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* Neurons are organized in large networks. A typical neuron in cortex
receives thousands of inputs.

* “Brainbow”: genetic engineering technique (in mice) which makes
neighbouring neurons glow in different colours through fluorescent proteins.
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https://www.youtube.com/watch?v=IZCZV5-v3S4

Networks of Neurons

Aim of modelling networks: explore the computational potential of such connectivity.

- What properties?

- What dynamics and how are those generated ? (e.g. spontaneous activity,

variability, oscillations)

- Why are networks the way they are? What are they problems they solve, what
constraints? What computations? (e.g. learning, integration, gain modulation or
selective amplification of some signal , memory etc..

- What changes in properties can be related to ageing or disease?

* Tools:
- models of neurons and synapses : spiking neurons (IAF) or firing rate
- analytical solutions (dynamical systems, mean field theory), numerical integration

The tools we choose depend on the question, the data we compare our model to and
the scale of the problem.



What’s in a network of neurons ?

* In cortex, ~80% excitatory cells (pyramidal neurons), ~20% inhibitory
neurons (smooth stellate + large variety of other types)/ a.k.a interneurons.
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What’s in a network of neurons ?

e Laminar Organization. |
Cortex is divided into 6 layers.

I §
Models usually pool all layers together.
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What’s in a network of neurons ?

e Columnar Organization.
Neurons in small (30-100 micrometers) columns perpendicular to the layers
(across all layers) respond to similar stimulus features.

{Aus Gazzaniga et al., 1998)
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Connectivity

* 3 types of connections: feed-forward, recurrent (lateral), feedback.
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Network modeling strategies (1)

* method 1: spiking neurons, e.g. integrate and fire neurons

m dlj}t(t) = _Z 8ij (f — 7 )(Vz(t) _EEXCIT)_ Zgij (t _Tij)(Vi(t) - EINHIB)

—81EAK (Vz(t) —E ek ) — 8 Anp (t)(Vz(t) _EAHP)’

C

* up to 10,000 neurons+.

» advantage: comparison with electrophysiology, a system where all neurons
can be ‘recorded’ at all times.

e difficulties: lots of parameters/assumptions, long simulations, analysis
difficult.



Network modeling strategies (2)

alpha rhythm (10 Hz) gamma rhythm (40 Hz)
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Dynamics of Recurrent Networks

Recurrent Networks can show rich dynamics, oscillations, chaotic /
asynchronous states depending on Excitation/Inhibition (E/I) balance.
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Conditions for and impact of Poisson Variability

What connectivity can create irregularity of spiking aka Poisson variability?
How does this variability impact information?
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Tuning curve sharpening for orientation selectivity:
coding efficiency and the impact of correlations

Peggy Serids?, Peter E Latham! & Alexandre Pouget?

Severzl studies have shown that the information conveyed by tell-shapec tuning curves increases as their width decreases,
leading t2 the notion that sharpening of tunirg curves improves copulatior codes. This notior, however, 15 based on
assumplions thal the noise distribution is independent among neurons and independent of the luning curve width. Here we
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Dynamics of Feedforward Networks

How do inputs propagate across Feedforward networks ? (how fast? what'’s
the role of synchrony?)
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Network modeling strategies (3)

* Method 2: reduce the description to describe only rate of spiking r(t) (also

confusingly sometimes denoted v(t)), instead of Vm(t).

A B
dr; (t . N
. Tdi ) = —r;(t) + input(?) :5: |

:l \ | ‘l
)\ v/J ey I. 4“ I\_/ l\—'/ -

le (nA)

* Interpretation: average over equivalent neurons or over time

rate = average over pool of equivalent nenrons

rafe = average over nme

(several neurons, single run) spilce count

o0 ogn (single neuron, single mn)
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Firing rate model (1)

* each neuron is described at time t by a firing rate v(t).

do; (1) =
= —uilt) + F(Z Wi u;)
71=1
oufput ©
weights w
input u

* In absence of input, the firing rate relaxes to 0 with a time constant tr - which
also determines how quickly the neuron responds to input.

* The input from a presynaptic neuron is proportional to its firing rate u

* The weight wj determines the strength of connection of neuron j to neuron i
* The total input current is the sum of the input from all external sources.



Firing rate model (2)

* each neuron is described at time t by a firing rate v(t).

dvi (t)
dt

Ty

1=N
= —v;(t) + FOY  wijuy) = —vi(t) + F(w.u)
=1 dot-product

* F determines the steady state r as a function of input
* F is called the activation function
e F can be taken as a saturating function, e.g. sigmoid

e F is often chosen to be threshold linear
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Network Architectures

e A: Feedforward

W) ) + FCY Wi, (1)

g=1

Ty

e B: Recurrent

do; (1) al al
T = —ui(t) + F(Z Wijui(t) + > Migug(t))
1=1 k=1
A 5 M

cutput vV
input U



Excitatory - Inhibitory Network

 Some models have a single population of neurons and the weights are
allowed to be positive and negative.

e Other models represent the excitatory and inhibitory population separately.
(more ‘biological’ + richer dynamics).

* 4 weight matrices, Meg, Mig, Mii, Mg

dv
tEd—tE = —vg + Fg (hg + Mgg - Vg + Mg; - V1)
and
dVI
11— = —vi+ Fy (hy + Mg - vg + My - vp) .

dt



Example:

Orientation selectivity as a model computation




Neurons in V1 are selective to orientation

J. Physiol. (1050) 148, 574-501

RECEPTIVE FIELDS OF SINGLE NEURONES IN
THE CAT'S STRIATE CORTEX

By D. H. HTIBEL* axp T. N. WIESEL*

From the Welmer Institute, The Jokns Hopkins Hospital and
niversity, Baltimore, Maryland, U7 S.4.

(Recetved 22 April 1959)

The Nobel Prize in
Physiology or Medicine
1981

Roper W. Sperry David H. Hubel Torsten N. Wiesg

Frise ehare: ' 7% Prire z=are: 104 Froseba "

The Nobel Frize In Fnyslology or Mecicine 1931 was divided, one
half awarded to Roger W. Sperry “for s discovenios concerning the
funcricnal specialzation of the cerabral hemispheres®, the other
half juoindy te David H. Hubel and Torsten N. Wiesal “for thair
disrever/es concerning intarmation precessing In the vicual

In the central nervous system the vismal pathway from retina to striesziem:
cortex provides an opportumty to observe and compare single unit re-
sponscs at severul distinel Jevels, Patterns of light stimuli most effective in
influencing units at one level may no longer he the most effective at the
next. From differences in responses at successive stages in the pathway one
may hope to gain some understanding of the part each stage plays in visual

percepiion.

http://www.youtube.com/watch?v=I0OHayh06L J4

https://www.youtube.com/watch?time continue=115&v=Cw5PKV9Rj30



http://www.youtube.com/watch?v=IOHayh06LJ4
https://www.youtube.com/watch?time_continue=115&v=Cw5PKV9Rj3o

Tuning curves of neurons in V1

* Focus description on average firing rate <r(s)>.
e Tuning curves: modify an aspect s of the stimulus, and measure <r(s)>
* V1 neurons: highly selective to the orientation of the stimulus (e.g. bar) flashed in

their receptive field.
e Such bell-shaped (Gaussian-like) tuning curves are very common in the cortex.

0 s =< r(s) >

f (Hz2)
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. 20 40

s lorientation angle in degrees)



LGN neurons are not selective to orientation, V1’s are:

Origin of Orientation selectivity ?

Sumclke el

- é Falyak, 1667
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e Example of a computation, emergence of a new property.



Model of Hubel and Wiesel (1962)

e Hubel and Wiesel (1962) proposed that the oriented fields of V1 neurons
could be generated by summing the input from appropriately selected LGN

neurons.
* The model accounts for selectivity in V1 on the basis of a purely feedforward

architecture.
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Feedforward vs Recurrent models of Orientation Selectivity

output

/ \ Connectivity achieves
contrast invariance through

feedforward inhibition

0’0’{00\“0’00‘0 - the tuning curve

Due to the precise
organization of the thalamic
afferents, input to V1 is
sharply tuned

“to V1 is broadly tuned

Feedforward Recurrent
Hubel and Wiesel, 1962; Somers, Nelson and Sur 1995;
Troyer, Krukowski, Sompolinsky and Shapley, 1997

Priebe and Miller, 1998



The Recurrent/ Ring Model of orientation selectivity (1)

* |f the input from LGN is broadly tuned, can contrast-invariant orientation selectivity
be achieved within V1, through recurrent interactions between neurons?

Proc. Natl. Acad. Sci. USA
Vol. 92, pp. 3844-3848, April 1995
Neurobiology

Theory of orientation tuning in visual cortex

(neural networks / cross-correlations /symmetry breaking)

R. BEN-YISHAI*, R. LEV BAR-OR*, AND H. SOMPOLINSKY

*Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel; and TAT&T Bell Laboratories,

Murray Hill, NJ 07974

Communicated by Pierre C. Hohenberg, AT&T Bell Laboratories, Murray Hill, NJ, December 21, 1994 (received for review July 28, 1994)

ABSTRACT The role of intrinsic cortical connections in
processing sensory input and in generating behavioral
output is poorly understood. We have examined this issue in
the context of the tuning of neuronal responses in cortex to
the orientation of a visual stimulus. We analytically study a
simple network model that incorporates both orientation-
selective input from the lateral gemiculate nucleus and
orientation-specific cortical interactions. Depending on the
model parameters, the network exhibits orientation selec-
tivity that originates from within the cortex, by a symmetry-
breaking mechanism. In this case, the width of the orien-
tation tuning can be sharp even if the lateral geniculate
nucleus inputs are only weakly anisotropic. By using our
model, several experimental consequences of this cortical
mechanism of orientation tuning are derived. The tuning
width is relatively independent of the contrast and angular
anisotropy of the visual stimulus. The transient population
response to changing of the stimulus orientation exhibits a
slow “virtual rotation.” Neuronal cross-correlations exhibit
long time tails, the sign of which depends on the preferred

ivity among cortical neurons can be gained from measure-
ments of the correlations between the responses of different
neurons (10). Theoretical predictions regarding the magnitude
and form of correlation functions in neuronal networks have
been lacking.

Here we study mechanisms for orientation selectivity by
using a simple neural network model that captures the gross
architecture of primary visual cortex. By assuming simplified
neuronal stochastic dynamics, the network properties have
been solved analytically, thereby providing a useful framework
for the study of the roles of the input and the intrinsic
connections in the formation of orientation tuning in the
cortex. Furthermore, by using a recently developed theory of
neuronal correlation functions in large stochastic networks, we
have calculated the cross-correlations (CCs) between the
neurons in the network. We show that different models of
orientation selectivity may give rise to qualitatively different
spatiotemporal patterns of neuronal correlations. These pre-
dictions can be tested experimentally.



The Recurrent/ Ring Model of orientation selectivity (2)

* N neurons, with preferred angle, 6, ,evenly distributed
between —7/2 and 7 /2

* Neurons receive thalamic inputs h.

+ recurrent connections, with excitatory weights between
nearby cells and inhibitory weights between cells that are
further apart (mexican-hat profile)

/2 30/
rrdlil(e) = —v(0) + |:h(9) + f 4o (—Xo + A1 cos(2(6—6')))v(0)
t —7/2 T

-50 0 50
orientation 0




The Recurrent/ Ring Model of orientation selectivity (3)

0.5 - -
* his input, can be tuned (Hubel Wiesel &,
. 0.4 )
scenario) or very broadly tuned. — "2
__ 0.3}
h(0) = c|l — € + € *x cos(20)] £ ol
0.1}

0

_50 0 50
orientation 6

* The steady-state can be solved analytically.

Model analyzed like a physical system.

* Model achieves i) orientation selectivity; ii) contrast invariance of tuning, even
if input is very broad.

* The width of orientation selectivity depends on the shape of the mexican-hat,
but is independent of the width of the input.

* Symmetry breaking /Attractor dynamics.



The Recurrent/ Ring Model of orientation selectivity (4)
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Figure 7.10: The effect of contrast on orientation tuning. A) The feedforward in-
put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 80%, 40%, 20%, and 10%. B) The output firing rates
in response to different levels of contrast as a function of orientation preference.
These are also the response tuning curves of a single neuron with preferred orien-
tation zero. As in A, the four curves, from top to bottom, Correspond to contrasts
of 80%, 40%, 20%, and 10%. The recurrent model had Ay =7.3, A1 =11, A =40
Hz, and € = 0.1. C) Tuning curves measure experimentally at four contrast levels

as indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997; based
on data from Sclar and Freeman, 1982.)



Attractor Networks

® Attractor network : a network of neurons, usually recurrently connected, whose
time dynamics settle to a stable pattern.
* That pattern may be stationary (fixed points), time-varying (e.g. cyclic), or even

stochastic-looking (e.g., chaotic).
* The particular pattern a network settles to is called its ‘attractor’.

*The ring model is called a line (or ring) attractor network. Its stable states are also
sometimes referred to as ‘bump attractors’.

%1

Line Attractor

Point Attra(;toor .



The Ring Model (5): Sustained Activity

* If recurrent connections are strong enough, the pattern of population
activity once established can become independent of the structure of the
input. It can persists when input is removed.

* A model of working memory ?
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e “Although feedforward models for the emergence of orientation selectivity
are able to account for many aspects of V1 orientation selectivity, interactions
within the visual cortex, particularly between nearby neurons, also sculpt
selectivity”.

* A diversity of mechanisms.
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Network models - summary

* Network models: to understand the implications of connectivity in
terms of computation and dynamics.

» 2 Main strategies: Spiking vs Firing rate models.

* The issue of the emergence of orientation selectivity as a model
problem, extensively studied theoretically and experimentally.

- Two main models: feed-forward and recurrent.

- Detailed spiking models have been constructed which can be directly
compared to electrophysiology

- The same problem is also investigated with a firing rate model, a.k.a.
the ‘ring model’ which has attractor dynamics.



