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Overview of the visual cortex

Two streams:  
• Ventral ‘What’: V1,V2, V4, IT, form recognition and object representation 
• Dorsal ‘Where’: V1,V2, MT, MST, LIP, VIP, 7a: motion, location, control of eyes and 
arms
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Overview of the visual cortex
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Ventral pathway (Object Recognition)

Figure/ground - illusory contours

retina: Luminance, contrast                

LGN: Luminance, contrast  + ?   
           

Objects, categories           

objects parts, complex geometric patterns          

complex geometric patterns          

V1: orientation
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Figure 1a shows the responses of a single unit in the left posterior
hippocampus to a selection of 30 out of the 87 pictures presented to
the patient. None of the other pictures elicited a statistically signifi-
cant response. This unit fired to all pictures of the actress Jennifer
Aniston alone, but not (or only very weakly) to other famous and
non-famous faces, landmarks, animals or objects. Interestingly, the
unit did not respond to pictures of Jennifer Aniston together with the
actor Brad Pitt (but see Supplementary Fig. 2). Pictures of Jennifer
Aniston elicited an average of 4.85 spikes (s.d. ¼ 3.59) between 300
and 600ms after stimulus onset. Notably, this unit was nearly silent

during baseline (average of 0.02 spikes in a 700-ms pre-stimulus time
window) and during the presentation of most other pictures
(Fig. 1b). Figure 1b plots the median number of spikes (across trials)
in the 300–1,000-ms post-stimulus interval for all 87 pictures shown
to the patient. The histogram shows amarked differential response to
pictures of Jennifer Aniston (red bars).
Next, we quantified the degree of invariance using a receiver

operating characteristic (ROC) framework15. We considered as the
hit rate (y axis) the relative number of responses to pictures of a
specific individual, object, animal or landmark building, and as

Figure 1 | A single unit in the left posterior hippocampus activated
exclusively by different views of the actress Jennifer Aniston.
a, Responses to 30 of the 87 images are shown. There were no statistically
significant responses to the other 57 pictures. For each picture, the
corresponding raster plots (the order of trial number is from top to bottom)
and post-stimulus time histograms are given. Vertical dashed lines indicate
image onset and offset (1 s apart). Note that owing to insurmountable
copyright problems, all original images were replaced in this and all
subsequent figures by very similar ones (same subject, animal or building,
similar pose, similar colour, line drawing, and so on). b, The median

responses to all pictures. The image numbers correspond to those in a. The
two horizontal lines show the mean baseline activity (0.02 spikes) and the
mean plus 5 s.d. (0.82 spikes). Pictures of Jennifer Aniston are denoted by
red bars. c, The associated ROC curve (red trace) testing the hypothesis that
the cell responded in an invariant manner to all seven photographs of
Jennifer Aniston (hits) but not to other images (including photographs of
Jennifer Aniston and Brad Pitt together; false positives). The grey lines
correspond to the same ROC analysis for 99 surrogate sets of 7 randomly
chosen pictures (P , 0.01). The area under the red curve is 1.00.

NATURE|Vol 435|23 June 2005 LETTERS

1103
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Quiroga et al,  Nature, 2005 -- Invariant visual representation by single neurons in the 
human brain (MTL), a.k.a the Jennifer Aniston Neuron.
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Dorsal pathway

• MT: MOTION. stimulus of choice: random dot patterns. 



Dorsal pathway

• MST: linear, radial, circular motion (flow field). 

• LIP: spatial position in head-centered coordinates. 
spatial attention, spatial representation. saliency map 
-- used by oculo-motor system (the “saccade planning 
area”). spatial memory trace and anticipation of 
response before saccade. 

• VIP: spatial position in head-centered coordinates, 
multi-sensory responses. speed, motion. 

• 7a: large receptive fields, encode both visual input 
and eye position. 



Back to Decision Making
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• This framework can be extended to the situation where we have 
multiple pieces of evidence e1, e2, ..en observed over time.

• Here we allow the decision variable to ‘accumulate the evidence’ in 
time:

Sequential Analysis
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allowed psychologists to infer from behavior
properties of the underlying sensory repre-
sentation (Green & Swets 1966). Later, pi-
oneering work in retinal and somatosensory
physiology established SDT as a valuable tool
to relate the measured responses of sensory
neurons to the limits of detection and discrim-
ination (for reviews see Parker & Newsome
1998, Rieke et al. 1997). More recently, it has
begun to shed light on decision mechanisms.

According to SDT, the decision maker ob-
tains an observation of evidence, e. In per-
ceptual psychophysics, e is derived from the
senses and might be the spike count from
a neuron or pool of neurons, or a derived
quantity such as the difference between spike
rates of two pools of neurons. It is caused
by a stimulus (or state) controlled by the ex-
perimenter; e.g., h1 (stimulus present) or h2

(stimulus absent). If e is informative, then its
magnitude differs under these states. How-
ever, e is also corrupted by noise. Thus e is
a random variable described by a distribution
whose parameters (e.g., the mean) are set by h1

or h2. These conditionalized distributions de-
scribe the likelihoods P (e | h1) and P (e | h2).
Unlike standard statistical methods, the ob-
ject of SDT is not to determine whether the
parameters describing these distributions are
different but instead to decide which of the
states gave rise to the observation e.

The decision requires the construction of
a DV from e. For binary decisions, the DV is
typically related to the ratio of the likelihoods
of h1 and h2 given e: l12(e) ≡ P (e | h1)/P (e | h2).
A simple decision rule is to apply a criterion to
the DV; e.g., choose h1 if and only if l12(e) ≥ β,
where β is a constant. A strength of SDT is
that a variety of goals can be reached by simply
using different values for the criterion. If the
goal is accuracy and the two alternatives are
equally likely, then β = 1. If the goal is accu-
racy and the prior probability favors one of the
hypotheses, then β = P (h2)/P (h1). If the goal
is to maximize value (where vij is the value as-
sociated with choice Hj when hypothesis hi is
true), then β = (v22 + v21)P (h2)

(v11 + v12)P (h1) . For more details,
the reader should refer to the first chapter of

LR: likelihood ratio

logLR: logarithm of
the likelihood ratio

Green & Swets (1966), where these expres-
sions are derived.

SDT thus provides a flexible framework
to form decisions that incorporate priors,
evidence, and value to achieve a variety of
goals. Unfortunately, this flexibility also poses
a challenge to neurobiologists. The above ex-
pressions were obtained assuming that the DV
is the likelihood ratio (LR), l12 (e). However,
equivalent expressions (that is, those that will
achieve the same goals) can be obtained (by
scaling β) using any quantity that is monoton-
ically related to the LR. In other words, these
equations do not constrain the priors, e, value,
the DV, or β to take on any particular form,
only that they interact in a certain way. Thus
it is difficult to assign a quantity measured in
the brain to any one of these elements with-
out knowing how the others are represented.
One powerful approach to unraveling this co-
nundrum is to exploit differences in the time
scales of these elements in decision formation.

Sequential analysis. SA is a natural exten-
sion to SDT that accommodates multiple
pieces of evidence observed over time. SA
assumes that the decision has two parts: the
usual one between h1 and h2, and another
about whether it is time to stop the process
and commit (Figure 2). In its most general
form, SA allows the procedure for construct-
ing the DV and the decision rule to be adjusted
with each new sample of evidence. However,
many decisions can be understood by assum-
ing fixed definitions for these elements. A sim-
ple DV constructed from multiple, indepen-
dent pieces of evidence, e1, e2, . . . , en, is the
logarithm of the LR (logLR, or “weight of ev-
idence”), which is just the sum of the logLRs
associated with each piece of evidence:

log LR12 ≡ log
P (e1, e2, . . . , en|h1)
P (e1, e2, . . . , en|h2)

=
n∑

i=1
log

P (ei | h1)
P (ei | h2)

. 1.

A simple stopping rule is to update this DV
with new pieces of evidence until reaching a
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•   When the DV >  threshold A (which possibly reflects priors and 
values), a decision is made towards h1. If DV < B, choose h2. 
• This is known as the sequential probability ratio test (optimal rule).

ANRV314-NE30-21 ARI 21 May 2007 13:44
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e0 → f0 e Stop
or

Stop
or

Stop
or

0( ) ⇒ →

e1 → f1 e0 ,e1( ) ⇒

e2 → f1 e0 ,e1 ,e2( ) ⇒

…

… …en → f1 e0 ,e1 , ,en( ) ⇒

Sequential analysis framework a

c

Symmetric random walkb

A

-A

Mean drift rate = mean of e

e

Mean of e depends
on strength of
evidence  

0

A
cc

u
m

u
la

te
d

ev
id

en
ce

 
fo

r 
   

 o
ve

r 
h 1

h 2

Choose H1

H2

Race model

A

H1Choose 

A
cc

u
m

u
la

te
d

ev
id

en
ce

 f
o

r 
h 1 

  

B
H2Choose 

A
cc

u
m

u
la

te
d

ev
id

en
ce

 f
o

r 
h 2 

  

→

Figure 2
Sequential analysis. (a) General framework. The decision is based on a sequence of observations. After
each acquisition, a DV is calculated from the evidence obtained up to that point; then more evidence can
be obtained or the process can be terminated with a commitment to H1 or H2. In principle, both the
fi (· · ·)s, which convert the evidence to a DV, and the criteria can be dynamic (e.g., to incorporate the cost
of elapsed time). e0 can be interpreted as the evidence bearing on the prior probability of the hypotheses.
(b) In random walk models, the DV is a cumulative sum of the evidence. The bounds represent the
stopping rule. If e is a logLR, then this process is the SPRT (see The Sequential Probability Ratio Test).
When the evidence is sampled from a Gaussian distribution in infinitesimal time steps, the process is
termed diffusion with drift µ, or bounded diffusion. (c) In the race model, two or more decision processes
represent the accumulated evidence for each alternative. When there are two alternatives and the
accumulations are inversely correlated, the race model is nearly identical to a symmetric random walk.
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• Related to this framework are the random walk and race models of decision 

making developed by psychologists to explain behavioral data.



• Anything like that in the brain? 



• yes

Mike Shadlen, Paul Glimcher 
(and others)

• Study decision on 

perceptual tasks



Random Dots Motion Direction Task

• Monkey decides between 2 possible opposite directions, and saccade 
to signal his choice whenever he is ready.

• Task difficulty is controlled by varying coherence level

• Decision = problem of movement selection

ANRV314-NE30-21 ARI 21 May 2007 13:44

Aligning the responses to saccade initia-
tion (Figure 5c, right) reveals a correlate of
commitment: a threshold rate of firing be-
fore Tin choices. When separated by motion
strength, the curves overlap considerably just
prior to the saccade and thus make it im-
possible to identify a single point of conver-
gence because each motion strength leads to
a broad distribution of RTs. When these same
responses are grouped by RT instead of mo-

tion strength, they achieve a common level
of activity ∼70 ms before saccade initiation
(arrow in Figure 5d ). Thus the decision
process appears to terminate when the neu-
rons associated with the chosen target reach
a critical firing rate. When the monkey
chooses Tout, another set of neurons—the
ones with the chosen target in their RFs—
determines the termination of the decision
process.
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[Shadlen and Newsome 2001]



Which neurons would be involved in the decision? 

• LIP receives inputs from MT and MST 

(sensory evidence) 

• Outputs in FEF and SC (generation of 

saccades)

• LIP is implicated in selection of 

saccade targets, working memory, 

intention etc..

• Record neurons which have one of 

the choice targets in the response field 

and the other outside.

developed during the past 40 years in mathematical
psychology. Two broad classes of model have been
developed that apply to different kinds of decisions. One
class, of sequential-sampling models, applies to speeded
decisions in perceptual and memory tasks [1,21]. These
decisions are typically made within a second or so. A
second class, based on economic concepts of expected
utility, applies to complex decisions among differently
valued alternatives [2]. Both have been linked to recent
neurobiological findings but only the former is discussed
here. The link between neurobiology and utility-based
decision theories is discussed in Refs [7,22].

Figure 2 summarizes the main sequential-sampling
models and shows two successful models of this kind. The
models both assume that decisions are based on accumu-
lated noisy information about the stimulus but they differ
in how the accumulation is assumed to occur. In random-
walk models, the information is accumulated as a single
total: information in favor of one response is evidence
against the other [23,24]. In accumulator models and
counter models, information favoring the two responses is
accumulated separately [25–29]. The Wiener diffusion

and Ornstein–Uhlenbeck diffusion models on the left of
Figure 2a are continuous time counterparts of random
walks [30–32].

The Wiener diffusion model, shown in Figure 2b, has
successfully accounted for RT and accuracy data from a
variety of behavioral paradigms [33–39]. It assumes that a
decision is the result of continuously accumulating noisy
stimulus information until one of two response criteria is
reached. Because of moment-by-moment fluctuations in
noise in the decision process (the irregular sample paths in
the figure) and trial-to-trial variability in the quality of
information about the stimulus, the process sometimes
terminates at the wrong criterion, resulting in an error. If
the information quality is low, the rate of accumulation is
slower and errors and are more likely than if the
information quality is high. RT distributions are predicted
to be right-skewed because of the geometry of diffusion
process paths: equal size differences in accumulation rate
between pairs of sample paths are projected as unequal
size differences on the decision boundary (Figure 2b). The
Ornstein–Uhlenbeckmodel is similar to theWienermodel
but assumes decay or ‘leakage’ in the accumulation

Figure 1. Neural and behavioral correlates of eye movement disorders. (a) Some neural sites from which decision-related activity has been recorded. Patterns of neural fir-
ing that predict the time-course of behavioral decisions have been recorded in the frontal eye field (FEF), lateral interparietal area (LIP), middle temporal area (MT) and
superior colliculus (SC). (b–d) Some tasks used to study perceptual decisions. (b) Oddball task. Eight colored stimulus patches are illuminated in a circle around the fixation
point: the monkey makes a saccade (red arrow) to the odd-colored patch. Task difficulty is manipulated by varying the similarity of the colors of the odd element and the
distractors. (c) Coherent-motion detection task. An array of moving dots, some moving in random directions and some moving to the left or to the right, is presented cen-
trally: the monkey makes a saccade to a left or right target to indicate the direction of motion. Task difficulty is manipulated by varying the proportion of coherently moving
dots. (d) Dot separation task. One of a set of stimulus lights arranged vertically above a fixation light is illuminated. The monkey makes a saccade to the left or right to indi-
cate a large or small distance between the stimulus light and fixation. Task difficulty is manipulated by varying the position of the stimulus light relative to the middle of the
set of stimulus lights. (e) Neural activity associated with stimulus selection has been recorded in LIP, from sensory neurons in FEF, and from prelude or buildup neurons in
SC. Early stimulus-linked activity does not discriminate between decision alternatives. Later, cells associated with the selected stimulus or the preferred direction of motion
show an increased or maintained level of firing. Cells associated with the nonselected stimulus or the nonpreferred direction show a decreased level of firing. The growth
of discriminative information represented by the difference in firing rates occurs more rapidly for easily discriminated stimuli (strong) than for less easily discriminated
stimuli (weak). (f) Response time (RT) is predicted by the time at which activity in LIP or in FEF motor neurons reaches a threshold. Rapid activity growth is associated with
fast responses; slow activity growth is associated with slow responses. The distribution of RT (g) is a reflection of variability in the time taken for the activity to reach
threshold.
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Accumulation of Evidence in LIP (1)
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Aligning the responses to saccade initia-
tion (Figure 5c, right) reveals a correlate of
commitment: a threshold rate of firing be-
fore Tin choices. When separated by motion
strength, the curves overlap considerably just
prior to the saccade and thus make it im-
possible to identify a single point of conver-
gence because each motion strength leads to
a broad distribution of RTs. When these same
responses are grouped by RT instead of mo-

tion strength, they achieve a common level
of activity ∼70 ms before saccade initiation
(arrow in Figure 5d ). Thus the decision
process appears to terminate when the neu-
rons associated with the chosen target reach
a critical firing rate. When the monkey
chooses Tout, another set of neurons—the
ones with the chosen target in their RFs—
determines the termination of the decision
process.
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• If the recorded neuron has the 

choice target in its receptive 

field: ramping of activity during 

presentation of the stimulus.

• up to a level of activity at which 

decision is made;

• faster rise for easier choices, 
decrease for opposite 
direction.



• Responses grouped by RT

• Responses achieve a common level of 

activity ~ 70 msec before saccade initiation

• When the monkey chooses other direction, 

another set of neurons (with chosen target in 

their RFs)  behave similarly

• as if the fact that they reach a threshold 

value ‘determines the termination of the 

decision process’
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Aligning the responses to saccade initia-
tion (Figure 5c, right) reveals a correlate of
commitment: a threshold rate of firing be-
fore Tin choices. When separated by motion
strength, the curves overlap considerably just
prior to the saccade and thus make it im-
possible to identify a single point of conver-
gence because each motion strength leads to
a broad distribution of RTs. When these same
responses are grouped by RT instead of mo-

tion strength, they achieve a common level
of activity ∼70 ms before saccade initiation
(arrow in Figure 5d ). Thus the decision
process appears to terminate when the neu-
rons associated with the chosen target reach
a critical firing rate. When the monkey
chooses Tout, another set of neurons—the
ones with the chosen target in their RFs—
determines the termination of the decision
process.
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Accumulation of Evidence in LIP (2)

[Gold and Shadlen 2007]



•  Pattern of LIP activity matches prediction of diffusion/race models: 

  - rise of activity appears to reflect accumulation of evidence  

  - evidence could come from a difference in activity of pools of MT neurons with 

opposite direction preferences, approximating the LogLR (Gold & Shadlen, 2001)

Accumulation of Evidence in LIP (3)



Accumulation of Evidence in LIP (4)

• Suggests that LIP neurons represent the decision variable ?

• Implements a LogLR test?

• How is the criterion / threshold set and what happens when it is 
reached?

• Dependence on priors, values, confidence, speed-accuracy tradeoff, 
causal to the decision? .. 

• Which circuits?

> A flurry of research



Modeling Integration/ ramping activity in LIP

•  XJ Wang (2002) observed that circuits that show ramping activity in decision 

tasks also show persistent activity in memory tasks.

• Model circuits that can account for persistent activity based on slow (NMDA) 

excitation and recurrent inhibition and attractor dynamics can also account for 

ramping activity.  Neural integration is a network mechanism.



Modeling Integration/ ramping activity in LIP

Network architecture for a model of perceptual decision-making. The circuit contains 
two populations of pyramidal neurons which are each selective to one of the two 
stimuli (A and B). Within each pyramidal-neuron population there is strong recurrent 
excitation, and the two populations compete via feedback inhibition mediated by 
interneurons.. During decision-making, the circuit exhibits an initial slow ramping, 
related to temporal integration of evidence, which leads to categorical choice (for A in 
this trial). 



Q1: How do Rewards and Priors influence decision ?

•  First investigated by [Platt & Glimcher, 

Nature 1999] 

• Monkeys cued by a color of a fixation 

stimulus to saccade on 1 of 2 targets

• Change the reward associated with each 

target (value) 

• Vary the probability that a saccade to a 

target will be required (prior)

• Observe Offset of the responses of LIP 

neurons before and during presentation of 

the saccade target

• Suggests that behavioural outcome and 

priors are also encoded in baseline, before 

presentation of target.



together, the results of these studies indicate that brain
areas implicated in the conversion of sensory judgements
into behavioral reports also encode the behavioral outcome
that can be expected from each available option on the
basis of prior experience. This makes sense because even
purely sensory discriminations require prior knowledge of
the goal of behavior in any context. Thus, expectations,
goals, and prior experience must, by necessity, be included
in any adaptive decision process. From the viewpoint 
of optimal design [37,38], it seems reasonable that 
neurons involved in the decision process would 
adjudicate current sensory inputs in the context of past
experience. Indeed, Gold and Shadlen [39••] recently 
proposed that neurons in parietal and prefrontal cortex
compute a decision variable that combines current sensory
evidence with estimates of behavioral value. The resultant
value represents the logarithm of the likelihood ratio of
one response over another, which is then compared to a 
criterion in order to decide upon a single behavioral
response [40]. 

These studies also indicate that motivational systems of
the brain are deployed when individuals make even simple
choices. Indeed, adaptive decision-making requires encod-
ing the outcome, either good or bad, of prior action. Signals
correlated with the reward outcome of events have been
found in the basal ganglia, including the activation of
dopaminergic neurons of the substantia nigra pars com-
pacta [41], and modulations in activity in the caudate

nucleus [42] and nucleus accumbens [43••,44•]. Such 
signals have also been uncovered in largely midline cortical
areas such as the orbitofrontal cortex [45,46•,47••], cingulate
cortex [48], and the supplementary eye fields [49••].
These areas presumably contribute to the extraction and
maintenance of representations of behavioral value upon
which future decisions may be informed (Figure 2).

Arbitration without a judge: conversion of analog
decision signals into a categorical response
Recent studies suggest that decisions are made by 
combining gradually accumulating sensory evidence, favoring
one alternative over others, with prior knowledge about
the likely consequences of each action. This process leaves
a signature in the activity of neurons at various stages in
sensory–motor pathways. But where does the decision
actually occur? Which regions of the brain convert neuronal
activity favoring competing alternatives into a single
behavioral response? A recent study by Gold and Shadlen
[50••] directly tested this question by applying microstim-
ulation to the FEF, while monkeys performed the random
dot motion discrimination task. As previously observed
[51], stimulation in the FEF during passive fixation
evoked a saccade of fixed direction and amplitude
(Figure 5a). Microstimulation applied while monkeys
judged motion direction in the random dot stimulus, 
however, evoked saccades that deviated systematically in the
direction reported by the monkey when no stimulation was
delivered (Figure 5a). More importantly, the magnitude of
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Figure 4

Neural correlates of behavioral value.
(a) Average firing rate of a single LIP neuron
plotted as a function of time, on trials in which a
saccade in the preferred direction (RF) of the
neuron was cued. Neuronal activity was greater
when a large reward was associated with the
cued saccade (red curve) than when a small
reward was associated with the same movement
(blue curve). Arrows indicate, successively, mean
times of instruction cue onset, central fixation
stimulus offset, and saccade onset in high (red)
and low (blue) reward blocks. (b) Neuronal
activity for a second LIP neuron was greater
when the cued movement was more probable
(red curve) than when the same movement was
less probable (blue curve). Conventions as in (a).
(c) When free to choose, monkeys shift gaze to
the target associated with the larger reward.
Relative reward size reflects the volume of juice
available for a saccade in the neuron’s preferred
direction, divided by the total volume of juice
available from both possible saccades, within a
block of trials. Data are from a single experiment.
(d) Average activity (± standard error) of a single
LIP neuron measured after target onset and
plotted as a function of relative reward size, for
trials in which the monkey shifted gaze in the
neuron’s preferred direction. Data are from the
same experiment as in (c). Adapted with
permission from [60]. RF, response field.
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adjudicate current sensory inputs in the context of past
experience. Indeed, Gold and Shadlen [39••] recently 
proposed that neurons in parietal and prefrontal cortex
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cortex [48], and the supplementary eye fields [49••].
These areas presumably contribute to the extraction and
maintenance of representations of behavioral value upon
which future decisions may be informed (Figure 2).
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one alternative over others, with prior knowledge about
the likely consequences of each action. This process leaves
a signature in the activity of neurons at various stages in
sensory–motor pathways. But where does the decision
actually occur? Which regions of the brain convert neuronal
activity favoring competing alternatives into a single
behavioral response? A recent study by Gold and Shadlen
[50••] directly tested this question by applying microstim-
ulation to the FEF, while monkeys performed the random
dot motion discrimination task. As previously observed
[51], stimulation in the FEF during passive fixation
evoked a saccade of fixed direction and amplitude
(Figure 5a). Microstimulation applied while monkeys
judged motion direction in the random dot stimulus, 
however, evoked saccades that deviated systematically in the
direction reported by the monkey when no stimulation was
delivered (Figure 5a). More importantly, the magnitude of
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(a) Average firing rate of a single LIP neuron
plotted as a function of time, on trials in which a
saccade in the preferred direction (RF) of the
neuron was cued. Neuronal activity was greater
when a large reward was associated with the
cued saccade (red curve) than when a small
reward was associated with the same movement
(blue curve). Arrows indicate, successively, mean
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stimulus offset, and saccade onset in high (red)
and low (blue) reward blocks. (b) Neuronal
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when the cued movement was more probable
(red curve) than when the same movement was
less probable (blue curve). Conventions as in (a).
(c) When free to choose, monkeys shift gaze to
the target associated with the larger reward.
Relative reward size reflects the volume of juice
available for a saccade in the neuron’s preferred
direction, divided by the total volume of juice
available from both possible saccades, within a
block of trials. Data are from a single experiment.
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effect of reward

effect of prior

Also, more recently : Rorie et al PloS one 2010;  and Rao, De Angelis and Snyder, J Neurosci 2012. 

Q1: How do Rewards and Priors influence decision ?

[Platt & Glimcher, Nature 1999]
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Q2: Does the brain implement SPRT?

• Monkeys are shown a sequence of shapes, 
every 250 ms. Each shape supplies evidence 
bearing on whether a reward is associated with 
one or the other choice target.  

• The sequence continues until the monkey 
initiates an eye movement to a choice target.  

• LIP activity reflects accumulation of logLR. 

• if different pieces of evidence come successively in time, does LIP activity behave 
like logLR?
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• What changes when the animal is rewarded to be accurate vs fast: 

 Changes in bound in LIP ? or baseline?

• In speeded condition: brain changes the level of the starting point of the 

accumulation and adds a time-dependent signal to the accumulated evidence 

(“urgency”).

• The latter signal is equivalent to having a collapsing bound.  

Q3:  What happens in speed-accuracy tradeoff? 



Q4: What about when we change our mind?

Does LIP activity reflects the decision (or the input)? even if it is an 
error?
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Q4: What about when we change our mind?

• Decoding from arrays of electrodes allows visualisation of the population 

“decision variable” over time towards one choice or the other and possible 

changes of mind
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Q5:  Dependence on the modality of the response?

• When the response involves a reach instead 

of a saccade, MIP holds the decision variable. 
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Q6: Causal link between LIP and decision?

• Microstimulation: caused an 

increase in the proportion of choices 
toward the RF of the stimulated neurons

• Inactivation studies, impact initially 

debated (Katz et al 2016), now shown to 
be only transient

2006

2022
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• It’s a bit more complicated

• More investigation needed



Neuroeconomics (2008): 
“understand the processes 
that connect sensation and 
action by revealing the 
neurobiological mechanisms 
by which decisions are made”

...
"an emerging transdisciplinary 
field that uses neuroscientific 
measurement techniques to 
identify the neural substrates 
associated with economic 
decisions”

New field were born

Computational psychiatry (2017)
psychiatry as maladaptive decision-making



• A decision = process that weights priors, evidence, and value to generate a 

commitment

• Signal detection theory and sequential analysis provide a theoretical 

framework for understanding how decisions are formed

• Studies that combine behavior and neurophysiology have begun to 

uncover how the elements of decision formation are implemented in the 

brain, leading to development of “Neuroeconomics”

• Perceptual tasks are used to distinguish evidence and decision variable.

• comparing a decision variable to a given threshold seems to be the basic 

mechanism of decision making

• Many open questions though … a flurry of new research, some of which 

nuancing the LIP “story” (Huk et al 2017). 

Summary 


