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“  If you're talking about what you can feel, what you can smell, what you 
can taste and see, then ‘real’ is simply electrical signals interpreted by your 
brain.  This is the world that you know."

Morpheus, in the Matrix.

What is real? How do you define ‘real’?
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• Neurons and  Glial cells (insulating, supporting, nourishing neurons).  

•10^11 neurons in human brain, each link to up to 10,000 other neurons.

The Brain



Neurons

•  neuron = cell, diverse morphologies

•2Dendrites: receive inputs from other cells, 
mediated via synapses.  

•3 Soma (cell body): integrates signals from 
dendrites. 4-100 micrometers.
•4 Action potential: All-or-nothing event generated 
if signals in soma exceed threshold.  

•5 Axon: transfers signal to other neurons.

• Synapse: contact between pre- and 
postsynaptic cell.  
- Efficacy of transmission can vary over time. 
- Excitatory or inhibitory. 
- Chemical or electrical. 
10^16 synapses in young children (decreasing with 
age --  1-5x10^15) 



• Ions channels across the membrane, allowing ions to move in and out, with 
selective permeability  (mainly Na+, K+, Ca2+,Cl-)
• Vm: difference in potential between interior and exterior of the neuron.
• at rest, Vm~-70 mV (more Na+ outside, more K+ inside, due to N+/K+ pump)
• Following activation of (Glutamatergic) synapses, depolarization occurs.
• if depolarization > threshold, neuron generates an action potential (spike) (fast 
100 mv depolarization that propagates along the axon, over long distances). 

Membrane potential and action potential 



• Axon terminate at synapse.  
AP-> opens ion channels, influx of Ca2+, 
release of neurotransmitters in the synaptic 
cleft, which bind at the post-synaptic 
receptors, causing ion-conducting channels 
to open. 

• Glutamate: main excitatory 
neurotransmitter -- bind to AMPA, NMDA, 
mGlu receptor, induces depolarization.

• GABA: main inhibitory neurotransmitter -- 
GABA receptor, induces hyperpolarization.

Synapses



• intracellular recordings (commonly in 
vitro, sometimes in vivo (anesthesized, 
paralyzed)) 
sharp electrode placed inside the neuron  
patch electrode, sealed to the membrane. 
view Vm.

• extracellular (often in vivo, possibly 
awake behaving animal) 
electrode is placed near a neuron. 
view action potentials.

• Commonly, one neuron at a time, now 
use of arrays of electrodes.

Electrophysiological Recordings
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Intracellular and Extracellular electrophysiology



10Excitatory and Inhibitory synapses -- EPSP and IPSP
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• one aim of experimental neuroscience: describing the activity of neurons: 
what are they ‘responding to’? 
• sensory neuroscience: activity as a function of sensory stimulus (eg. 
visual image, skin stimulation, sound, odor etc..).
• 2 alternatives: describe spike sequence, or number of spikes, or rate r in 
time window (somewhat arbitrarily defined) -- depending on assumptions 
about the code (spike times or rate?) 
 

trial 1
trial 2

...

trial 5

1.2 Spike Trains and Firing Rates 7

neural encoding by showing how reverse-correlation methods are used
to construct estimates of firing rates in response to time-varying stimuli.
These methods have been applied extensively to neural responses in the
retina, lateral geniculate nucleus (LGN) of the thalamus, and primary vi-
sual cortex, and we review the resulting models.

1.2 Spike Trains and Firing Rates

Action potentials convey information through their timing. Although ac-
tion potentials can vary somewhat in duration, amplitude, and shape,
they are typically treated in neural encoding studies as identical stereo-
typed events. If we ignore the brief duration of an action potential (about
1 ms), an action potential sequence can be characterized simply by a list
of the times when spikes occurred. For n spikes, we denote these times
by ti with i = 1,2, . . . ,n. The trial during which the spikes are recorded
is taken to start at time zero and end at time T, so 0 ≤ ti ≤ T for all i. The
spike sequence can also be represented as a sum of infinitesimally narrow,
idealized spikes in the form of Dirac δ functions (see the Mathematical
Appendix),

ρ(t) =
n

∑

i=1
δ(t− ti) . (1.1)

We call ρ(t) the neural response function and use it to re-express sums neural response
function ρ(t)over spikes as integrals over time. For example, for any well-behaved

function h(t), we can write

n
∑

i=1
h(t− ti) =

∫ T

0
dτ h(τ)ρ(t− τ) (1.2)

where the integral is over the duration of the trial. The equality follows
from the basic defining equation for a δ function, δ function

∫

dτ δ(t− τ)h(τ) = h(t) , (1.3)

provided that the limits of the integral surround the point t (if they do not,
the integral is zero).

Because the sequence of action potentials generated by a given stimulus
typically varies from trial to trial, neuronal responses are typically treated
probabilistically, and characterized, for example, by the probability that a
spike occurs at a particular time during a trial. Spike times are continuous
variables, and, as a result, the probability for a spike to occur at any pre-
cisely specified time is actually zero. To get a nonzero value, we must ask
for the probability that a spike occurs within a specified interval, for exam-
ple the interval between times t and t+ $t. For small $t, the probability

Draft: December 17, 2000 Theoretical Neuroscience

number of spikes /T=r

Cracking the code



• The alternative to spike counting is that each spike time matters (?). 
• Variability is very large -->  statistical measures.   
Average over many trial: trial average rate <r> seems more robust to this noise
• Which time window should we average from though??

Cracking the code
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Neurons in the visual cortex

In retina, LGN and visual cortex, the activity of neurons (spike count) is 
correlated with some aspects of the visual image (contrast, orientation, color, 
spatial frequency, ... in early visual cortex ... towards more complicated features 
such as faces and object shapes in ‘higher’ areas). 

= V1



Neurons in V1 are selective to orientation

http://www.youtube.com/watch?v=IOHayh06LJ4
https://www.youtube.com/watch?time_continue=115&v=Cw5PKV9Rj3o

http://www.youtube.com/watch?v=IOHayh06LJ4
https://www.youtube.com/watch?time_continue=115&v=Cw5PKV9Rj3o


1. Modeling the average firing rate <r(s)>

• Focus description on average firing rate <r(s)>.  
• Tuning curves: modify an aspect s of the stimulus, and measure <r(s)>  
• V1 neurons: highly selective to the orientation of the stimulus (e.g. bar) flashed in 
their receptive field. 
• Such bell-shaped (Gaussian-like) tuning curves are very common in the cortex.

s�< r(s) >



a) - Gaussian Tuning Curves

1.2 Spike Trains and Firing Rates 13

choice of parameters used as arguments of tuning curve functions is par-
tially a matter of convention. Because tuning curves correspond to firing
rates, they are measured in units of spikes per second or Hz.

Figure 1.5A shows extracellular recordings of a neuron in the primary vi- primary visual
cortex V1sual cortex (V1) of a monkey. While these recordings were being made, a

bar of light was moved at different angles across the region of the visual
field where the cell responded to light. This region is called the recep-
tive field of the neuron. Note that the number of action potentials fired
depends on the angle of orientation of the bar. The same effect is shown
in figure 1.5B in the form of a response tuning curve, which indicates how
the average firing rate depends on the orientation of the light bar stimulus.
The data have been fit by a response tuning curve of the form
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Figure 1.5: A) Recordings from a neuron in the primary visual cortex of a monkey.
A bar of light was moved across the receptive field of the cell at different angles.
The diagrams to the left of each trace show the receptive field as a dashed square
and the light source as a black bar. The bidirectional motion of the light bar is
indicated by the arrows. The angle of the bar indicates the orientation of the light
bar for the corresponding trace. B) Average firing rate of a cat V1 neuron plotted as
a function of the orientation angle of the light bar stimulus. The curve is a fit using
the function 1.14 with parameters rmax = 52.14 Hz, smax = 0◦, and σ f = 14.73◦. (A
from Hubel and Wiesel, 1968; adapted from Wandell, 1995. B data points from
Henry et al., 1974).)

Gaussian
tuning curve

f (s) = rmax exp

(

−1
2

(

s− smax
σ f

)2
)

(1.14)

where s is the orientation angle of the light bar, smax is the orientation angle
evoking the maximum average response rate rmax (with s− smax taken to
lie in the range between -90◦ and +90◦), and σ f determines the width of
the tuning curve. The neuron responds most vigorously when a stimulus
having s= smax is presented, so we call smax the preferred orientation angle
of the neuron.

Draft: December 17, 2000 Theoretical Neuroscience

smax

rmax
�f

: preferred orientation;
: maximal response;

: tuning curve width (selectivity)

�f

smax

rmax

Cells are going to be described by:



b) - Sigmoidal response curves

1.2 Spike Trains and Firing Rates 15

Figure 1.7B shows how the average firing rate of a V1 neuron depends on
retinal disparity and illustrates another important type of tuning curve.
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Figure 1.7: A) Definition of retinal disparity. The grey lines show the location on
each retina of an object located nearer than the fixation point F. The image from
the fixation point falls at the fovea in each eye, the small pit where the black lines
meet the retina. The image from a nearer object falls to the left of the fovea in the
left eye and to the right of the fovea in the right eye. For objects further away than
the fixation point, this would be reversed. The disparity angle s is indicated in
the figure. B) Average firing rate of a cat V1 neuron responding to separate bars
of light illuminating each eye plotted as a function of the disparity. Because this
neuron fires for positive s values it is called a far-tuned cell. The curve is a fit using
the function 1.17 with parameters rmax = 36.03 Hz, s1/2 = 0.036◦, and !s = 0.029◦.
(A adapted fromWandell, 1995; B data points from Poggio and Talbot, 1981.)

Retinal disparity is a difference in the retinal location of an image between
the two eyes (figure 1.7A). Some neurons in area V1 are sensitive to dispar-
ity, representing an early stage in the representation of viewing distance.
In figure 1.7B, the data points have been fit with a tuning curve called a sigmoidal

tuning curvelogistic or sigmoidal function,

f (s) = rmax

1+ exp
(

(s1/2 − s)/!s

) . (1.17)

In this case, s is the retinal disparity, the parameter s1/2 is the disparity
that produces a firing rate half as big as the maximum value rmax, and !s

controls how quickly the firing rate increases as a function of s. If !s is
negative, the firing rate is a monotonically decreasing function of s rather
than a monotonically increasing function as in figure 1.7B.

Spike-Count Variability

Tuning curves allow us to predict the average firing rate, but they do not
describe how the spike-count firing rate r varies about its mean value
⟨r⟩ = f (s) from trial to trial. While the map from stimulus to average

Draft: December 17, 2000 Theoretical Neuroscience

• For some other dimensions, sigmoidal or logistic response functions 
• E.g. Luminance, Contrast, Retinal Disparity (depth / fixation point).

rmax

�s

: s at half response

: slope’s sign and steepness

s1/2



Stimulus features encoded in V1

[Sceniak et al, 2002]

[Foster et al, 1985]

• Many different features are encoded in 
V1: spatial position (retinotopy), 
orientation, direction, contrast, spatial 
frequency, temporal frequency, color, 
depth ... 
• a variety of tuning/ response shapes.



A Population Code 

• in V1, neurons of every preferred orientation, direction, spatial freq. etc.. can be 
found: population code. 
• Retinotopy, preferred orientations, directions are very precisely organized, 
forming columns and maps.
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Single cell tuning curves vs population response

Single cell tuning curve: change stimulus, record spike count for every stimulus 

Population response: keep stimulus fixed, record spike count of every neuron in 
the population
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Tuning curves everywhere ... 

• Primary motor cortex (M1) -- arm reaching 
task 
• <r> as a function of the direction in which 
the monkey moved his arm  
• Here described as a cosine

 Georgopoulos et al, 1982

14 Neural Encoding I: Firing Rates and Spike Statistics

Response tuning curves can be used to characterize the selectivities of neu-
rons in visual and other sensory areas to a variety of stimulus parameters.
Tuning curves can also be measured for neurons in motor areas, in which
case the average firing rate is expressed as a function of one or more pa-
rameters describing a motor action. Figure 1.6A shows an example of ex-
tracellular recordings from a neuron in primary motor cortex in a monkeyprimary motor

cortex M1 that has been trained to reach in different directions. The stacked traces for
each direction are rasters showing the results of five different trials. The
horizontal axis in these traces represents time, and each mark indicates
an action potential. The firing pattern of the cell, in particular the rate at
which spikes are generated, is correlated with the direction of arm move-
ment and thus encodes information about this aspect of the motor action.
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Figure 1.6: A) Recordings from the primarymotor cortex of a monkey performing
an arm reaching task. The hand of the monkey started from a central resting loca-
tion and reachingmovements were made in the directions indicated by the arrows.
The rasters for each direction show action potentials fired on five trials. B) Aver-
age firing rate plotted as a function of the direction in which the monkey moved
its arm. The curve is a fit using the function 1.15 with parameters rmax = 54.69
Hz, r0 = 32.34 Hz, and smax = 161.25◦. (A adapted from Georgopoulos et al., 1982
which is also the source of the data points in B.)

Figure 1.6B shows the response tuning curve of an M1 neuron plotted as
a function of the direction of arm movement. Here the data points havecosine

tuning curve been fit by a tuning curve of the form

f (s) = r0 + (rmax − r0) cos(s− smax) (1.15)

where s is the reaching angle of the arm, smax is the reaching angle associ-
ated with the maximum response rmax, and r0 is an offset or background
firing rate that shifts the tuning curve up from the zero axis. Theminimum
firing rate predicted by equation 1.15 is 2r0− rmax. For the neuron of figure
1.6B, this is a positive quantity, but for some M1 neurons 2r0 − rmax < 0,
and the function 1.15 is negative over some range of angles. Because fir-
ing rates cannot be negative, the cosine tuning curve must be half-wave
rectified in these cases (see equation 1.13),

f (s) = [r0 + (rmax − r0) cos(s− smax)]+ . (1.16)

Peter Dayan and L.F. Abbott Draft: December 17, 2000



2. Describing ‘the noise’

• Beyond describing only the mean spike count … the variability in the spike 

count.  

•To model the statistics of the response (one trial), we can use tools from 

probability theory: stochastic (random) processes.

• The spike count r on one trial is considered as a random variable.

• The probability of getting each outcome (n=1,2 .., 10, 50 spikes) is given by a 

probability distribution P(n|s) for which we want to find a suitable model.

• To do that, we use known statistics of n: the mean <n>=f(s) and 2d order 

statistics (variance, correlations). 

V ar(n) = E[(n� µ)2]

Cov(n1, n2) = E[(n1 � µ1)(n2 � µ2)]



Beyond the rate: Describing the variance of the spike count

• Measure the variance of the spike count, for a number of repetitions with the same stimulus.
• Experiments show that the variance of the spike count is linearly related to the mean spike 
count (with prop. const ~1).
• Noise is often described as Poisson, or Gaussian with a variance proportional to the mean.

var(n) = F � mean(n)

F: Fano Factor

[O Keefe, 1997 - MT cortex]
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From one neuron to the population :  
Describing pair-wise noise correlations

no correlation positive 
correlation

r1(s)r1(s)

r 2
(s

)

r 2
(s

)

• An important question in neuroscience is to understand whether the noise is independent 
between neurons.  
• Measure Trial-to-trial fluctuations of pairs of neurons, for same s. 
When neuron 1 is above its mean, is neuron 2 also ? or are their fluctuations independent? 

• Experimental data show weak positive correlations, which might be critical for the accuracy of 
the code.



Encoding:  Summary 

✤  Spikes are the important signals in the brain. 
✤  What is still debated is the code: number of spikes, exact spike timing, temporal 

relationship between neurons’ activities? 

✤ Experimentalists have characterized the activity of neurons all over the brain and 
in particular in sensory cortex, motor cortex etc .., mainly in terms of tuning 
curves and response curves. A variety of well-specialized areas. Detailed wiring 
and mechanisms at the origins of these responses are largely unknown.  

✤ The large variability (in ISI, number of spikes) is often well described by a Poisson 
or Gaussian model. Its origin or function is largely unknown. 

✤ Applications: prosthetics - artificial ear (cochlear implants) - artificial retina / retinal 
implants.



a) Poisson Distribution - definition

• Poisson distribution, named after French mathematician Siméon Denis 
Poisson, is a discrete probability distribution that expresses the probability of a 
given number of events occurring in a fixed interval of time and/or space if 
these events occur with a known constant rate and independently of the time 
since the last event. 

• if the average number of events in the interval/ rate is  
The probability of observing k events in an interval is given by the equation: 
 
 
 
where 

- e is the number 2.71828... (Euler's number) the base of the natural logarithms 
- k takes values 0, 1, 2, … 
- k! = k × (k − 1) × (k − 2) × … × 2 × 1 is the factorial of k. 



a) Poisson Distribution - P(n|s)

k

P (n = k|s) =
e�f(s)f(s)k

k!

e.g. if f(s)=10, P(n=10|s)=0.125
P(n=7|s)=0.09
P(n=3|s)=0.007

P
(n

=k
|s

)

f(s)=1 
f(s)=4 
f(s)=10

• Poisson distribution is an appropriate model for describing the number of spikes in a 
time window.   
• The rate / average number of spikes for a given stimulus s is also what is measured by 
the tuning curve f(s)

• It is a property of the Poisson distribution that var(n)=E(n)=f(s)



b) Gaussian Distribution

• Another model that is commonly used to describe the variability of the spike 
count is the Gaussian noise model. 
• The activity of a neuron (number of spikes) can be described as:

n = f(s) + �(s)
�(s) � N(0,⇥2(s))

• To mimic a Poisson distribution, we choose  
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Comparison of Poisson vs Gaussian noise with 
variance equal to the mean
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c) From Poisson Distribution to Poisson Process

• We can be interested to model not only the number of spikes (or any event), 
but the temporal sequence of such spikes.
 
 
 

Such that the number of spikes will be described with a Poisson distribution.  
 
We can use the model of the Poisson Process.  
 



• Divide time window T into N bins. p=probability of spiking in each bin. 
• In each bin,  toss a coin with probability P(head)=p, if you get a head, record a 
spike.

How to construct a Poisson Spike train

c) Poisson Processes - spike sequences

………

T

N bins p=   /N

Draw random number between 0 and 1: if < than p, record spike. 

………1

Draw random number between 0 and 1: if < than p, record spike. 

• For small p, the number of spikes in T follows a Poisson distribution.



• variance(spike count) = mean(spike count).  (~data) 
• Inter-spike intervals (ISI) follow an exponential distribution (~data, except for 
very short intervals(refractory period) and for bursting neurons).

 Properties

• Poisson model can be made to include a refractory period 
• Homogeneous: mean spike count is fixed in time window f(s)  
• Inhomogeneous -- changing in time window :f(s,t).

c) Poisson Processes - spike sequences
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Figure 1: A. Snippet of a Poisson spike train with and msec. B. Spike count

histogram calculated from many Poisson spike trains, each of 1 sec duration with , superim-

posed with the theoretical (Poisson) spike count density. C. Interspike interval histogram calculated

from the simulated Poisson spike trains superimposed with the theoretical (exponential) interspike

interval density. D. Snippet bursty spike train generated by replacing each spike in A with a “burst”

of zero, one, or more spikes. The height of each impulse represents the number of spikes in that time

bin. The number of spikes per burst was Poisson distributed with a mean of spike/burst. E.

Spike count histogram calculated from many bursty spike trains like that in D, superimposed with

the Poisson spike count density. The bursty spike trains have the same mean spike count, but the

variance of the bursty spike count histogram is twice that of the Poisson. F. Renewal process spike

train generated from A by removing all but every fourth spike. G. Spike count histogram calculated

from many renewal spike trains like that in F. The mean spike count is 1/4 that of the Poisson, as

expected. H. Interspike interval histogram calculated from the renewal process spike trains super-

imposed with the theoretical (gamma) interspike interval density. The mean interspike interval is

40 msec, four times longer than that in C, as expected because we have removed 3/4 of the spikes.

The standard deviation of the interspike intervals is 20 msec so the coefficient of variation is 1/2.
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interval density. D. Snippet bursty spike train generated by replacing each spike in A with a “burst”

of zero, one, or more spikes. The height of each impulse represents the number of spikes in that time

bin. The number of spikes per burst was Poisson distributed with a mean of spike/burst. E.

Spike count histogram calculated from many bursty spike trains like that in D, superimposed with

the Poisson spike count density. The bursty spike trains have the same mean spike count, but the

variance of the bursty spike count histogram is twice that of the Poisson. F. Renewal process spike

train generated from A by removing all but every fourth spike. G. Spike count histogram calculated

from many renewal spike trains like that in F. The mean spike count is 1/4 that of the Poisson, as

expected. H. Interspike interval histogram calculated from the renewal process spike trains super-

imposed with the theoretical (gamma) interspike interval density. The mean interspike interval is

40 msec, four times longer than that in C, as expected because we have removed 3/4 of the spikes.

The standard deviation of the interspike intervals is 20 msec so the coefficient of variation is 1/2.
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