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• Neurons are organized in large networks. A typical neuron in cortex 
receives thousands of inputs.
• “Brainbow”: genetic engineering technique (in mice) which makes 
neighbouring neurons glow in different colours through fluorescent proteins. 

https://www.youtube.com/watch?v=IZCZV5-v3S4


 Aim of modelling networks: explore the computational potential of such connectivity.  
- What properties? 
- What dynamics and how are those generated ? (e.g. spontaneous activity, 
variability, oscillations)
- Why are networks the way they are? What are they problems they solve, what 

constraints? What computations? (e.g. learning, integration, gain modulation or 
selective amplification of some signal , memory etc.. 

- What changes in properties can be related to ageing or disease?  

• Tools:  
- models of neurons and synapses : spiking neurons (IAF) or firing rate  
- analytical solutions (dynamical systems, mean field theory), numerical integration  
 
The tools we choose depend on the question, the data we compare our model to and 
the scale of the problem.

Networks of Neurons
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Figure 1.1: Diagrams of three neurons. A) A cortical pyramidal cell. These are
the primary excitatory neurons of the cerebral cortex. Pyramidal cell axons branch
locally, sending axon collaterals to synapse with nearby neurons, and also project
more distally to conduct signals to other parts of the brain and nervous system.
B) A Purkinje cell of the cerebellum. Purkinje cell axons transmit the output of
the cerebellar cortex. C) A stellate cell of the cerebral cortex. Stellate cells are
one of a large class of cells that provide inhibitory input to the neurons of the
cerebral cortex. To give an idea of scale, these figures are magnified about 150 fold.
(Drawings from Cajal, 1911; figure from Dowling, 1992.)

neuron generates an action potential. An action potential is a roughly 100 action potential
mV fluctuation in the electrical potential across the cell membrane that
lasts for about 1ms (figure 1.2A). Action potential generation also depends
on the recent history of cell firing. For a few milliseconds just after an
action potential has been fired, it may be virtually impossible to initiate
another spike. This is called the absolute refractory period. For a longer
interval known as the relative refractory period, lasting up to tens of mil- refractory period
liseconds after a spike, it is more difficult to evoke an action potential.

Draft: December 17, 2000 Theoretical Neuroscience

• In cortex, ~80% excitatory cells (pyramidal neurons), ~20% inhibitory 
neurons (smooth stellate + large variety of other types)/ a.k.a interneurons.

What’s in a network of neurons ?
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neuron generates an action potential. An action potential is a roughly 100 action potential
mV fluctuation in the electrical potential across the cell membrane that
lasts for about 1ms (figure 1.2A). Action potential generation also depends
on the recent history of cell firing. For a few milliseconds just after an
action potential has been fired, it may be virtually impossible to initiate
another spike. This is called the absolute refractory period. For a longer
interval known as the relative refractory period, lasting up to tens of mil- refractory period
liseconds after a spike, it is more difficult to evoke an action potential.
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•  Laminar Organization.  
Cortex is divided into 6 layers.  
Models usually pool all layers together.

What’s in a network of neurons ?



• Columnar Organization.  
Neurons in small (30-100 micrometers) columns perpendicular to the layers 
(across all layers) respond to similar stimulus features.
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Connectivity

•  3 types of connections: feed-forward, recurrent (lateral), feedback.
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Network modeling strategies (1) 

•  method 1: spiking neurons, e.g. integrate and fire neurons 

• up to 10,000 neurons+.
• advantage: comparison with electrophysiology, a system where all neurons 
can be ‘recorded’ at all times.
• difficulties: lots of parameters/assumptions, long simulations, analysis 
difficult.

V1: Neurons. The V1 layer contains 1008 excitatory neurons and 252 inhibitory neurons. 

Excitatory neurons are modeled as regular spiking conductance-based integrate-and-fire neurons, 

while inhibitory neurons are modeled as conductance-based fast-spiking neurons. The neuron 

model and parameters were taken from Somers et al. (1995). Each cortical neuron is modeled as a 

single voltage compartment in which the membrane potential is given by 
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The sum over j does not include all presynaptic cells; instead, the presynaptic cells are drawn 

probabilistically according to a scheme described below. The parameter #ij is a delay, and gij(t), 

the synaptic conductance generated at post-synaptic cell i by the spiking of pre-synaptic cell j, is 

given by an alpha-function, 
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Here tl
j is the time of lth spike from presynaptic cell j. When the membrane potential exceeds the 

spike threshold (-55 mV), a spike is emitted, the spike threshold is elevated mimicking a relative 

refractory period (see Somers et al. (1995) for details), and a K+ mediated after-hyperpolarization 

(AHP) conductance was activated. The AHP conductance, gAHP(t), obeys the same equation as 

(13) except that the prefactor is AHPg and the sum is over the index i (the cell’s own spikes) rather 

than over j (presynaptic spikes). The values of the peak synaptic conductances,
ijg , are given 

below. Conductance changes reached their maximal values at #peak, which was 1 ms for excitatory 

synapses, 2 ms for inhibitory synapses, and 2 ms for after-hyperpolarization. The small values of 

#peak means that we are effectively modeling AMPA and GABAA synapses; NMDA and GABAB 

were not included in this model.  

The neuron parameters were as follows. For the reversal potentials we used EEXCIT=0 mV, 

EINHIB=-70 mV, EAHP=-90 mV, and ELEAK=-65 mV. The membrane capacitance, leakage 

conductance and after-hyperpolarization conductance of regular spiking (excitatory) neurons 

were given by Cm= 0.5 nF, gLEAK=25 nS and AHPg =40 nS. Fast spiking (inhibitory) neurons had 
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Fig. 3. Simulation of a network of 1000 randomly coupled spiking neurons.
Top: spike raster shows episodes of alpha and gamma band rhythms (vertical
lines). Bottom: typical spiking activity of an excitatory neuron. All spikes were
equalized at 30 mV by resetting first to 30 mV and then to .

tonic firing as in Fig. 2TC, left voltage trace. However, if a neg-

ative current step is delivered so that the membrane potential is

hyperpolarized ( is around 90 mV), the neurons fire a rebound

burst of action potentials, as in Fig. 2TC, right voltage trace.

The model can exhibit other interesting types of dynamics.

• RZ (resonator) neurons have damped or sustained subthreshold

oscillations, as in Fig. 2RZ. They resonate to rhythmic inputs

having appropriate frequency (as the resonate-and-fire model

[9]). This behavior corresponds to and .

Notice that there is a bistability of resting and repetitive spiking

states: The neuron can be switched between the states by an

appropriately timed brief stimuli.

Dynamics of other neuronal types, including those in brainstem, hip-

pocampus, basal ganglia, and olfactory bulb, can also be described by

our model.

Our “one-fits-all” choice of the function in (1) is

justified when large-scale networks of spiking neurons are simulated,

as we discuss below. However, if one is interested in the behavior of

a single neuron, then other choices of the function are available, and

sometimes more preferable. For example, the function

with is a better choice for the RS neuron, since it leads to

the saddle-node on invariant circle bifurcation and Class 1 excitability

[10].

IV. PULSE-COUPLED IMPLEMENTATION

We have used this model to simulate a sparse network of 10 000

spiking cortical neurons with 1 000 000 synaptic connections in real

time (resolution 1 ms) using a 1 GHz desktop PC and C++ program-

ming language. The following MATLAB program (also available on

author’s webpage) simulates a network of randomly connected 1000

neurons in real time.Motivated by the anatomy of a mammalian cortex,

we choose the ratio of excitatory to inhibitory neurons to be 4 to 1, and

wemake inhibitory synaptic connections stronger. Besides the synaptic

input, each neuron receives a noisy thalamic input.

In principle, one can use RS cells to model all excitatory neurons

and FS cells to model all inhibitory neurons. The best way to achieve

heterogeneity (so that different neurons have different dynamics), is

to assign each excitatory cell and

, where is a random variable uniformly dis-

tributed on the interval [0,1], and is the neuron index. Thus,

corresponds to regular spiking (RS) cell, and corresponds to

the chattering (CH) cell. We use to bias the distribution toward RS

cells. Similarly, each inhibitory cell has

and .

The model belongs to the class of pulse-coupled neural networks

(PCNN): The synaptic connection weights between the neurons are

given by the matrix , so that firing of the th neuron in-

stantaneously changes variable by .

% Created by Eugene M. Izhikevich, February 25, 2003

% Excitatory neurons Inhibitory neurons

Ne=800; Ni=200;

re=rand(Ne,1); ri=rand(Ni,1);

a=[0.02*ones(Ne,1); 0.02+0.08*ri];

b=[0.2*ones(Ne,1); 0.25-0.05*ri];

c=[-65+15*re.^2; -65*ones(Ni,1)];

d=[8-6*re.^2; 2*ones(Ni,1)];

S=[0.5*rand(Ne+Ni,Ne), -rand(Ne+Ni,Ni)];

v=-65*ones(Ne+Ni,1); % Initial values of v

u=b.*v; % Initial values of u

firings=[]; % spike timings

for t=1:1000 % simulation of 1000 ms

I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input

fired=find(v>=30); % indices of spikes

firings=[firings; t+0*fired,fired];

v(fired)=c(fired);

u(fired)=u(fired)+d(fired);

I=I+sum(S(:,fired),2);

v=v+0.5*(0.04*v.^2+5*v+140-u+I); % step 0.5 ms

v=v+0.5*(0.04*v.^2+5*v+140-u+I); % for numerical

u=u+a.*(b.*v-u); % stability

end;

plot(firings(:,1),firings(:,2),’.’);

One can see in Fig. 3 that the network exhibits cortical-like asyn-

chronous dynamics; that is, neurons fire Poisson spike trains with mean

firing rates around 8 Hz. Dark vertical lines indicate that there are oc-

casional episodes of synchronized firings in the alpha and gamma fre-

quency range (10 and 40 Hz, respectively). Although the network is

connected randomly and there is no synaptic plasticity, the neurons

self-organize into assemblies and they exhibit collective rhythmic be-

havior in the frequency range corresponding to that of the mammalian

cortex in the awake state. Changing the relative strength of synaptic

connections and the strength of the thalamic drive can produce other

types of collective behavior, including spindle waves and sleep oscilla-

tions. We can easily observe and study these cortical states because our

simple spiking model describes accurately dynamics of known types

of cortical neurons. Thus, there is no longer a contradiction between

biological plausibility and computational efficiency of model neural

networks.

spike raster

neuron trace

[Izhikevitch, 2003]

Network modeling strategies (2) 



Dynamics of Recurrent Networks 

Recurrent Networks can show rich dynamics, oscillations, chaotic / 
asynchronous states depending on Excitation/Inhibition (E/I) balance. 

synchronous, high rates

asynchronous irregular

Synchronous  
fast oscillations

Synchronous 
slow oscillations

[Brunel, 2000]



Conditions for and impact of Poisson Variability

What connectivity can create irregularity of spiking aka Poisson variability? 
How does this variability impact information? 



Dynamics of Feedforward Networks

How do inputs propagate across Feedforward networks ? (how fast? what’s 
the role of synchrony?)



•  Method 2:  reduce the description to describe only rate of spiking r(t) (also 

confusingly sometimes denoted v(t)), instead of Vm(t). 

Network modeling strategies (3) 

•  Interpretation:  average over equivalent neurons or over time

�r
dri(t)

dt
= �ri(t) + input(t)



• each neuron is described at time t by a firing rate v(t).

Firing rate model (1)

• In absence of input, the firing rate relaxes to 0 with a time constant tr - which  
also determines how quickly the neuron responds to input.
• The input from a presynaptic neuron is proportional to its firing rate u
• The weight wij determines the strength of connection of neuron j to neuron i
• The total input current is the sum of the input from all external sources.

�r
dvi(t)

dt
= �vi(t) + F (

j=N�

j=1

wijuj)



• each neuron is described at time t by a firing rate v(t).

Firing rate model (2)

�r
dvi(t)

dt
= �vi(t) + F (

j=N�

j=1

wijuj) = �vi(t) + F (w.u)
dot-product

• F determines the steady state r as a function of input
• F is called the activation function
• F can be taken as a saturating function, e.g. sigmoid
• F is often chosen to be threshold linear



Network Architectures

• A: Feedforward

�r
dvi(t)

dt
= �vi(t) + F (

N�

j=1

Wijuj(t) +
N�

k=1

Mikvk(t))

�r
dvi(t)

dt
= �vi(t) + F (

N�

j=1

Wijuj(t))

• B: Recurrent



Excitatory - Inhibitory Network

• Some models have a single population of neurons and the weights are 
allowed to be positive and negative.
• Other models represent the excitatory and inhibitory population separately. 
(more ‘biological’ + richer dynamics).
• 4 weight matrices, MEE, MIE, MII, MEI

7.2 Firing-Rate Models 11

output v

input u
W

BA M

Figure 7.3: Feedforward and recurrent networks. A) A feedforward network with
input rates u, output rates v, and a feedforward synaptic weight matrix W. B)

A recurrent network with input rates u, output rates v, a feedforward synaptic

weight matrix W, and a recurrent synaptic weight matrix M. Although we have

drawn the connections between the output neurons as bidirectional, this does not

necessarily imply connections of equal strength in both directions.

determined by the equation

τr
dv

dt
= −v+ F(h+M · v) . (7.11)

Neurons are typically classified as either excitatory or inhibitory, meaning
that they have either excitatory or inhibitory effects on all of their postsy-
naptic targets. This property is formalized in Dale’s law, which states that Dale’s law
a neuron cannot excite some of its postsynaptic targets and inhibit others.
In terms of the elements ofM, this means that for each presynaptic neuron
a′, Maa′ must have the same sign for all postsynaptic neurons a. To im-
pose this restriction, it is convenient to describe excitatory and inhibitory
neurons separately. The firing-rate vectors vE and vI for the excitatory and
inhibitory neurons are then described by a coupled set of equations iden-
tical in form to equation 7.11, excitatory-

inhibitory
networkτE

dvE
dt

= −vE + FE (hE +MEE · vE +MEI · vI) (7.12)

and

τI
dvI
dt

= −vI + FI (hI +MIE · vE +MII · vI) . (7.13)

There are now four synaptic weight matrices describing the four possible
types of neuronal interactions. The elements ofMEE andMIE are greater
than or equal to zero, and those of MEI and MII are less than or equal to
zero. These equations allow the excitatory and inhibitory neurons to have
different time constants, activation functions, and feedforward inputs.

In this chapter, we consider several recurrent network models described
by equation 7.11 with a symmetric weight matrix, Maa′ = Ma′a for all a and
a′. RequiringM to be symmetric simplifies the mathematical analysis, but symmetric coupling
it violates Dale’s law. Suppose, for example, that neuron a, which is exci-
tatory, and neuron a′, which is inhibitory, are mutually connected. Then,

Draft: December 19, 2000 Theoretical Neuroscience



Example:  
 

Orientation selectivity as a model computation



Neurons in V1 are selective to orientation

http://www.youtube.com/watch?v=IOHayh06LJ4
https://www.youtube.com/watch?time_continue=115&v=Cw5PKV9Rj3o

http://www.youtube.com/watch?v=IOHayh06LJ4
https://www.youtube.com/watch?time_continue=115&v=Cw5PKV9Rj3o


Tuning curves of neurons in V1

• Focus description on average firing rate <r(s)>.  
• Tuning curves: modify an aspect s of the stimulus, and measure <r(s)>  
• V1 neurons: highly selective to the orientation of the stimulus (e.g. bar) flashed in 
their receptive field. 
• Such bell-shaped (Gaussian-like) tuning curves are very common in the cortex.

s�< r(s) >



Sclar and Freeman, 1982

LGN neurons are not selective to orientation, V1’s are:  

Origin of Orientation selectivity ?

V1

Text

• Example of a computation, emergence of a new property. 

LGN



Model of Hubel and Wiesel (1962)

Text•  Hubel and Wiesel (1962) proposed that the oriented fields of V1 neurons 
could be generated by summing the input from appropriately selected LGN 
neurons. 
• The model accounts for selectivity in V1 on the basis of a purely feedforward 
architecture.

Text



input

output

Feedforward 

Hubel and Wiesel, 1962; 
Troyer, Krukowski, 

Priebe and Miller, 1998

input

Recurrent 

Somers, Nelson and Sur 1995; 
Sompolinsky and Shapley, 1997

output

Due to the imprecise 
organization of the 

thalamic afferents, input 
to V1 is broadly tuned

Connectivity sharpens 
the tuning curve

Due to the precise 
organization of the thalamic 

afferents, input to V1 is 
sharply tuned

Connectivity achieves 
contrast invariance through 

feedforward inhibition

Feedforward vs Recurrent models of Orientation Selectivity 



The Recurrent/ Ring Model of orientation selectivity (1)

• If the input from LGN is broadly tuned, can contrast-invariant orientation selectivity 
be achieved within V1, through recurrent interactions between neurons?



7.4 Recurrent Networks 25

1.9. This value, being larger than one, would lead to an unstable network
in the linear case. While nonlinear networks can also be unstable, the re-
striction to eigenvalues less than one is no longer the relevant condition.

In a nonlinear network, the Fourier analysis of the input and output re-
sponses is no longer as informative as it is for a linear network. Due to
the rectification, the ν = 0,1, and 2 Fourier components are all amplified
(figure 7.9D) compared to their input values (figure 7.9C). Nevertheless,
except for rectification, the nonlinear recurrent network amplifies the in-
put signal selectively in a similar manner as the linear network.

A Recurrent Model of Simple Cells in Primary Visual Cortex

In chapter 2, we discussed a feedforward model in which the elongated
receptive fields of simple cells in primary visual cortex were formed by
summing the inputs from lateral geniculate (LGN) neurons with their re-
ceptive fields arranged in alternating rows of ON andOFF cells. While this
model quite successfully accounts for a number of features of simple cells,
such as orientation tuning, it is difficult to reconcile with the anatomy and
circuitry of the cerebral cortex. By far the majority of the synapses onto
any cortical neuron arise from other cortical neurons, not from thalamic
afferents. Therefore, feedforward models account for the response prop-
erties of cortical neurons while ignoring the inputs that are numerically
most prominent. The large number of intracortical connections suggests,
instead, that recurrent circuitry might play an important role in shaping
the responses of neurons in primary visual cortex.

Ben-Yishai, Bar-Or, and Sompolinsky (1995) developed a model at the
other extreme, for which recurrent connections are the primary determin-
ers of orientation tuning. The model is similar in structure to the model
of equations 7.35 and 7.33, except that it includes a global inhibitory inter-
action. In addition, because orientation angles are defined over the range
from −π/2 to π/2, rather than over the full 2π range, the cosine functions
in the model have extra factors of 2 in them. The basic equation of the
model, as we implement it, is

τr
dv(θ)

dt
= −v(θ) +

[

h(θ) +
∫ π/2

−π/2

dθ′

π

(

−λ0 + λ1 cos(2(θ − θ′))
)

v(θ′)

]

+
(7.36)

where v(θ) is the firing rate of a neuron with preferred orientation θ.

The input to the model represents the orientation-tuned feedforward in-
put arising from ON-center and OFF-center LGN cells responding to an
oriented image. As a function of preferred orientation, the input for an
image with orientation angle& = 0 is

h(θ) = Ac (1− ϵ + ϵ cos(2θ)) (7.37)

Draft: December 19, 2000 Theoretical Neuroscience

• N neurons, with preferred angle,    ,evenly distributed 
between            and         
• Neurons receive thalamic inputs h.  
+ recurrent connections, with excitatory weights between 
nearby cells and inhibitory weights between cells that are 
further apart (mexican-hat profile)
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The Recurrent/ Ring Model of orientation selectivity (2)



• h is input, can be tuned (Hubel Wiesel 
scenario) or very broadly tuned.
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• The steady-state can be solved analytically.  
Model analyzed like a physical system. 

• Model achieves i) orientation selectivity; ii) contrast invariance of tuning, even 
if input is very broad.
• The width of orientation selectivity depends on the shape of the mexican-hat, 
but is independent of the width of the input.
• Symmetry breaking /Attractor dynamics.

h(⇥) = c[1� � + � ⇥ cos(2⇥)]

The Recurrent/ Ring Model of orientation selectivity (3)
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Figure 7.10: The effect of contrast on orientation tuning. A) The feedforward in-
put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 80%, 40%, 20%, and 10%. B) The output firing rates
in response to different levels of contrast as a function of orientation preference.
These are also the response tuning curves of a single neuron with preferred orien-
tation zero. As in A, the four curves, from top to bottom, correspond to contrasts
of 80%, 40%, 20%, and 10%. The recurrent model had λ0 = 7.3, λ1 = 11, A = 40
Hz, and ϵ = 0.1. C) Tuning curves measure experimentally at four contrast levels
as indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997; based
on data from Sclar and Freeman, 1982.)

A Recurrent Model of Complex Cells in Primary Visual Cortex

In the model of orientation tuning discussed in the previous section, recur-
rent amplification enhances selectivity. If the pattern of network connec-
tivity amplifies nonselective rather than selective responses, recurrent in-
teractions can also decrease selectivity. Recall from chapter 2 that neurons
in the primary visual cortex are classified as simple or complex depend-
ing on their sensitivity to the spatial phase of a grating stimulus. Simple
cells respond maximally when the spatial positioning of the light and dark
regions of a grating matches the locations of the ON and OFF regions of
their receptive fields. Complex cells do not have distinct ON and OFF re-
gions in their receptive fields and respond to gratings of the appropriate
orientation and spatial frequency relatively independently of where their
light and dark stripes fall. In other words, complex cells are insensitive to
spatial phase.

Chance, Nelson, and Abbott (1999) showed that complex cell responses
could be generated from simple cell responses by a recurrent network. As
in chapter 2, we label spatial phase preferences by the angle φ. The feed-
forward input h(φ) in the model is set equal to the rectified response of
a simple cell with preferred spatial phase φ (figure 7.11A). Each neuron
in the network is labeled by the spatial phase preference of its feedfor-
ward input. The network neurons also receive recurrent input given by
the weight function M(φ − φ′) = λ1/(2πρφ) that is the same for all con-
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The Recurrent/ Ring Model of orientation selectivity (4)



Attractor Networks 

• Attractor network : a network of neurons, usually recurrently connected, whose 
time dynamics settle to a stable pattern. 
• That pattern may be stationary (fixed points), time-varying (e.g. cyclic), or even 
stochastic-looking (e.g., chaotic). 
• The particular pattern a network settles to is called its ‘attractor’.

•The ring model is called a line (or ring) attractor network. Its stable states are also 
sometimes referred to as ‘bump attractors’.

Point Attractor Line Attractor



The Ring Model (5): Sustained Activity

•  If recurrent connections are strong enough, the pattern of population 
activity once established can become independent of the structure of the 
input. It can persists when input is removed.
• A model of working memory ?
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• “Although feedforward models for the emergence of orientation selectivity 
are able to account for many aspects of V1 orientation selectivity, interactions 
within the visual cortex, particularly between nearby neurons, also sculpt 
selectivity”.
• A diversity of mechanisms. 



Network models - summary

• Network models: to understand the implications of connectivity in 
terms of computation and dynamics. 

• 2 Main strategies: Spiking vs Firing rate models.  

• The issue of the emergence of orientation selectivity as a model 
problem, extensively studied theoretically and experimentally. 
- Two main models: feed-forward and recurrent.  
- Detailed spiking models have been constructed which can be directly 
compared to electrophysiology 
- The same problem is also investigated with a firing rate model, a.k.a. 
the ‘ring model’ which has attractor dynamics.


