer Review

Overall, there was a significant effect of motion direction 
on the estimation bias (p<0.001, 3-way within-subjects 
ANOVA).

We wanted to quantify the extent to which individual 
participants’ estimates were biased towards the most fre-
quently presented motion directions. For a participants 
whose estimates were attractively biased towards stimuli 

moving at +32°, we would expect their estimates of stimuli 
moving at +48° and +16° to be positively and negatively bi-
ased respectively, compared to their estimation bias for 
stimuli moving at +32° (and by symmetry, we would also 
expect the converse to hold for stimuli moving anti-
clockwise from the central direction: for a participant 
whose estimates were attractively biased towards stimuli 
moving at -32°, we would expect the bias at -48° and -16° to 
be negatively biased and positively biased respectively, com-
pared to their estimation bias for stimuli moving at -32°). 
Figure 4b plots individual participants’ estimation bias for 
stimuli moving at ±48° and ±16° versus their estimation bias 
at ±32° (plotted in black and red respectively). Note that, 
similarly to figure 4a, we averaged data from motion direc-
tions moving to either side of the central motion directions 
in this plot, making sure to reverse the sign of the bias for 
stimuli moving anti-clockwise from the central motion di-
rection. After doing this, the computed estimation biases at 
±48° and ±16° were significantly smaller and larger respec-
tively than the bias at ±32° (p = 0.005 and p = 0.001 respec-
tively, signed rank test). This indicates that on average, par-
ticipants were biased to estimate stimuli as moving in direc-
tions that were closer to the most frequently presented mo-
tion directions (±32°) than they actually were.

Stimuli in-between ±32° were expected to be biased by 
both frequently presented directions and thus we expected 
that these directions should yield larger standard deviations 
in estimated angles than those outside of this range. Figure 
5 plots the population averaged standard deviation of esti-
mations against motion direction. Again, for this plot, data 
points from either side of the central motion direction have 
been averaged together. The estimation standard deviation 
was greatest for the central motion direction at 0°, and 
smallest for motion directions that were closer to the most 
frequently presented directions (±16°, ±32° and ±48°). As 
with the estimation biases, there was a significant effect of 
motion direction on the estimation standard deviation 
(p<0.001, 3-way within-subjects ANOVA).

Effect of expectations on detection perform-
ance and reaction time

One of our interests was the extent to which stimulus 
expectations influenced participants’ performance in the 
detection task. To test this, we measured the fraction of tri-
als where participants both detected stimuli and clicked on 
the mouse during stimulus presentation, as a function of 
motion direction (figure 6a). Participants were significantly 
more likely to detect stimuli moving in the most fre-
quently presented motion directions (71.5±2.5% detected 
at ±32° versus 64.2±2.5% detected over all other motion 
directions; p<0.001 signed-rank test; figure 6b). Overall, 
there was a significant effect of motion direction on the 
fraction detected (p = 0.002, 3-way within-subjects 
ANOVA).

Another measure that could reflect how easily partici-
pants detected stimuli was their reaction time in clicking 
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Figure 6: Effect of expectations on detection performance. 
(a) The fraction of trials where participants correctly de-
tected a motion stimulus is plotted against presented mo-
tion direction. Data points from either side of the central 
motion direction have been averaged together,  so that the 
furthest left point corresponds to the central motion direc-
tion, and the vertical dashed line corresponds to data taken 
from the two most frequently presented motion directions 
(±32°).  Results are averaged over all participants and error 
bars represent within-subject standard error. (b) The frac-
tion of trials where participants correctly detected a stimu-
lus, averaged over all presented motion directions except 
for ±32°, plotted against the fraction of trials where partici-
pants correctly detected a stimulus moving at ±32°, for each 
participant. The black cross marks the population mean, 
with the length of the lines on the cross equal to the stan-
dard error.
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b
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at the higher contrast level (an average value of 17.8±1.7° at the higher contrast level versus 
14.4±1.3° at the lower contrast level; p = 0.017, 3-way within-subjects ANOVA). However, 
there was no significant interaction between the effects of contrast level  and presented 
motion direction on the estimation standard deviation (p = 0.10, 3-way within-subjects 
ANOVA).

Overall, these results are consistent with what we would expect if participants behaved as 
ideal Bayesian observers. When the contrast was decreased the width of participants’ 
sensory likelihood should increase, with a corresponding increase in their estimation 
standard deviations. As a result, participants’ estimates of motion direction would be more 
strongly influenced by their expectations, leading to stronger biases towards the most 
frequently presented motion directions, as we observed in our experimental data.

We attempted to model the observed contrast-dependent variations in participants’ 
estimation behaviour using the Bayesian framework described in the main paper. However, 
for many participants’ there were a relatively few number of data points per experimental 
condition when we divided the trials into different contrast levels. As a result we were 
unable to adequately constrain the model to fit the (relatively small) changes in 
participants’ estimation behaviour with varying contrast levels. Future experiments, 
possibly with more data points per experimental condition, or a modified experimental 
design (e.g. using fixed, rather than staircased contrast levels), will be required to more 
accurately probe how participants’ estimation behaviour varies with contrast.

6

Supplementary figure 7: Reaction time changes with stimulus motion direction. (a) Time taken for 
participants to click on the mouse and during stimulus presentation, measured from the initial presentation 
time. Data points from either side of the central motion direction have been averaged together, so that the 
furthest left point corresponds to the central motion direction, and the vertical dashed line corresponds to the 
most frequently presented motion directions (±32°). Results are averaged over all participants and error bars 
represent within-subject standard error. (b) Individual average reaction time for stimuli moving at ±32°, 
plotted against the reaction time over all other motion directions. The black cross marks the population mean, 
with the length of the lines on the cross equal to the standard error.
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Result 2/3: Participants ‘hallucinate’ motion in expected 
directions

Distribution of estimates 
when no stimulus displayed• On trials where no stimulus was 

presented, but where participants 
reported seeing a stimulus, they were 
strongly biased to report motion in the 
two most frequently presented 
directions.


• This effect was fast to develop, 
occurring in less than 200 trials / few 
minutes.

For Peer Review

trials where they did not detect a stimulus. However, on 
trials where participants did not report seeing a stimulus in 
the detection task (but where they did click the mouse while 

the stimulus was present to estimate its motion direction; 
on average this occurred on 134±9 trials for each partici-
pant; 32±7% of the total number of trials where no stimu-
lus was presented), there was no significant variation in the 
estimation response probability with motion direction (p = 
0.12, 3-way within-subjects ANOVA; figure 3a, red). Fur-
ther, for these trials, participants were not significantly 
more likely to estimate close to the most frequently pre-
sented motion directions than other motion directions 
(median(prel) = 1.28; p=0.13, signed rank test, comparing 
prel  to 1; figure 3b). Indeed they were significantly more 
likely to report motion in the most frequently presented 
motion directions when they also reported detecting a 
stimulus, compared to when they did not (p = 0.012, signed 
rank test, comparing the values of prel  obtained for trials 
where participants either did or did not report seeing a 
stimulus in the detection task; figure 3b).

It could be argued that we would observe similar results 
if participants’ expectations influenced their behaviour in 
the detection task, but not in the estimation task. Thus, in 
the absence of a presented stimulus, they would be more 
likely to report detecting a stimulus when they mistakenly 
perceived motion in one of the two most frequently pre-
sented motion directions, although their estimation re-
sponses would be unaltered by their expectations. In this 
case participants’ estimation responses would be distributed 
uniformly when we looked at data from all trials where no 
stimulus was presented (regardless of their response in the 
detection task). This was not what we found: when we 
looked at data from all zero-stimulus trials, participants es-
timation response probability varied significantly with mo-
tion direction (p<0.001, 3-way within-subjects ANOVA; fig-
ure 3a, blue) and they were biased to report motion in the 
two most frequently presented directions (median(prel) 
=1.71; p < 0.001, signed rank test comparing prel  to 1). 
However, the size of this bias was reduced, compared to the 
case when we looked only at trials where participants de-
tected stimuli (p = 0.027, signed rank test comparing the 
values of prel  obtained for all trials with trials where par-
ticipants reported seeing a stimulus in the detection task).

Another response strategy that could have produced 
similar results is if, when participants were uncertain about 
the stimulus motion direction, they made estimations that 
were influenced by the stimulus presented immediately be-
forehand. In this case, we would expect the observed biases 
in participants’ no-stimulus estimation distributions to dis-
appear when we excluded trials that were immediately pre-
ceded by stimuli moving in the most frequently presented 
directions (±32°). However, when we excluded these trials 
from our analysis, participants’ zero-stimulus estimations 
(for trials where they reported detecting a stimulus) were 
still strongly biased towards the two most frequently pre-
sented directions (median(prel)=2.11; p=0.026, signed rank 
test, comparing prel to 1).

Taken together, our results indicate that the zero-
stimulus biases we observed were not due to ‘response 
strategies’, but rather, were perceptual in origin: partici-
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Figure 3: Estimation responses in the absence of  a stimulus. (a) 
Probability  distribution of  participants’ estimates of  motion direc-
tion when no stimulus was present. Response distributions are 
plotted for all trials (blue), as well as the subset of  trials where 
participants reported detecting a stimulus (grey) and trials where 
they  didn’t (red). Data points from either side of  the central mo-
tion direction have been averaged together in this plot,  so that 
the furthest left data point corresponds to the central motion 
direction, and the vertical dashed line corresponds to the most 
frequently  presented motion directions (±32°). Results are aver-
aged over all participants and error bars represent within-subject 
standard error. (b) Probability  ratio (prel) that individual partici-
pants estimated within 8° from the most frequently  presented 
motion directions (±32°) relative to other 16° bins,  plotted for 
trials  where the stimulus was undetected versus trials where the 
stimulus was detected. prel was significantly  greater than 1 for 
trials  where participants reported detecting stimuli (p = 0.005, 
signed rank test), but was only marginally so when subjects 
failed to detect the stimulus (p=0.13). Participants were also 
significantly more likely to estimate in the direction of the 
frequently presented motion directions on trials where they 
reported detecting stimuli, versus trials where they did not 
(p = 0.012).
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Result 3/3: Expectations bias perception of motion 
direction

• Estimates of motion direction were 
biased towards most frequently 
presented directions:  
 
subjects perceive motion direction to 
be more similar to expected direction 
than it really is.

Estimation bias
For Peer Review

pants ‘hallucinated’ motion in the most frequently pre-
sented directions when no stimulus was displayed. Further, 
these hallucinations developed extremely quickly. On trials 
where no stimulus was presented, but where participants 
reported detecting a stimulus, they were significantly more 
likely to estimate within 8° of ±32°, than other directions, 
after a period of only 200 trials (p = 0.008, signed rank test, 

comparing prel  to 1 after 200 trials; see supplementary fig-
ure 3), indicating rapid learning of motion direction expec-
tations.

Effect of expectations on motion direction 
estimates when stimulus was presented

We next asked whether these learned expectations 
would bias participants’ perceptions of real motion stimuli. 
Figure 4a shows the population averaged estimation bias, 
plotted against motion direction. In this plot, data points 
corresponding to presented stimuli moving to either side of 
the central motion direction have been averaged together 
(making sure to reverse the sign of the estimation bias when 
the presented stimuli was anti-clockwise from the central 
motion direction before averaging; see supplementary figure 
4 for an alternative version of this plot without averaging 
across the central motion direction). In this plot the curve 
has a negative slope around +32°, which itself was unbiased. 
This indicates that estimations were attractively biased to-
wards stimuli moving at +32° (and by symmetry, also to mo-
tion at -32°). Estimates of the central motion direction were 
unbiased, while estimates at +16° were positively biased, 
away from the centre and towards stimuli moving at +32° 
(again, by symmetry, stimuli moving at -16° were biased 
away from the centre, towards stimuli moving at -32°). Note 
that the apparent asymmetry in figure 4a is expected, and is 
due to the fact that the data points at 0° and 64° are not 
equivalent: 0° lies midway between the two most frequently 
presented directions, while +64° is on the edge of the dis-
tribution of presented motion directions (see figure 2). 
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Figure 4: Effect of  expectations on estimation biases. (a) Partici-
pants’ mean estimation bias is plotted against presented motion 
direction. Data points  from either side of  the central motion di-
rection have been averaged together, so that the furthest left 
point corresponds to the central motion direction, and the verti-
cal dashed line corresponds to data taken from the two most 
frequently  presented motion directions (±32°). Results are aver-
aged over all participants and error bars represent within-subject 
standard error. (b) The estimation bias for stimuli moving at ±48° 
(black) and ±16° (red) from the central motion direction, plotted 
against  the estimation bias at ±32°,  for each participant. Again, 
data from stimuli moving to both sides of  the central motion di-
rection has been averaged together, with the sign of  the bias for 
stimuli moving anti-clockwise from the central motion direction 
(i.e.  -48°, -32° and -16°) reversed before averaging.  The red 
and black crosses mark the population mean of both distri-
butions, with the length of the lines on the crosses equal to 
the standard error.

a

b Figure 5: Effect of  expectations on the standard deviation of  es-
timations. The standard deviation in participants’ estimation dis-
tributions is plotted against presented motion direction. Data 
points  from either side of  the central motion direction have been 
averaged together,  so that the furthest left point corresponds to 
the central motion direction, and the vertical dashed line corre-
sponds to data taken from the two most frequently  presented 
motion directions (±32°). Results are averaged over all  partici-
pants and error bars represent within-subject standard er-
ror.
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Modelling the estimation biases

• Model Comparison: Bayesian model describes the data better than response 
strategy models. Individual priors look like approximation of stimulus 

• Bayesian Modeling: subjects learn an expected distribution of the stimuli 
(prior) and combine it with sensory evidence

• Extract prior for each individual. 
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After only 200 trials of the first session, the median probability ratio was significantly larger than 1 at the most 
frequently presented directions of the bimodal condition (±32o), but only when participants reported the color of that 
condition A"#$$%&'&()*+,! -./#+&! E5C. It took approximately 400 and 900 trials for the probability ratio to become 
significantly larger than 1 for the most frequent presented direction of the trimodal condition (0o and ±64o 
respectively), again only when participants reported the color of that condition A"#$$%&'&()*+,!-./#+&!E*C. 
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We implemented two additional models that assumed that participants formed priors, which were a linear 
combination of the Trimodal and the Bimodal distributions. The ���������� model had 2 free parameters, non-
negative weights wtri and wbi, that measured the influence of the distributions on a single prior applied to both 
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Experiment 1. Data points from either side of the central motion direction have been averaged together. The vertical dotted lines 
correspond to the two most frequently presented motion directions (±32o). 
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where ‘a(�)’ and ‘b(�)’ were additional free parameters that 
determined the proportion of trials where participants 
sampled from each distribution.

Finally, we considered variations to the ADD1 and 
ADD2 models (denoted ‘ADD1_mode’ and ‘ADD2_mode’ 
respectively) where, on trials where participants were unsure 
of the stimulus motion direction, they made perceptual es-
timates that were equal to the mode of the ‘expected’ distri-
bution. These models are equivalent to the ADD1 and 
ADD2 models, with ‘1/�exp’ set to zero.

Bayesian model
The second class of models assumed that participants 

combined a learned prior of the stimulus directions with 
their sensory evidence in a probabilistic manner. Specifi-
cally, unlike the previous models, where on individual trials 
participants either rely entirely on their sensory observa-
tions or on their expectations, in the Bayesian model par-
ticipants make estimations based on a combination of both 
their sensory observation and expectations. A schematic of 
this model class is shown in figure 7.

 As before, we assume that on a single trial, participants 
make noisy sensory observations of the stimulus motion 
direction (✓obs), with a probability pl(�obs|�) = V (�,⇥l) . 
From Bayes’ rule, the posterior probability that the stimulus 
is moving in a particular direction ✓, given a sensory obser-
vation ✓obs , is obtained by multiplying the likelihood func-
tion (pl(�obs|�)), with the prior probability (pprior(�)):

p(�|�obs) � pprior(�) · pl(�obs|�)                             (8)

While participants cannot access the ‘true’ prior, 
pprior(�), directly, we hypothesized that they learned an 

approximation of this distribution, denoted ‘pexp(�)’. In 
our model this ‘learned prior’ was parameterized similarly 
to pexp(�) in ADD1 (see equation 2).

We assume that participants make perceptual estimates 
of motion direction, ✓perc , by choosing the mean of the 
posterior distribution, so that :

                
 where ‘Z ’ is a normalization constant. An alternative 
choice would be for the perceptual estimate to be given by 
the maximum of the posterior distribution. For our work 
both methods gave qualitatively identical results.

We accounted for the ‘motor noise’ associated with 
making the estimation response in a similar way to the pre-
vious models. For this model, the free parameters that were 
fitted to the estimation data for each participant were the 
centre and width of participants’ ‘expected’ distribution 
(determined by ✓exp & 1/exp  respectively), the width of 
their sensory likelihood (determined by 1/l ), the magni-
tude of the ‘motor’ noise in their responses (determined by 
1/m ) and the fraction of trials where they made estima-
tions that were completely random (↵ ). We included two 
variants of the Bayesian model: ‘BAYES_L-var’, where the 
width of the likelihood function was allowed to vary with 
the stimulus motion direction, and ‘BAYES_L-const’, where 
it was held constant.

Inferring the parameters for each model
At the highest contrast, the stimulus was clearly visible, 

so we assumed that the perceptual uncertainty was close to 
zero (1/�l ! 0 ). Therefore for all models, the distribution 
of estimations should be given by equation (3), with the 
substitution, ✓perc = ✓ . We used this equation to fit par-
ticipants’ estimation distributions at high contrast (by 
maximizing the log probability of getting the observed the 
data; see later), thus allowing us to approximate the ‘motor 

Journal of Vision   9

 

etamitse ’lautpecrep‘sulumits esnopsernoitavresbo posterior distribution

‘sensory’ noise combine prior knowledge
 & sensory evidence

take the mean 
of the posterior

‘motor’ noise

observer

Figure 7: Bayesian model for estimation. The posterior distribution of  possible stimulus motion directions is constructed by  combining 
prior knowledge about likely  motion directions (the expectation) with the available sensory  evidence (based on a noisy  observation, 
✓obs) probabilistically. A perceptual estimate is made by  taking the mean of  the posterior distribution. This posterior distribution is used 
to make a perceptual estimate (✓perc). Additional ‘motor noise’ is added to this perceptual estimate to produce the final estimation re-
sponse (✓est) 

�perc =
1
Z

Z
� · pexp(�) · pl(�obs|�)d� (9)

p(⇥est|⇥) = (1� �)[(1� a(⇥)� b(⇥)) · pl(⇥obs = ⇥est|⇥)
+ a(⇥) · panti�clockwise(⇥est)
+ b(⇥) · pclockwise(⇥est)] ⇥ V (0, ⇤m) + �

(7)

example of being in a train and looking at another train : which was is moving
• 4 free parameters: center and width of prior, width of likelihood, fraction of ‘random’ trials + motor 

noise (fixed with high contrast trials)

Extensions: Limits of Statistical Learning?

- How many priors can one learn simultaneously? 
- Are priors specific to learned conditions ?
[Gekas, Seitz and Seriès, JOV 2013]

- can we “unlearn” long-term priors?  or are they fixed?
[Sotiropoulos, Seitz and Seriès, Current Biology 2011]

- Is the learning or use of such internal models impaired in mental 
disorders such as Schizoprenia?
[Valton, Lawrie, Seriès in prep.]
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ticipants’ estimation distributions at high contrast (by 
maximizing the log probability of getting the observed the 
data; see later), thus allowing us to approximate the ‘motor 
noise’ (determined by 1/m) for each participant.

As with the rest of our data analysis, we modelled par-
ticipants responses to stimuli at both staircased contrast 
levels (although see supplementary materials). Also, as all 
three models looked only at the estimation task, effectively 
ignoring the detection response, we initially looked only at 
data where participants detected the motion stimulus (see 
supplementary materials for a version of the Bayesian 
model which incorporates the detection task).

For each model, and for a particular set of parameters 
‘M’, we were able to calculate the probability of making an 
estimate ‘ ✓est ’ given a stimulus moving in a direction ‘✓’ (
p(�est|�;M)). Assuming that participants’ responses on 
each trial were independent, this allowed us to calculate the 
likelihood of generating our experimental data ‘D’ from the 
particular model and parameter set ‘M’. We then chose 
model parameters to fit the data for each participant by 
maximizing the log of the likelihood function:

M = argmaxM

"
ntrialsX
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log(p(�est = �i,data|�i))

#
     (10)

where the summation was taken over all trials, and ‘✓i’ and 
‘✓i,data’ represent the presented motion direction and the 
estimation response on the ith  trial respectively. We found 
the maximum of the likelihood function using a simplex 
algorithm (the Matlab function ‘fminsearch’). We were 
concerned that for some participants our model fits might 
converge to local rather than local maxima. To reduce this 
possibility, we ran the model fits with a range of initial 
values for l and exp (‘1/

p
�l ’ and ‘1/

p
�exp ’ were varied 

independently in 2° increments, between 1° and 21°), 
selecting the model fit that produced the highest value for 
the log-likelihood. The results obtained were also found to 
be robust to changes in all of the other initial parameter 
values.

The models varied greatly with respect to the number 
of parameters that they required to fit the data. Excluding 
m  (as this was obtained from the high contrast responses, 
not the low contrast responses that were the principle area 
of investigation), ADD1 and ADD2 required 9 and 14 free 
parameters respectively: l , ✓exp , exp  and ↵ , plus 5 values 
for a(�)  and, for ADD2, another 5 values for b(�)  (one for 
each presented motion direction). ADD1_mode and 
ADD2_mode required 8 and 13 free parameters respec-
tively (one less parameter than ADD1 and ADD2 respec-
tively, as exp  was no longer a free parameter). BAYES_L-
const required only 4 free parameters (l , ✓exp , exp  and ↵ ). 
BAYES_L-var required 8 free parameters (including a value 
for l  for each presented motion direction).

Model comparison
We assessed how well each of the models accounted for 

the estimation distribution using a metric called the ‘Bayes-
ian information criterion’ (BIC), defined as: 

BIC = �2 · ln(L) + k · ln(n)                                (11)

where, ‘L ’ is the likelihood of generating the experimental 
data from the model, ‘k ’  is the number of parameters in the 
model and ‘n’ is the number of data points available. In 
general, given two estimated models, the model with the 
lower value of BIC is the one to be preferred (Schwarz, 
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noise’ (determined by 1/m) for each participant.
As with the rest of our data analysis, we modelled par-

ticipants responses to stimuli at both staircased contrast 
levels (although see supplementary materials). Also, as all 
three models looked only at the estimation task, effectively 
ignoring the detection response, we initially looked only at 
data where participants detected the motion stimulus (see 
supplementary materials for a version of the Bayesian 
model which incorporates the detection task).

For each model, and for a particular set of parameters 
‘M’, we were able to calculate the probability of making an 
estimate ‘ ✓est ’ given a stimulus moving in a direction ‘✓’ (
p(�est|�;M)). Assuming that participants’ responses on 
each trial were independent, this allowed us to calculate the 
likelihood of generating our experimental data ‘D’ from the 
particular model and parameter set ‘M’. We then chose 
model parameters to fit the data for each participant by 
maximizing the log of the likelihood function:

M = argmaxM

"
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i

log(p(�est = �i,data|�i))

#
     (10)

where the summation was taken over all trials, and ‘✓i’ and 
‘✓i,data’ represent the presented motion direction and the 
estimation response on the ith  trial respectively. We found 
the maximum of the likelihood function using a simplex 
algorithm (the Matlab function ‘fminsearch’). We were con-
cerned that for some participants our model fits might con-
verge to local rather than local maxima. To reduce this pos-
sibility, we ran the model fits with a range of initial values 
for l  and exp  (‘1/

p
�l’ and ‘1/

p
�exp’ were varied inde-

pendently in 2° increments, between 1° and 21°), selecting 
the model fit that produced the highest value for the log-

likelihood. The results obtained were also found to be ro-
bust to changes in all of the other initial parameter values.

The models varied greatly with respect to the number 
of parameters that they required to fit the data. Excluding 
m  (as this was obtained from the high contrast responses, 
not the low contrast responses that were the principle area 
of investigation), ADD1 and ADD2 required 9 and 14 free 
parameters respectively: l , ✓exp , exp  and ↵ , plus 5 values 
for a(�)  and, for ADD2, another 5 values for b(�)  (one for 
each presented motion direction). ADD1_mode and 
ADD2_mode required 8 and 13 free parameters respectively 
(one less parameter than ADD1 and ADD2 respectively, as 
exp  was no longer a free parameter). BAYES_L-const re-
quired only 4 free parameters (l , ✓exp , exp  and ↵ ). 
BAYES_L-var required 8 free parameters (including a value 
for l  for each presented motion direction).

Model comparison
We assessed how well each of the models accounted for 

the estimation distribution using a metric called the ‘Bayes-
ian information criterion’ (BIC), defined as: 

BIC = �2 · ln(L) + k · ln(n)                                (11)

where, ‘L ’ is the likelihood of generating the experimental 
data from the model, ‘k ’  is the number of parameters in the 
model and ‘n’ is the number of data points available. In 
general, given two estimated models, the model with the 
lower value of BIC is the one to be preferred (Schwarz, 
1978). The first term of this expression accounts for the 
error between the data and the model predictions, while the 
second term represents a penalty for including too much 
complexity in the model.
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Figure 8 plots, for each participant, the BIC obtained  
with each model, subtracted by the BIC obtained with the 
BAYES_L-const model. From this plot we can see that the 
BIC values obtained with the ADD1, ADD2, ADD1_mode, 
ADD2_mode and BAYES_L-var models were significantly 
greater than the BIC values obtained with the BAYES_L-
const model (p=0.002, p<0.001, p=0.003, p=0.005 and 
p<0.001 respectively; signed-rank test). Thus, while a small 
minority of participants were not best fitted by the 
BAYES_L-const model (2 participants exhibited a lower BIC 
value with the ADD1  model, 2 participants exhibited a 
lower BIC value with the ADD1_mode model and 2 partici-
pants exhibited a lower BIC value with the ADD2_mode 
model), this model provided the best description of the data 
for the majority of participants.

Each of the models described attempted to fit the esti-
mation distributions for each participant. To achieve a 
qualitative understanding of how the estimation distribu-
tions predicted by each of the models compared to the ex-
perimental data, we analyzed the predicted estimation bi-
ases and standard deviations. As the ADD1_mode and the   
ADD2_mode, and the BAYES_L-const models provided bet-
ter fits to the data than the other models, we only analyze 
here the predicted estimation biases and standard devia-
tions for these three models. In our previous analysis of the 
experimental data, we parameterized participants’ estima-
tion distributions as the sum of a circular normal distribu-
tion and a ‘flat’ background probability (to account for the 
proportion of trials where they made random estimations). 
Participants estimation means and standard deviations were 
then taken as the centre and width of the fitted circular 
normal distribution respectively. To be consistent with this, 
we computed biases and standard deviations from the esti-
mation distributions predicted by each model in an identi-
cal way. 

Figure 9 shows the estimation biases and standard de-
viations predicted by each of the models, plotted alongside 
the experimental data. Both the BAYES_L-const and 
ADD2_mode models provided a good fit for the population 
averaged estimation biases (mean absolute error of 0.75°, 
and 0.62° for the BAYES_L-const and ADD2_mode models 
respectively). The ADD1_mode model, however, was unable 
to reproduce the repulsive biases away from the central mo-
tion direction (at ±16°) that were observed experimentally 
(mean absolute error of 2.14°; figure 9a). This was also re-
flected in the fits of individual participants’ estimation bi-
ases (quantified by calculating the mean absolute error for 
the fits of the estimation biases separately for each partici-
pant, averaged over motion directions). The error in the fits 
of the individual participants’ estimation biases was signifi-
cantly smaller for the BAYES_L-const model than for the 
ADD1_mode model (p<0.001, signed rank test), while there 
was no significant difference between the BAYES_L-const 
and ADD2_mode models. 

The fact that the ADD1_mode model was unable to fit 
the experimentally observed repulsive biases away from the 
central motion direction can be explained by the fact that 
for this model we parameterized the ‘expected’ distribution 
of motion direction, pexp(�) , to be symmetrical around 0°. 
Thus, even in the extreme case where all responses are sam-
pled from this distribution, there would only be an attrac-
tive bias towards the central motion direction.

The BAYES_L-const model produced estimation stan-
dard deviations that varied with motion direction in a 
qualitatively similar way to the experimental data, (with a 
maximum at 0°, decreasing for stimuli moving further from 
the central motion direction), although in general, the 
model predicted values that were slightly larger than what 
was observed experimentally (figure 9b). The fits for the 
estimation standard deviation produced by the ADD1_mode 
and ADD2_mode were worse than the BAYES_L-const model 
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Figure 9: Predicted biases (a) and standard deviations (b) for each model. Predictions for the ADD1-mode model (green),  the ADD2-
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• Bayesian model describes 
the data better than 
response strategy models.

[Chalk, Seitz and Seriès, JOV 2010]



• Participants rapidly learn multimodal stimulus expectations (< 200 
trials).


• These expectations bias their perception of simple motion stimuli, 
causing them to ‘hallucinate’ motion in the expected direction, and 
perceive motion stimuli as closer to the expected directions than 
they actually are.


• The biases we observed can be explained assuming that 
participants combine a ‘learned prior’ about the stimulus statistics 
with their sensory evidence in a probabilistically optimal way.


• A number of open questions (specificity of prior, time scale, neural 
implementation - substrate of expectation)


• in particular: can one learn any prior like this ? or are some priors 
fixed?

Conclusions: Fast learning of a Direction Prior



Are priors constantly updating? Even those supposedly 
corresponding to natural scene statistics? (1)

B R I E F  COM M U N I C AT I O N S

Experience can change the
‘light-from-above’ prior
Wendy J Adams1, Erich W Graf1 & Marc O Ernst2

To interpret complex and ambiguous input, the human visual
system uses prior knowledge or assumptions about the world. We
show that the ‘light-from-above’ prior, used to extract information
about shape from shading is modified in response to active
experience with the scene. The resultant adaptation is not
specific to the learned scene but generalizes to a different task,
demonstrating that priors are constantly adapted by interactive
experience with the environment.

The circular patches in Figure 1a have competing interpretations.
However, patches that are brighter at the top are generally seen as con-
vex and the others as concave, consistent with an assumption of light
from above1,2. The Bayesian approach has successfully described per-
formance in many perceptual tasks where stimulus information is
combined with prior assumptions3–5. However, whether visual priors
are hard-wired or learned in response to environmental statistics is
not known6. We investigate the adaptability of the ‘light-from-above’
prior by adding shape information via haptic (active touch) feedback.

We also test whether the same prior is used over a range of stimuli or
adapted to specific situations and tasks.

Initially, each observer made convex-concave shape judgments of
bump-dimple stimuli at different orientations to measure their pre-
existing light prior. The peak of the light prior was inferred from the
data fit (Fig. 1b). For all observers this was roughly overhead. The
mean across observers was –1.3°, with a range across observers of
–16.4° to 13.9°, where 0° is directly overhead. On average 56% of the
stimuli were perceived as convex (blue area).

Visual-haptic training stimuli were consistent with a range of light
source positions whose mean was shifted by either ±30° from the
baseline prior for each subject. Visual stimuli with orientations within
this new range were combined with haptic information indicating
that the stimulus was a convex bump (Fig. 1b, red area). Other orien-
tations were combined with concave haptic feedback. Thus, some
stimuli previously judged as convex on most trials now felt concave,
and vice versa. The ratio of convex to concave for each observer was
held constant. Observers explored a set of stimuli for an unlimited
time before judging the shape of a subsequent visual-only stimulus.
As expected, haptic information disambiguated object shape during
training (Fig. 1b, middle row). This was evident for all observers
except one, also the only observer to display no training effect.

After training, observers judged a set of visual-only stimuli, identi-
cal to the baseline condition, to infer their post-training light direc-

1Department of Psychology, University of Southampton, Southampton, SO17 1BJ, UK. 2Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
Correspondence should be addressed to W.J.A. (w.adams@soton.ac.uk).
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Figure 1 Stimuli and results for experiment 1. (a) Shading patterns
consistent with squashed hemispheres (3.4° at 50 cm) illuminated by a
single light source on a circle of 50-mm radius located 15 mm in front
of the object. An eye patch eliminated binocular depth cues. In visual-
only trials (pre- and post-training), four stimuli appeared for 3 s in
square formation with their centers 5.6° from central fixation. Two
orientations, 180° apart, were present in each trial in pseudo-random
arrangement. A star indicated which stimulus to judge. Each orientation
was judged 8 times in a 10-min block. On training trials, haptic
information (PHANToM, SensAble Technologies force-feedback device,
described elsewhere10) was consistent with smooth bumps or dimples of
the same dimensions, on a smooth surface. A small dot indicated finger
position. After the observer felt and observed all four stimuli, a central
test stimulus appeared, visually identical to one of the previous four.
The observer made a convex-concave judgment based on its visual
appearance and then touched it. Each orientation was judged 12 times
with 12 extra repetitions for orientations where haptics conflicted with
the pre-training response, in a 1.5-h training session. (b) Data for two
representative observers trained with opposite shifts. (0°) corresponds to
stimuli brightest at the top. The proportion of stimuli perceived as
convex (black stars) are fitted by a function based on two cumulative
Gaussians (dashed lines) each centered at a concave-convex transition
and whose average gives the light position prior (pre-training, blue
arrow; post-training, green arrow). (c) Fitted pre- and post-light prior means for all 12 right-handed observers (10 naive, paid volunteers and 2
authors, W.J.A. and E.W.G.). The authors performed both training conditions, 2 weeks apart. Naive observers completed one. Error bars, ±1 s.e.m.
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B R I E F  COM M U N I C AT I O N S

Experience can change the
‘light-from-above’ prior
Wendy J Adams1, Erich W Graf1 & Marc O Ernst2

To interpret complex and ambiguous input, the human visual
system uses prior knowledge or assumptions about the world. We
show that the ‘light-from-above’ prior, used to extract information
about shape from shading is modified in response to active
experience with the scene. The resultant adaptation is not
specific to the learned scene but generalizes to a different task,
demonstrating that priors are constantly adapted by interactive
experience with the environment.

The circular patches in Figure 1a have competing interpretations.
However, patches that are brighter at the top are generally seen as con-
vex and the others as concave, consistent with an assumption of light
from above1,2. The Bayesian approach has successfully described per-
formance in many perceptual tasks where stimulus information is
combined with prior assumptions3–5. However, whether visual priors
are hard-wired or learned in response to environmental statistics is
not known6. We investigate the adaptability of the ‘light-from-above’
prior by adding shape information via haptic (active touch) feedback.

We also test whether the same prior is used over a range of stimuli or
adapted to specific situations and tasks.

Initially, each observer made convex-concave shape judgments of
bump-dimple stimuli at different orientations to measure their pre-
existing light prior. The peak of the light prior was inferred from the
data fit (Fig. 1b). For all observers this was roughly overhead. The
mean across observers was –1.3°, with a range across observers of
–16.4° to 13.9°, where 0° is directly overhead. On average 56% of the
stimuli were perceived as convex (blue area).

Visual-haptic training stimuli were consistent with a range of light
source positions whose mean was shifted by either ±30° from the
baseline prior for each subject. Visual stimuli with orientations within
this new range were combined with haptic information indicating
that the stimulus was a convex bump (Fig. 1b, red area). Other orien-
tations were combined with concave haptic feedback. Thus, some
stimuli previously judged as convex on most trials now felt concave,
and vice versa. The ratio of convex to concave for each observer was
held constant. Observers explored a set of stimuli for an unlimited
time before judging the shape of a subsequent visual-only stimulus.
As expected, haptic information disambiguated object shape during
training (Fig. 1b, middle row). This was evident for all observers
except one, also the only observer to display no training effect.

After training, observers judged a set of visual-only stimuli, identi-
cal to the baseline condition, to infer their post-training light direc-
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Figure 1 Stimuli and results for experiment 1. (a) Shading patterns
consistent with squashed hemispheres (3.4° at 50 cm) illuminated by a
single light source on a circle of 50-mm radius located 15 mm in front
of the object. An eye patch eliminated binocular depth cues. In visual-
only trials (pre- and post-training), four stimuli appeared for 3 s in
square formation with their centers 5.6° from central fixation. Two
orientations, 180° apart, were present in each trial in pseudo-random
arrangement. A star indicated which stimulus to judge. Each orientation
was judged 8 times in a 10-min block. On training trials, haptic
information (PHANToM, SensAble Technologies force-feedback device,
described elsewhere10) was consistent with smooth bumps or dimples of
the same dimensions, on a smooth surface. A small dot indicated finger
position. After the observer felt and observed all four stimuli, a central
test stimulus appeared, visually identical to one of the previous four.
The observer made a convex-concave judgment based on its visual
appearance and then touched it. Each orientation was judged 12 times
with 12 extra repetitions for orientations where haptics conflicted with
the pre-training response, in a 1.5-h training session. (b) Data for two
representative observers trained with opposite shifts. (0°) corresponds to
stimuli brightest at the top. The proportion of stimuli perceived as
convex (black stars) are fitted by a function based on two cumulative
Gaussians (dashed lines) each centered at a concave-convex transition
and whose average gives the light position prior (pre-training, blue
arrow; post-training, green arrow). (c) Fitted pre- and post-light prior means for all 12 right-handed observers (10 naive, paid volunteers and 2
authors, W.J.A. and E.W.G.). The authors performed both training conditions, 2 weeks apart. Naive observers completed one. Error bars, ±1 s.e.m.
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B R I E F  COM M U N I C AT I O N S

tions (Fig. 1b, green arrows). The group that trained with a +30°
shift had an average shift of +8.9°; the –30° training group had an
average shift of –13.1° (Fig. 1c). This training effect was highly sig-
nificant (t13 = 7.049, P < 0.01) and remained significant after the two
subjects who are authors of this paper were excluded (mean across
conditions, 9.6°, t9 = 5.479, P < 0.01).

Two possible explanations exist for the training effect. Observers
may have implicitly learned that the average light source position
had moved in the trained direction. In Bayesian terms, the observer’s
prior for light position had changed, resulting in changes in the per-
ceived shape of the post-training stimuli. In this case, a crossover
effect should be seen in a different task involving a light prior.
Alternatively, observers may have directly learned the relationship
between luminance pattern and shape or adopted a cognitive strat-
egy to label objects as convex or concave. In this case, no crossover
should be seen in a different task with different stimuli. To distin-
guish between these possibilities, we carried out a second experiment
involving a lightness judgment task (stimuli shown in Fig. 2a).

Observers judged which of the two gray flanking panels was lighter.
The stimulus orientation and the relative luminance of the panels
changed from trial to trial. No explicit illumination information was
present in the visual scene. However, each observer’s point of subjective
equiluminance (PSE) changed with orientation, in a way consistent
with the stimulus being lit from above. With a stimulus orientation of
–74° (left side below right), the left side was almost always perceived as
lighter. At +74°, the left side (now at the top) was perceived more often
as darker; the observer assumed that, for the two halves of the stimulus
to have the same luminance, the upper half must be darker (in pig-
ment) because it was receiving more light. Orientation was significant
in a two-factor ANOVA (F5.2, 68 = 23.9, P < 0.05). Effects of surface ori-
entation on perceived lightness have been found using stimuli contain-
ing implicit cues to illumination position7. Our study demonstrates
that the visual system uses a light-from-above prior to recover lightness
in the absence of any light-source information.

To identify any crossover effect, observers repeated the lightness
judgments after completing the visual-haptic, bump-dimple train-
ing of experiment 1 (Fig. 2b). The group trained with a –30° shift
had a mean shift in inferred light direction of –17.6°. The +30°
training group had a mean shift of +13.8° (Fig. 2c). The 12 naive
and 2 non-naive observers displayed similar shifts (means for naive
subjects, –17.4° and +14.0°). This effect was significant (F1, 13 =
5.71, P < 0.05 as a main effect in a two-factor ANOVA). The effects
observed in experiment 1, therefore, resulted from changes in the
assumed light-source position. The second experiment implies that
the visual system uses the same default light source position in
quite different tasks, one involving shape and another requiring
lightness judgments.

Unlike that of chickens8, the human visual system can modify the
‘light-from-above’ prior. A short period of haptic training resulted
in a substantial shift in inferred light position: 37% of the total
introduced. Although visual learning can result in long-lasting
effects9, we would expect that our learned shift would disappear
quickly as observers were re-immersed in the real world, where
light comes predominantly from above. In conclusion, priors
appear to be updated constantly in an adaptable system that moni-
tors environmental statistics.
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Figure 2  Stimuli and results for experiment 2 (a) Monocular control
stimuli (top row) consisted of an orange square flanked by two gray
quadrilaterals consistent with slanted square planes. The shape and
‘cocktail stick’ made the stimulus unambiguously convex. Gray levels of
the side panels varied in opposite directions between 18.4 cd/m2 and
20.3 cd/m2 in 7 equal steps. There were 9 presentations at each of 8
orientations between –74° and +74°. The stimulus subtended 8° × 3.8°
at the viewing distance of 50 cm. A 15-min block of control trials was
completed pre- and post-training. Each plot shows pre-training data
(stars) for a single stimulus orientation for one representative observer,
fitted with a cumulative Gaussian (black curve). (b) PSE as a function of
stimulus rotation for pre- (blue) and post-training (green). Data are fit by
a fixed period (360°) sinusoid, consistent with assumed lambertian
reflectance. Phase and amplitude are free parameters. Phase gives the
stimulus orientation where equal intensity panels are perceived equally
light, that is, the prior light source position (solid lines). (c) Mean
change in inferred light position for all 14 observers. Three of the naive
observers and the two authors (W.J.A. and E.W.G.) also took part in
experiment 1. Error bars, ±1 s.e.m. Ethical approval was obtained from
the Glasgow University Psychology Department and written consent was
obtained from all subjects.
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[Adams, Graf and Ernst Nature Neuroscience 2004]not in chickens, innate
Hershberger, W. (1970)



The slow speed prior can be updated in a few sessions,  just through exposure.  
[Sotiropoulos, Seitz & Seriès (2011), Current Biology]

Are priors constantly updating? Even those supposedly 
corresponding to natural scene statistics?  (2)



• What are the limits of prior learning? complexity?  

[Gekas et al 2014; Acerbi et al 2014 ..] 

• How many priors can one learn simultaneously?  

[Gekas et al 2014] 

• Are priors specific to learned conditions? stimulus? task? 

experimental context? 

[Adams & Kerrigan 2013, Mamassian, Orban & Lengyel; Roach et al 2017] 

• Time scales of learning? unlearning? 

[Lowenstein, Gekas et al 2015] 

• Heuristics or true Bayesian inference? 

[Ravi & Loewenstein, Karvelis et al]

Extensions and open questions



(Perceptual) Behavioural studies: What have we learned?

• Bayesian model offer elegant/ parsimonious description of behaviour 
(descriptive tool)  

•  Transparent assumptions and emphasis on “why” question. 

• Behaviour consistent with Bayes in that:  
- Brains take into account uncertainty, and combine sources of information 
optimally (cue combination) 
- Use priors that are constantly updated  
- Used priors consistent with (approximation) of statistics of environment at 
different time scales. --> increase accuracy. 

• Those priors (but also cost functions, likelihood) can be measured in 
individuals -- Bayesian modelling as a tool to describe the internal model 
used by individuals, possibly differentiating groups. 



Perception as a “controlled hallucinations” 

• The brain uses an internal model/
expectations to reconstruct the source 
of the input.   

• Brain is better at processing data that 
is conform to the expectations.  

• Brain is biased towards perceiving the 
world as being more similar to its 
expectations that it really is.



Perception as a “controlled hallucinations” 

• The brain uses an internal model/
expectations to reconstruct the source 
of the input.   

• Brain is better at processing data that 
is conform to the expectations.  

• Brain is biased towards perceiving the 
world as being more similar to its 
expectations that it really is.

Approach and methods also 
extend to other domain of cognition


