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Neurons

Dendrites

Myelin Sheath

* Neuron = cell, diverse morphologies

« Dendrites: receive inputs from other cells,
mediated via synapses.

— Axon

« Soma (cell body): integrates signals from
dendrites. 4-100 micrometers.

+ Action potential: All-or-nothing event generated
if signals in soma exceed threshold.

Cell Body £

+ Axon: transfers signal to other neurons.

e Synapse: contact between pre- and
postsynaptic cell.

- Efficacy of transmission can vary over time.

- Excitatory or inhibitory.

- Chemical or electrical.

107M 6 synapses in young children (decreasing with
age -- 1-5x107M5)




A Bit of History

* 1791-1797: Galvani describes electrical activity in nerves (“ animal
electricity”) Dead frogs legs jump when electrically stimulated, which

inspired Volta (first battery - and Mary Shelley).
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A Bit of History

of discrete cells

*1848 Emil du Bois Reymond discovered
the action potential in frogs’ muscles
* Ramon y Cajal (Nobel prize 1906)

established that nervous tissue is made up

* |n 1902 and 1912, Bernstein advanced
the hypothesis that the action potential
resulted from a change in the permeability

of the axonal membrane to ions.
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Hodgkin & Huxley (1952)
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* experimental measurements theory of theee L e
action potential /|| H—can
e Used the giant axon of the squid which 4

enabled them to record ionic currents

* voltage clamp technique: to measure ionic
currents across membrane by holding potential
constant.

Nobel Prize 1963

http://www.youtube.com/watch?v=k48jXzFGMc8
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Membrane potential and action potential

* lons channels across the membrane, allowing ions to move in and out, with
selective permeability (mainly Na+, K+, Ca2+,Cl-)

* \/m: difference in potential between interior and exterior of the neuron.

e at rest, Vm~-70 mV (more Na+ outside, more K+ inside, due to N+/K+ pump)
 Following activation of (Glutamatergic) synapses, depolarization occurs.

* if depolarization > threshold, neuron generates an action potential (spike) (fast
100 mv depolarization that propagates along the axon, over long distances).
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Point Neurons (1)

» WWe describe the membrane potential by a single variable V.

* Membrane capacitance: Due to excess of negative charges inside the neuron,
positive charges outside the neuron, membrane acts like a capacitor

* V and the amount of charges Q are related by the standard equation for

capacitor:

Q =0,V
* From this we can determine how V changes when charges change: a
+
AV dQ
_— = — = —1
" dt dt " P

here, by convention i_m is positive outwards

This is the basic equation used to model neurons. ¢

dV
Cm% - — Z Iion + Iext(t) -Q
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Point Neurons (2)

dV
Cm% — le'on + Iext(t)

* The ion movements are due to channels that are open all the time (leakage),
or that open at specific times, dependent on V, e.g. to generate action potential,
or following synaptic events.

» Each current can be described in terms of a conductance gi and equilibrium or
reversal potential Ei. Eidescribes the value of potential at which the current
would stop, because the forces driving the ions (diffusion and electric forces)

would cancel.

A conductance with reversal potential E; will tend to move Vm towards E;
Exk+~-70--90 mV, Ena+~50mV, E¢-~-60mV--65mV.



Hodgkin-Huxley Model (in a nutshell)

dV
Cm% — Zlion + Iea;t(t)

10N

3 (V= EL) + 3 n*(V — Ex) 4 35, mh(V — Ena)

g
e Describe ionic movements involved in LSy | | |
generation of action potential. % 0 P
e n,m,h are the gating variables describing T ' ' '
the dynamics of the K+, and Na+ channels. m o5k J\
m: opening of Na+ (activation) o - - ‘
h: closing of Na+ (inactivation) b o
n: opening of K+ (activation) . \,/
«They depend on V and their evolution T o~
(V1) is described by other differential ' 0'2 . | '

—
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Hodgkin-Huxley Model (in a nutshell)

* n,m, and h are also described using differential equations
dn/dt=a_(V)(1-n)-b_(V)n a (V) = opening rate  b_(V) = closing rate

dm/dt=a_(V)(I-m)-b_(V)m a_(V)=openingrate b_(V) = closing rate

dh/dt=a,(V)(1-h)-b, (V)h a,(V) = opening rate b, (V) = closing rate

a_=(0.01(V+55))/(1-exp(-0.1(V+55))) b =0.125exp(-0.0125(V+65))
a_=(0.1(V+40))/(1-exp(-0.1(V+40))) b_=4.00exp(-0.0556(V+65))
2,=0.07exp(-0.05(V+65)) b,=1.0/(1+exp(-0.1(V+35)))

The iterative solution for the propagating action
potential, whose results are shown in Fig. 6A,
took a few weeks and many thousands of
rotations of the mechanical calculator crank (Fig.
6B)

. L . /10.1113/iphysiol.2012.230458



https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.2012.230458#f6
https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.2012.230458#f6
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https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.2012.230458

HH : Conclusion

* The Hodgkin Huxley model : one of the most influential

models of computational neuroscience

* In terms of models 3 success: (1) good model system
(2) introduction of computers (3) right level of details for
describing phenomenon --> link microscopic ion channels

to macroscopic currents and action potential.

* Led to many predictions and experiments, e.g. gating
charge movements, that Na+ and K+ channels were
separate molecular identities with different pore sizes,
other dynamics.

* most biophysical models of spiking neurons still based

on H-H equations.



Models of Neurons

* One extreme: detailed description of the morphology of the neuron -- multi-
compartmental models. Based on cable (differential) equations to solve
Vm(x,t), simulations with softwares like NEURON.

* Hodgkin-Huxley neuron: model of spike generation using differential

simplify

equations to model dynamics of K+ and Na+
* Integrate and fire neurons (family). spike generation replaced by stereotyped
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Integrate and fire neurons (1)

1. Only describe ion movements due to channels that are open all the time
(leakage)= passive properties.

A%
Cm% — _gl(v — EL) =+ Iea:t(t)

EL= resting potential,

Can be also written, using R,.C,, =71,
Rm=1\gi = membrane

resistance;
dV taum= membrane time
T - =~V +Ep, + Ry * Iy (t) constant;

2. When V>Vires (€.9.-55 mV) an action potential is triggered (V set to Vspike
(e.g. 50 mV)) and V reset t0 Vieset €.9. -75 mV.



Integrate and fire neurons (2)

Example.
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Figure 5.5: A passive integrate-and-fire model driven by a time-varying electrode
current. The upper trace is the membrane potential and the bottom trace the driv-
ing current. The action potentials in this figure are simply pasted onto the mem-
brane potential trajectory whenever it reaches the threshold value. The parameters
of the model are E, = Vieget = —65 mV, Vg, = =50 mV, 7y = 10 ms, and Ry, = 10

Mg.



Integrate and fire neurons (3)

* The firing rate of an integrate and fire neuron in response to a constant
injected current can be computed analytically (cf D&A).

* Integrate and fire neurons =_a family of models.

Inputs can be modeled as a current, or conductances (better model of
synapses).

e Can be modified to account for a repertoire of dynamics e.g. can include a
model of refractoriness and spike rate adaptation (and more)

* conductance-based |IAF: these phenomena + inputs are modelled using added

i
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Integrate and fire neurons (4): adding spike rate adaptation

* spike rate adaptation can be modeled as an hyperpolarizing K+ current

dV
TmE =F; —V — ngsra(t)(v — EK) + R, 1.

* when neuron spikes, gsra IS increased by a given amount:
9sra = Ysra _|_ Agsra

 the conductance relaxes to 0 exponentially with time constant 7Tgrq

dgsra(t)
Tsra S;Z — —Ysra (t)
B (M
Conductances triggered by spiking are used
‘ to model refractory period, bursting...
Al 11 Synaptic input can be modeled similarly (but
e e triggered by presynaptic spike)

spike rate adaptation



Integrate and fire neurons (5): adding synaptic input

* Synaptic inputs are modeled as depolarizing or hyperpolarizing conductances

dVv
de_t =Er =V —|rmg Ps(V — Eg)|+ R e .

* Each time a presynaptic spike occurs (+ synaptic delay), Ps is modified.
For example, Ps can be modeled using an alpha-function:

'L Bt ¢rs 0
Pzt t R SRR

1 — =
- exp( T)

P(t) =

* a variety of models can be used for Ps
depending on dynamics that we want to account
for (slow/fast synapses)

» Es=0 for excitatory synapses, Es=-70--90 mV for inhibitory
synapses.



Synaptic input

* Different synapses have different dynamics.
» Excitatory synapses: AMPA is fast, NMDA slow.
e Inhibitory synapses: GABAa are fast, GABAD slower.
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Synaptic input

* The amplitude of synaptic EPSPs and IPSPs may vary depending on
spiking history: synaptic facilitation and depression.

* They can also vary on a longer time scale : learning. (LTP, LTD)




Izhikevich neuron (2003,2004)

* A more recent and popular alternative to the integrate and fire.
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On Numerical Integration

* Sometimes the differential equations can be solved analytically
* Usually though, they are solved numerically
* The simplest method is known as Euler’'s method: a system

Y f(y)

- — y

dt
can be simulated by choosing the initial condition y(0) and repeatedly
performing the Euler integration step:

y(t+dt) = y(t) +dif(y)

Higher order and adaptive methods, such as Runge-Kutta are commonly
used (check ‘numerical recipes’, matlab ode23, ode45, and Hansel et al 1998
for an evaluation of such methods with IAF neurons).



Readings

e Dayan & Abbott Chapter 5
» Historical perspective

https://physoc.onlinelibrary.wiley.com/doi/epdf/10.1113/jphysiol.2012.230458
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Computational Cognitive Neuroscience. Lab 1
Simple Neuron Models. January 2025

Lecturer: Peggy Series
Teaching Assistant: Lars Werne

Tutorial Objectives
In this tutorial, you will learn to do the following:

e Implement a model of a single neuron in Python (or Matlab)
e Simulate the model numerically and plot the results
e Interpret your findings and their relevance to biology

e Understand where analytical approximations may be used alongside numerical simulation and
how the two approaches complement each other

Introduction

In this tutorial, you will code and simulate a simple neuron model that we discussed at length
in Lecture 3: the leaky integrate and fire neuron. You will explore how the spike statistics and
membrane potential dynamics of the model depend on the statistics of the input the neuron receives
and how analytical approximations can provide insights into this behaviour in limiting situations.



Part 1: Setting up the Model for Passive Dynamics

We Arst carsider how “o numerica’ly simulate the passive membrane potertial dynamics of a simple
neuron model  the leaky integrate and fire neuron.

The membrane potential of the Jeaky integrate and fire model odeys the fcllowing equation while
below the spiking (hreshold:

dv L
r— = [V — Ey) + =,
O

Our goal is to solve this equaticn numerically using the Euler method. This will allow us to
explore how the membrane potential evclves over time and how it eventually stabilizes under
vorious eonditions, Ycou can review Lecture 3. Slide 22, for a refresher. Follow these steps:

1. Set up parameters:

e Assign valoes (o the paranelens: 7, B, e, Y-
e Deline the numboer of iterations, Ny = 10U, and the timestep, 3¢ = 1).1 ms, for a tota.
simmlatinn time of 1 3acondd.
2. Initialize arrays:
o Creave an zaray of size [N; +1,1] w sloze the values of L membrace polentia.'

3. Simulate the dynamics:

e Use a for locp to compate the values of the membrane potential at each time step.
e Start the simulation with the mitial conditien V' — E,, and the fcllowing parameters:
B time constart r = 10ms
B resting potential 5, — —70mV
B wenbrane conductance g, = 18
B externz] current oo = 20 A

1. Plet and analyze results:

e Check shat vour simulation runs wizhoat ercrs.
e Plot the memhbrane potertial as a funetion of time

e Irspect the plot. Did the simulavicn behave e= expected? How can you tell?
FAfter NV, iterations you will nave V, 4 1 time points



b. Explore parameter variations:

e Vary the input current, time censtans, and initial condition. * Observe how each affects
the evolution of “he memkbrane potential.

6. Determine steady-state behavlor: In the simulations above, you should chserve tha: the
membrane petentiol converges to a stable, final value (the "steady-stote” or "equilibrivm?
potential) This value of V' is reached when % =0 in the ecuation.

dv Lot
L e (V= E,) - =
7‘“ ) ) Im

e Derive nn analytical equation for the steady stote membrane potential.

o Compare the derived equation with your simulations. Do the results agree?

Part 2: Incorporating Spiking Intu the Model

Next, we will add spikes ‘o tae model and observe how they change its bebavior. To model spises,
we introdnee the following spike-reset nile:

If Vit) > Vinwesnard, then set V() = Vit

1. Tmplement. the spike-reset. rule:

» Modify your enda ta inclnda the spike-resat rile hy add'ng an 1f=than condit'on inside
the loop over time sucps.

e Ensure that spiks times are stcred in a separate array for later analysis.
2. Set parameters for spiking:

e Use the following parameter values for spiking behavicr:
— Threshold potential: Vipreshort = —00mV
Reset potential: Vg = 76mV
3. Run and analyze simulations:

e Run the modified simulazion with different values of:

— Input current {Jeq)
- Time constant (7)




Part 3: Adding Noise to the Input

In this part, we will explore how the neuron behaves when driven by noisy, fluctuating input.
Initially, we return to the case of purely passive dynamics, as in Part 1. To simulate this, you can
modify your spiking code by setting Vi enold = 00, which ensures the neuron never spikes.

The noisy input is modeled as:
I (t) = Iy + o&(t),

where £(t) is a normally distributed random variable with zero mean and unit variance, drawn
independently at each timestep.?

1. Simulate passive dynamics with noisy input:

e Set o = 50 and simulate with different values of Ij.
e Plot the membrane potential for each input current value.
e Analyze the plots. How would you expect the noise to influence spiking activity?

2. Incorporate the spike-reset rule and analyze interspike interval distributions:

¢ Reintroduce the spike-reset rule by setting Viyresholda = =50 mV.

e Vary both Iy and ¢. Compute interspike interval (ISI) distributions for different param-
eter combinations.

e Usematplotlib.hist to create histograms of the ISI distributions for various parameter
values.

e Discuss how the shape of the ISI distribution depends on the input parameters. If
necessary, increase the number of simulation timesteps to obtain higher sample sizes for
better analysis.



