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Summary of previous lecture

e Schizophrenia is a very serious illness characterised by “positive”
(hallucinations, delusions) and negative symptoms.

* One neurobiological correlate of the iliness is impairment in working
memory.

e Short-term/ working memory: Dynamic process - “Sustained” a.k.a.
“Delay” or “Persistent” Activity.

* Attractor Networks as (main) model of working memory / sustained activity

* Hopfield Network as example of a point attractor model (Lab 2).
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Tutorial Objectives
In this tutorial, vou will:

o Learn to implement an associative memory svstem — the Hopfield netwark.
o Dxplare the patterm-completing propertics of Tlapficld networks.

o Implement synaptie pruning into the model, as a putative computational framework for
Schizophrenia.

Introduction

L this tutorial, vou will code apd simulale s [uwdamenptal neuron populatron model, which we
discussed in Lecture 5: the Hopfield Network. Hopfield networks are an earlv kind of ellrucior
riezhwerk, which have hoen finding oreat arclaim as madels of associatine vy in the hrain. Yon
will explore the model's ability w recall stored aclivity palterns [rom partial or noisv inpuls. You
will then incorporate synaptic pruning — the svstematic deletion of svnapses — into the network,
and disenss how this praress eonld relare to the emergenen of Sehizophrenia,



Towards a theory of Working Memory/ Sustained Activity

* A theory of working memory should answer:

- How it is initiated?

- Why does it persist ?

- What makes it specific?
- How does it end?

- Reason for capacity limit?
- Relationship with attention, long-term memory?

* Mechanism : reverberations through connections (which?), or
cellular?

* Lots of experimental and theoretical work to answer these
guestions



More biologically realistic attractor models

* Recently, effort to build biophysically plausible models of Thalamic Input
sustained activity / attractor dynamics for memory. 1 L]
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» Ring Model offers starting point. ')f \ 5

e Originally model of V1, but anatomical organisation of PFC ¢
also resembles a recurrent network. RS
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Fig. 4. Schematic diagram illustrating the pattern of connec-
tions between prefrontal neurons in the superficial layers. The
figure summarizes results of anatomical tracer injection experi-
ments and retrograde labeling. From Kritzer and Goldman-
Rakic (1995), with permission.



Back to the Ring Model of orientation selectivity

* |f the input from LGN is broadly tuned, can contrast-invariant orientation selectivity
be achieved within V1, through recurrent interactions between neurons?

Proc. Natl. Acad. Sci. USA
Vol. 92, pp. 3844-3848, April 1995
Neurobiology

Theory of orientation tuning in visual cortex

(neural networks / cross-correlations /symmetry breaking)

R. BEN-YISHAT*, R. LEV BAR-OR*, AND H. SOMPOLINSKYT

*Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel; and TAT&T Bell Laboratories,

Murray Hill, NJ 07974

Communicated by Pierre C. Hohenberg, AT&T Bell Laboratories, Murray Hill, NJ, December 21, 1994 (received for review July 28, 1994)

ABSTRACT The role of intrinsic cortical connections in
processing sensory input and in generating behavioral
output is poorly understood. We have examined this issue in
the context of the tuning of neuronal responses in cortex to
the orientation of a visual stimulus. We analytically study a
simple network model that incorporates both orientation-
selective input from the lateral geniculate nucleus and
orientation-specific cortical interactions. Depending on the
model parameters, the network exhibits orientation selec-
tivity that originates from within the cortex, by a symmetry-
breaking mechanism. In this case, the width of the orien-
tation tuning can be sharp even if the lateral geniculate
nucleus inputs are only weakly anisotropic. By using our
model, several experimental consequences of this cortical
mechanism of orientation tuning are derived. The tuning
width is relatively independent of the contrast and angular
anisotropy of the visual stimulus. The transient population
response to changing of the stimulus orientation exhibits a
slow “virtual rotation.” Neuronal cross-correlations exhibit
long time tails, the sign of which depends on the preferred

ivity among cortical neurons can be gained from measure-
ments of the correlations between the responses of different
neurons (10). Theoretical predictions regarding the magnitude
and form of correlation functions in neuronal networks have
been lacking.

Here we study mechanisms for orientation selectivity by
using a simple neural network model that captures the gross
architecture of primary visual cortex. By assuming simplified
neuronal stochastic dynamics, the network properties have
been solved analytically, thereby providing a useful framework
for the study of the roles of the input and the intrinsic
connections in the formation of orientation tuning in the
cortex. Furthermore, by using a recently developed theory of
neuronal correlation functions in large stochastic networks, we
have calculated the cross-correlations (CCs) between the
neurons in the network. We show that different models of
orientation selectivity may give rise to qualitatively different
spatiotemporal patterns of neuronal correlations. These pre-
dictions can be tested experimentally.

Madel



Back to the Ring Model of orientation selectivity

* N neurons, with preferred angle, 6, ,evenly distributed
between —7/2 and 7 /2

* Neurons receive thalamic inputs h.

+ recurrent connections, with excitatory weights between
nearby cells and inhibitory weights between cells that are
further apart (mexican-hat profile)

/2 30/
rrdlil(e) = —v(0) + |:h(9) + f 4o (—Xo + A1 cos(2(6—6')))v(0)
t —7/2 T

-50 0 50
orientation 0




Back to the Ring Model of orientation selectivity

0.5 - -
* his input, can be tuned (Hubel Wiesel &,
. 0.4 )
scenario) or very broadly tuned. — "2
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* The steady-state can be solved analytically.

Model analyzed like a physical system.

* Model achieves i) orientation selectivity; ii) contrast invariance of tuning, even
if input is very broad.

* The width of orientation selectivity depends on the shape of the mexican-hat,
but is independent of the width of the input.

* Symmetry breaking /Attractor dynamics.



The ring model is a line attractor

® Attractor network : a network of neurons, usually recurrently connected, whose
time dynamics settle to a stable pattern.
* That pattern may be stationary (fixed points), time-varying (e.g. cyclic), or even

stochastic-looking (e.g., chaotic).
* The particular pattern a network settles to is called its ‘attractor’.

*The ring model is called a line (or ring) attractor network. Its stable states are also
sometimes referred to as ‘bump attractors’.

%1

Line Attractor

Point Attra(;toor .



The ring model displays delayed activity

* If recurrent connections are strong enough, the pattern of population
activity once established can become independent of the structure of the
input. It can persists when input is removed.

* A model of working memory ?
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More biologically realistic attractor models?

* Problems with firing rate models: difficult to relate with electrophysiological data,
can’t address the question of issue of spontaneous vs persistent activity, and
dynamical properties of synaptic interactions are ignored.

e Can we create biophysical realistic/spiking models where recurrent networks can
give rise to location-specific, persistent discharges ? (Compte et al 2000, Gutkin et al 2000,

Tegner et al 2002, Renart et al 2003a, Wang et al 2004)

Fig. 1 Suc e frame: II t t the seque of events

the Imt dlyd tkTIbg wthth
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cue is subseque tIy pre: t d typically t of eight loca-
tions (I ft) After a delay p iod of a f W S d the fixation
point ned ff nd the monkey is q d to indicate the
locatio f th e by moving his eyes accordingly on the

Funahashi et al, 1989
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4) Towards a Biophysical Model of Working Memory:

Does a ring model with spiking neurons also show delayed activity?
In spiking networks, challenges:

* Stability of delay activity

* runaway excitation

* Accounting for spontaneous activity in addition to memory state

» Oscillations can destabilise the memory activity.

Solution

» Working memory found particularly stable when
excitatory reverberations are characterised by slow
time course, e.g. when synaptic transmission mediated
by NMDA receptors (prediction)




N-methyl-d-aspartate (NMDA)

 NMDA receptor is a glutamate receptor, the human brain's primary
excitatory neurotransmitter. Crucial for learning, memory, and neuroplasticity
* Different synapses have different dynamics : in excitatory synapses: AMPA is

fast, NMDA slow.
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Towards a Biophysical Model of Working Memory

Synaptic Mechanisms and Natwork
Dynamics Underlying Spatial Working
Memory in a Cortical Network Model

Compte, Brunel, Goldman-Rakic
and Wang, Neuron, 2000

Lingle-nourea rocardings frem bohaving primates have established 2
limk betwaen working memory processas sad information-spacilic
neuremal pirssabent activly in the peeliootal cortex, Using 4 setwork
model andowed with a columnar architecture and based on the
physiclogioal progertios of cortical neureas 2nd smapses. wo have
axamindd tha synaplic mechanisns of saloctive persistam activity
undetlving spatial working sserncry in the predicotal cotex, Ow
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* Network of ~2500 integrate-and-fire neurons, mexican-hat connectivity, NMDA
excitation.

* Reproduce Funahashi et al 1989.

e Selectivity of memory field, temporal drifts, robustness to distractors, co-existence
with spontaneous activity .


https://pubmed.ncbi.nlm.nih.gov/10982751/
https://pubmed.ncbi.nlm.nih.gov/10982751/

Towards a Biophysical Model of Working Memory

Fig. 6. Stability of persistent — AMPA:NMDA=0.10 r—
activity as a function of the

AMPA:NMDA ratio at the recur- A
rent excitatory synapses. A-D,
Temporal course of the average
firing rate across a subpopula-
tion of cells selective to the pre-
sentated transient input, for dif-
ferent levels of the AMPA:NMDA
ratio. As the ratio is increased,
oscillations of a progressively
larger amplitude develop during
the delay period, which eventu-
ally destabilize the persistent
activity state. E, Snapshot of the
activity of the network in (C)
between 3 and 3.5 seconds.
Top, Average network activity.
Bottom, Intracellular voltage
trace of a single neuron. Inset,
Power spectrum of the average
activity of the network, showing
a peak in the y (40 Hz) frequency
range. Persistent activity is sta-
ble even in the presence of syn-
chronous oscillations. Adapted
with permission from Renart,
Brunel, and others (2003).
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Towards a Biophysical Model of Working Memory

* A mechanism for switching the memory off: excitatory input to a large
population of neurons in the network.

* Decoding can be used to infer what the memory is encoding, e.g. population
vector (decoding the “center” of the memory “bump”).

* The ring model being a line attractor predicts emergence of drifts if noise is

introduced, which would increase with delay time. Here, drift is found to be
reduced for larger networks sizes.
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A prediction that has been verified

m NMDA Receptors Subserve Persistent Neuronal Firing During

Working Memory In Dorsclateral Prefrontal Cortex

Min Wang, Yang Yang, Ching-Jung Wang, Nac J. Gamo, Lu E. Jin. James A. Mazer, John
Fixation H. Mcrrison, Xiao-Jing Weng, anc Amy F.T. Arnsten
Dept. Neurcbiology, Yale Mediczl School, New “Haven, CT USA 06E10

Cue
500ms = Summary
clay . s . " . - .
N ) Neurens in tac primate dorsolateral p-efroatal contex (dIPFC) gencrate persistent firing in the
‘\\\ 500ms N ahsence of sesory stimalation, the foundatios: af nental sepresentation. Persistent fir ng arises
-~ Saccade fromn recorrent excitation within a networs of pyramiczl Delay colls. He e, we examived glota nate
Timé-. 2500ms \ receptor influrnces uncerlyirg pessistent fining ir primate dIPFC duricg a spatial working memory
\‘\ tas<. Computatonal models pradictaC cependeace on NMDA receptor (NMDAR NE2B
B AS A 1500ms stmulaton, ard Delay cell persistent firing was ebolished by 1ocal NR2B NMDAR blockade or

by systemic ketermne edmimistration, AN PA recepters LAMEAR) contmbutad beekeround
depolarzation to sustein netwerk fising. I contrast, many Response cells -which Lkely
predominate in redent PIC- were sensitive to AMI'AR blockade and increased Sring following
systemic ketaciag, indicating that models o ketemine ecticns should x cefined tw cedect
nenrongl hete .lt;x:n;‘.i‘_v The el #ncs of nt:]r_v cells on NMDAR o ay cx[:]nill wfly sulls o
NMDARS in schizophreriz cr Alzheimer's Disease profoundly impair cognition.

—-Delayed oculomotor task in 2 rhesus monkeys.
-Local Blockage of NMDA using iontophoresis.
-Systemic Ketamine administration (NMDA antagonist).
—-Electrophysiological recordings of neurons in dIPFC.



A prediction that has been verified

- Blocking NMDA, but not AMPA receptors, markedly reduced Delay cell firing

- Systemic ketamine also reduced Delay cell firing but increased Response cell
firing

- Any cognitive operation relying on dIPFC recurrent firing would be
compromised by insults to NMDAR transmission.
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5) Application to Schizophrenia - NMDA hypothesis

e Schizophrenia associated with
impairment of WM

* Reduced function of NMDA
receptors in PFC

e Ketamine originally developed as
anaesthetic, blocks NMDA

e can produce hallucinations and
delusions - a model of psychosis
used experimentally
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Application to Schizophrenia - NMDA hypothesis

* Schizophrenia associated with reduced function of NMDA receptor

* Instability of attractor states, shallower basins of attraction, reduced signal/noise
* spontaneous attractors

Rolls and Deco (2011) review how such impaired dynamics could explain positive
symptoms (hallucinations, delusions), cognitive symptoms (working memory) and

even negative symptoms (through reduced activity), and onset (excessive synaptic
pruning, and reduction in grey matter volume).

Review

A computational neuroscience approach to schizophrenia and its onset

Edmund T. Rolls®*, Gustavo Decob:¢

2 Oxford Centre for Computational Neuroscience, Oxford, UK b
b Computational Neuroscience, Universitat Pompeu Fabra, Barcelona, Spain . Shallow, unstable att-actor Ceep, slable attractor
¢ Institucio Catalana de Recerca i Estudis Avangats, Barcelona, Spain a T e -
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Application to Schizophrenia - NMDA hypothesis

NMDA impairment can be applied to connections on
e inhibitory interneurons, which elevates E/I ratio via disinhibition;

e excitatory neurons, which on the contrary lowers E/I ratio

A G. 4

Disrupt E/I Balance via s~ E—~E
NMDAR Hypofunction

Lowered
E /| Ratio

Which synapses matter most for the maintenance of working memory ?



Linking Microcircuit Dysfunction to Cognitive Impairment: Effects of Disinhibition
Associated with Schizophrenia in a Cortical Working Memory Model

John D. Murray!:2, Alan Anticevic3%5, Mark Gancsos?, Megan Ichinose3, Philip R. Corlett35, John H. Krystal34.5.6.7

and Xiao-Jing Wang?38
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State diagram for the role of E/I balance in cognitive function

® Along some axes in parameters space, the model is relatively insensitive
to perturbations (“sloppy”).
® E/l ratio is the key parameter for optimal function.
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Lots of other interesting questions

* How are these attractors learnt?

* What is the relation with Attention?

* What is the relation with Long-term Memory ?
for storage of memory?)
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Figure 1. Scheme of the loop architecture (red is excitation, and blue is inhibition). Two
klnds of motlon stlmull are considered (random- dot patterns yellow arrows indicate signal
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Ardid, Wang and Compte 2007

(Is sustained activity helpful


http://www.youtube.com/watch?v=k8Bgs8EarR0&feature=related

A related problem: spontaneous activity

* Where does it come from?

* How is it maintained? How does it ‘move’?

* Are these ‘attractor states’?

* Is it structured?

* Why is it there? (any functional advantages?)
* |s it noise?

* Is it the brain trying to ‘predict’ the input?

Arieli et al 1997; Tsodyks et al, 1999; : S
Fiser et al, Nature, 2004 evoked (horizontal spontaneous

orientation) (one frame)



Conclusions

» Attractor Networks as (main) model of working memory / sustained activity

* Effort to provide biologically plausible spiking models, comparable to
recordings in Prefrontal cortex.

» Excitatory reverberation and maintenance of sustained activity is found to
depend on NMDA receptors

e currently, interesting link with disease as well as ageing
-- working memory impairments as instability of attractor states e.g. due to

deficits in NMDA, changes in E/I balance.

* Spontaneous activity as a similar problem.



nature reviews neuroscienca 2022

Review article
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¥ Cheek for updates

Attractor and integrator
networksinthebrain

Mikail Khona'*** Zlla R.Fiete @+

Abstract Sections

In this Review, we describethe singular success of attractor neural Introdustcn

network modelsin describing how the brain maintains persistent Whatare aractors’
activity states for working memory, corrects errors and integratesnoisy | ., - @ i wochanire

cues. Weconsider the mechanisms by whichsimple and forgetful unics
canorganize tacollectively penerate dynamics on thelong timescales
required for such computations. We discuss the myriad potential uses
of attractor dynamics for computationinthe brain, and shewcasc
notablcexamples ofbrain systems inwhichinherently low dimensiongl
continuous-attractor dynamics have beenconcretely and rigorously
identified. Thus, itisnow possible to conclusively statethatthe brain
constructs and uses such systems for computation. Finally, we highlight
recent theoretical advances in understanding how the fundamental
trade-offsbetween robustness and capacity and betweenstructure and
flexibility can be overcome by reusing and recombining the same set

of modular attractors for multiple functions, sothey together produce
representationsthat are structurally constrained and robust but exhibit
high capacity and are flexible.
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