
• Why did you choose this course?

• Why did you choose the clothes you’re wearing?

• Why are you sitting where you are?

• Why are you reading this?  

• Who or what made the decision???  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• Why did you choose this course?

• Why did you choose the clothes you’re wearing?

• Why are you sitting where you are?

• Why are you reading this?  

• Who or what made the decision???  



1.  Decision theory: what is the optimal way to make a (binary) 
decision?  (optimal model) 

2.  Behaviour: How do human-beings make binary decisions? 
(phenomenological model of accuracy and reaction times) 

3.  Neuroscience: Can we relate the optimal model and 
phenomenological model with processes observed in neurons in 
the brain? (yes!)

Today’s lecture



• Decision making can be thought of as a form of statistical inference.

• Decide = select among competing hypotheses h1, h2 (and may be 
more). Is P(h1|e)>  P(h2|e)?

• Elements of this decision process:

1) Optimal model: statistical inference

✴ evidence (e) = information we can collect in factor of h1. Only useful 

when we know how likely it is to be true if the hypothesis is true, i.e. if 
we have conditional probabilities such as P(e| h1) = the likelihood
✴ priors (P(h1))=  Probability that h1 is correct before collecting any 
evidence =  a bias (or prejudice)
✴ value (v) = subjective costs and benefits for each outcome.



•  Bayes’ theorem is a result in probability theory 
that relates conditional probabilities P(A|B) and 
P(B|A)

• Given the likelihood and the prior, we can 
compute the posterior.

Bayes’ Theorem

P (h1|e) =
P (e|h1)P (h1)

P (e)
Reverend Thomas 
Bayes, 1702- 1761



To decide, compare probabilities of each hypothesis

>
P (h1|e) =

P (e|h1)P (h1)
P (e)

P (h2|e) =
P (e|h2)P (h2)

P (e)

•  Choose h1 if:



To decide, compare probabilities of each hypothesis

>
P (h1|e) =

P (e|h1)P (h1)
P (e)

P (h2|e) =
P (e|h2)P (h2)

P (e)

•  Choose h1 if:



Likelihood ratio test

P (e|h1)
P (e|h2)

>
P (h2)
P (h1)

•   Just re-organising the terms of this inequality: - choose  h1 if:

• This is the likelihood ratio (LR) test = optimal decision rule.   

• If the prior probabilities are equal (0.5), choose  h1 if

LR =
P (e|h1)
P (e|h2)

> 1



Values (1)

with

•  benefit of choosing h1 =  
value of choosing h1 if h1 is true (V11)  
+ value of choosing h1 if h1 is wrong 
(V12) given the evidence.

• benefit of choosing h2 =  
value of choosing h2 if h2 is true (V22) 
 + value of choosing h2 if h2 is wrong 
(V21) given the evidence.

• So we now want to compare: 

V11P (h1|e) + V12P (h2|e) V22P (h2|e) + V21P (h1|e)

run or not?

• It might be that the costs and benefits associated with the various 
outcomes are very different. 



Values (2)

•   rewriting this gives the general (optimal) rule: choose h1 if :

P (e|h1)
P (e|h2)

>
(V22 � V12)P (h2)
(V11 � V12)P (h1)

•   which has also the form of comparing the likelihood ratio with a 
threshold. 

•  Signal detection theory:  LR (or any monotonic function of it - e.g. 
LOG)  provides an optimal ‘decision variable’. 
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• This framework can be extended to the situation where we have 
multiple pieces of evidence e1, e2, ..en observed over time.

• Here we allow the decision variable to ‘accumulate the evidence’ in 
time:

Sequential Analysis
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allowed psychologists to infer from behavior
properties of the underlying sensory repre-
sentation (Green & Swets 1966). Later, pi-
oneering work in retinal and somatosensory
physiology established SDT as a valuable tool
to relate the measured responses of sensory
neurons to the limits of detection and discrim-
ination (for reviews see Parker & Newsome
1998, Rieke et al. 1997). More recently, it has
begun to shed light on decision mechanisms.

According to SDT, the decision maker ob-
tains an observation of evidence, e. In per-
ceptual psychophysics, e is derived from the
senses and might be the spike count from
a neuron or pool of neurons, or a derived
quantity such as the difference between spike
rates of two pools of neurons. It is caused
by a stimulus (or state) controlled by the ex-
perimenter; e.g., h1 (stimulus present) or h2

(stimulus absent). If e is informative, then its
magnitude differs under these states. How-
ever, e is also corrupted by noise. Thus e is
a random variable described by a distribution
whose parameters (e.g., the mean) are set by h1

or h2. These conditionalized distributions de-
scribe the likelihoods P (e | h1) and P (e | h2).
Unlike standard statistical methods, the ob-
ject of SDT is not to determine whether the
parameters describing these distributions are
different but instead to decide which of the
states gave rise to the observation e.

The decision requires the construction of
a DV from e. For binary decisions, the DV is
typically related to the ratio of the likelihoods
of h1 and h2 given e: l12(e) ≡ P (e | h1)/P (e | h2).
A simple decision rule is to apply a criterion to
the DV; e.g., choose h1 if and only if l12(e) ≥ β,
where β is a constant. A strength of SDT is
that a variety of goals can be reached by simply
using different values for the criterion. If the
goal is accuracy and the two alternatives are
equally likely, then β = 1. If the goal is accu-
racy and the prior probability favors one of the
hypotheses, then β = P (h2)/P (h1). If the goal
is to maximize value (where vij is the value as-
sociated with choice Hj when hypothesis hi is
true), then β = (v22 + v21)P (h2)

(v11 + v12)P (h1) . For more details,
the reader should refer to the first chapter of

LR: likelihood ratio

logLR: logarithm of
the likelihood ratio

Green & Swets (1966), where these expres-
sions are derived.

SDT thus provides a flexible framework
to form decisions that incorporate priors,
evidence, and value to achieve a variety of
goals. Unfortunately, this flexibility also poses
a challenge to neurobiologists. The above ex-
pressions were obtained assuming that the DV
is the likelihood ratio (LR), l12 (e). However,
equivalent expressions (that is, those that will
achieve the same goals) can be obtained (by
scaling β) using any quantity that is monoton-
ically related to the LR. In other words, these
equations do not constrain the priors, e, value,
the DV, or β to take on any particular form,
only that they interact in a certain way. Thus
it is difficult to assign a quantity measured in
the brain to any one of these elements with-
out knowing how the others are represented.
One powerful approach to unraveling this co-
nundrum is to exploit differences in the time
scales of these elements in decision formation.

Sequential analysis. SA is a natural exten-
sion to SDT that accommodates multiple
pieces of evidence observed over time. SA
assumes that the decision has two parts: the
usual one between h1 and h2, and another
about whether it is time to stop the process
and commit (Figure 2). In its most general
form, SA allows the procedure for construct-
ing the DV and the decision rule to be adjusted
with each new sample of evidence. However,
many decisions can be understood by assum-
ing fixed definitions for these elements. A sim-
ple DV constructed from multiple, indepen-
dent pieces of evidence, e1, e2, . . . , en, is the
logarithm of the LR (logLR, or “weight of ev-
idence”), which is just the sum of the logLRs
associated with each piece of evidence:

log LR12 ≡ log
P (e1, e2, . . . , en|h1)
P (e1, e2, . . . , en|h2)

=
n∑

i=1
log

P (ei | h1)
P (ei | h2)

. 1.

A simple stopping rule is to update this DV
with new pieces of evidence until reaching a

www.annualreviews.org • Decision Making 539

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
0
7
.3

0
:5

3
5
-5

7
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
E

d
in

b
u
rg

h
 o

n
 0

3
/1

2
/0

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

•   When the DV >  threshold A (which reflects priors and values), a 
decision is made towards h1. If DV < B, choose h2.  

• This is known as Wald’s sequential probability ratio test  
(optimal rule).



P(G| jar A) = 0.85 
P(Y| jar A) = 0.15 
P(G| jar B) = 0.15 
P(Y| jar B) = 0.85

Which jar am I drawing from ?  
When can you commit to a decision?

Belief updating in the Beads (or Urn) Task

1.72 +1.72 -1.72lnLR



• Sequential analysis is reminiscent of the random walk and race 

phenomenological models of decision making developed by psychologists to 

explain behavioural data.

2) How do humans make decisions?



How do humans make simple decisions?

• Study of simple (single-stage), fast (less than 2 seconds) binary decisions 

• Performance is described in terms of reaction times and accuracy. 

• perceptual discrimination (are these 2 objects the same or different?), 

recognition memory (is this image new or was it presented before?), lexical 

decision (is this a word or a non word? 

• How can we describe how fast and accurately people respond?

https://www.psytoolkit.org/experiment-library/experiment_ldt.html 

Avocado Subvirt
Word or (a) 
non word (l)?

Word or (a) 
non word (l)?

https://www.psytoolkit.org/experiment-library/experiment_ldt.html


• idea for the phenomenological model: decision can be viewed as 

resulting from the movement of a particle moving in between/two 

boundaries, pushed by the force of the evidence

How do humans make decisions?



Drift Diffusion Model of Decision Making 

Several mathematical expressions exist for the DDM.  A typical equation will be of 

the form of a Wiener process (one dimensional Brownian motion). The diffusion 

process x(t) evolves dynamically according to:

• Where v is the drift rate, the quality of the information evidence. If the 

stimulus is easily classified, it will have a high rate of drift and approach the 

correct boundary quickly, leading to fast and accurate responses.  

• η is a white noise term.  

• σ 2 is the variance of the process.  

• starting point, z, to one of two boundaries, a, or 0.  

• The two boundaries represent the two possible decisions. Once the process 

x(t) reaches a boundary, the corresponding response is initiated.  

dx(t)

dt
= v(t) + �⌘(t)



Drift Diffusion Model of Decision Making 

dx(t)

dt
= �x(t) + v(t) + �⌘(t)

Another form is the Ornstein-Ulhenbeck process:

similar but assume a decay or leakage in the accumulation process (or friction in 

brownian motion). Has a tendency of the walk to move back towards a central 

location, with a greater attraction when the process is further away from the center.

Both the Wiener and Ornstein-Ulhenbeck process have applications throughout 

mathematics and physics. 



Drift Diffusion Model of Decision Making 

•  all  parameters  will  affect  distribution  of  reaction  times  (RTs)  (correct 

and/or errors)



•  many variants (discrete time, continuous time, leaky integration)

• These models have been compared systematically and shown to 
successfully account for [Smith & Ratcliff, 2004]: 
- Distribution of Reaction Times 
- Speed-accuracy tradeoff:  decreasing the boundary has the effect of 
increasing speed and decreasing accuracy. 
- Error response RTs (sometimes error responses can be very quick..).

Drift Diffusion model of Decision Making



•  Drift rates changes with difficulty of conditions

• speed-tradeoff accuracy can be modelled by changing the boundary 
separation

Drift Diffusion Model of Decision Making 
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Drift Diffusion Model of Decision Making 

• Biases can be introduced by changing the starting point.   



Drift Diffusion Model of Decision Making

•  Equivalence can be shown between DDM and sequential probability ratio test.

• The Decision Variable is the cumulated sum of the evidence. The bounds 

represent the stopping rule.

• If mean drift rate is log likelihood ratio, then this model = sequential probability 

ratio test.
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Figure 2
Sequential analysis. (a) General framework. The decision is based on a sequence of observations. After
each acquisition, a DV is calculated from the evidence obtained up to that point; then more evidence can
be obtained or the process can be terminated with a commitment to H1 or H2. In principle, both the
fi (· · ·)s, which convert the evidence to a DV, and the criteria can be dynamic (e.g., to incorporate the cost
of elapsed time). e0 can be interpreted as the evidence bearing on the prior probability of the hypotheses.
(b) In random walk models, the DV is a cumulative sum of the evidence. The bounds represent the
stopping rule. If e is a logLR, then this process is the SPRT (see The Sequential Probability Ratio Test).
When the evidence is sampled from a Gaussian distribution in infinitesimal time steps, the process is
termed diffusion with drift µ, or bounded diffusion. (c) In the race model, two or more decision processes
represent the accumulated evidence for each alternative. When there are two alternatives and the
accumulations are inversely correlated, the race model is nearly identical to a symmetric random walk.
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• Another variant is the race model

• Two or more decision processes represent the accumulated evidence 
for each alternative.

Race Model
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Figure 2
Sequential analysis. (a) General framework. The decision is based on a sequence of observations. After
each acquisition, a DV is calculated from the evidence obtained up to that point; then more evidence can
be obtained or the process can be terminated with a commitment to H1 or H2. In principle, both the
fi (· · ·)s, which convert the evidence to a DV, and the criteria can be dynamic (e.g., to incorporate the cost
of elapsed time). e0 can be interpreted as the evidence bearing on the prior probability of the hypotheses.
(b) In random walk models, the DV is a cumulative sum of the evidence. The bounds represent the
stopping rule. If e is a logLR, then this process is the SPRT (see The Sequential Probability Ratio Test).
When the evidence is sampled from a Gaussian distribution in infinitesimal time steps, the process is
termed diffusion with drift µ, or bounded diffusion. (c) In the race model, two or more decision processes
represent the accumulated evidence for each alternative. When there are two alternatives and the
accumulations are inversely correlated, the race model is nearly identical to a symmetric random walk.
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•  Different properties
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DDM as a tool in Computational Psychiatry

• The DDM can be used as a tool to compare groups. 

• Because it is a unified model of speed and accuracy, it can be more 
sensitive than looking at RTs or % correct alone. 

Avocado SubvirtWord or (a) 
non word 
(l)?

Word or (a) 
non word 
(l)?

death Word or (a) 
non word 
(l)?

• Example: Do participants 
with anxiety respond 
differently to threatening 
words?



Drift Diffusion Model of Decision Making

• The DDM is fit to individual participants 

• Quality of fit is assessed by how it fits the RT distributions

• Participants with high anxiety had larger drift rates for threatening 

compared to nonthreatening words whereas participants with low anxiety did 

not.

• Suggests enhanced processing of threatening words for participants with 

high anxiety



(Intermediate) Conclusions

• A decision = process that weights priors, evidence, and value to 
generate a commitment

• Signal detection theory and sequential analysis provide a 
theoretical framework for understanding how optimal decisions can 
be made. 

• Idea: a decision variable (~logLR) is compared to a threshold 

• DDM, invented as a phenomenological framework to describe 
human behaviour, % accuracy and RTs, found to be equivalent. 

• DDM  used as a tool in computational psychiatry.

• In practice nowadays, hierarchical DDM (hDDM) - toolbox using 
Bayesian hierarchical parameter estimation.



Further Readings

• CP section 2.2 (DDM)

• Page maintained by Ratcliff:  
https://u.osu.edu/ratcliffmckoon/the-diffusion-model-for-non-
specialists/

• hDDM: Wiecki, Sofer and Frank (2013):  
http://ski.clps.brown.edu/hddm_docs/

• DDM tutorial: https://www.med.upenn.edu/longding1/javascript/
DDM_LongDing.html

https://u.osu.edu/ratcliffmckoon/the-diffusion-model-for-non-specialists/
https://u.osu.edu/ratcliffmckoon/the-diffusion-model-for-non-specialists/
http://ski.clps.brown.edu/hddm_docs/
https://www.med.upenn.edu/longding1/javascript/DDM_LongDing.html
https://www.med.upenn.edu/longding1/javascript/DDM_LongDing.html
https://www.med.upenn.edu/longding1/javascript/DDM_LongDing.html

