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Reinforcement learning (RL): 
 
- an area of machine learning inspired by behaviorist 
psychology, concerned with how software agents ought to 
take actions in an environment so as to maximize some 
notion of cumulative reward.  

- thought to be a good model of how learning is occurring in 
the brain. 
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Contrasted with Supervised, and Unsupervised learning



Maximizing Reward as a guide to decision-making

• Key to decision making at all levels 
• Reinforcement learning : maximize reward and minimize punishments; 
Sutton 1978; Sutton & Barto, 1990, 1998.  
• Why is this hard? (1) rewards/ punishment may be delayed; (2) outcome 
may depend on series of actions (credit assignment problem)  
• Needs learning of predictions of events and actions

the problem we all face in our daily life
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Animals learn predictions -- Pavlovian conditioning

• Animals learn predictions 
• Classical (aka “Pavlovian”) conditioning: pairing of a conditioned stimulus 
(bell, CS)  with a unconditioned stimulus (food, US) 
• conditioned suppression, freezing to tone paired with punishment 

• autoshaping, bird pecking on light that has been paired with food 

http://www.youtube.com/watch?v=ZlZekx1P1g4

http://www.youtube.com/watch?v=cacwAvgg8EA

Ivan Pavlov
(Nobel prize portrait)

1. Pavlovian conditioning: 

animals learn predictions
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Behaviorism: John Watson (1913) proposed that the process of classical conditioning 

(based on Pavlov’s observations) was able to explain all aspects of human psychology.

Ivan Pavlov
(Nobel prize portrait)

1. Pavlovian conditioning: 

animals learn predictions
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1849-1936

http://www.youtube.com/watch?v=ZlZekx1P1g4
http://www.youtube.com/watch?v=cacwAvgg8EA


Rescorla & Wagner Model of Classical Conditioning (1972)

In 1972, Rescorla & Wagner proposed mathematical 
model to explain amount of learning that occurs on each 
trial of Pavlovian learning, when a signal (conditioned 
stimulus: CS) is paired with a subsequent stimulus 
(unconditioned stimulus: US). 

Describes development of associative strength V 
between objects or events and reward or punishment, 
recognising that:

1. Learning will occur if what happens on the trial does 
not match the expectation of the organism (surprise !),

2. The expectation on any given trial is based on the 
predictive value of all of the stimuli present.

Ivan Pavlov
(Nobel prize portrait)

1. Pavlovian conditioning: 

animals learn predictions
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V(CS)



• Change in value of associative strength V(CS) is proportional to the difference 
between actual outcome          and predicted outcome  

• The idea: error-driven learning:  Learning occurs only when events violate 
expectations.  

1 Reinforcement learning: Theoretical background

The modern form of RL arose historically from two separate and parallel lines of research. The
first axis is mainly associated with Richard Sutton, formerly an undergraduate psychology ma-
jor, and his doctoral thesis advisor, Andrew Barto, a computer scientist. Interested in artificial
intelligence and agent-based learning and inspired by the psychological literature on Pavlovian
and instrumental conditioning, Sutton and Barto developed what is today the core algorithms and
concepts of RL (Sutton, 1978; Barto et al., 1983; Sutton & Barto, 1990, 1998). In the second
axis, stemming from a different background of operations research and optimal control, electrical
engineers such as Dimitri Bertsekas and John Tsitsiklis developed stochastic approximations to
dynamic programming methods (which they termed ‘neuro-dynamic programming’), which led
to similar reinforcement learning rules (eg. Bertsekas & Tsitsiklis, 1996). The fusion of these
two lines of research couched the behaviorally-inspired heuristic reinforcement learning algo-
rithms in more formal terms of optimality, and provided tools for analyzing their convergence
properties in different situations.

1.1 The Rescorla-Wagner model

The early impetus for the artificial intelligence trajectory can be traced to the early days of the
field of ‘mathematical psychology’ in the 1950’s, within which statistical models of learning
were considered for the first time. In a seminal paper Bush and Mosteller (1951) developed
one of the first detailed formal accounts of learning. Together with Kamin’s (1969) insight
that learning should occur only when outcomes are ‘surprising’, the Bush and Mosteller ‘linear
operator’ model found its most popular expression in the now-classic Rescorla-Wagner model of
Pavlovian conditioning (Rescorla & Wagner, 1972). The Rescorla-Wagner model, arguably the
most influential model of animal learning to date, explained puzzling behavioral phenomena such
as blocking, overshadowing and conditioned inhibition (see below) by postulating that learning
occurs only when events violate expectations. For instance, in a conditioning trial in which two
conditional stimuli CS1 and CS2 (say, a light and a tone) are presented, as well as an affective
stimulus such as food or a tail-pinch (the unconditional stimulus; US), Rescorla and Wagner
postulated that the associative strength of each of the conditional stimuli V (CSi) will change
according to

Vnew(CSi) = Vold(CSi)+�

�
⇥US�⇤

i
Vold(CSi)

⇥
. (1)

In this error correcting learning rule, learning is driven by the discrepancy between what was
predicted (⇤iV (CSi) where i indexes all the CSs present in the trial) and what actually happened
(⇥US, whose magnitude is related to the worth of the unconditional stimulus, and which quantifies
the maximal associative strength that the unconditional stimulus can support). � is a learning
rate that can depend on the salience properties of both the unconditional and the conditional
stimuli being associated.

At the basis of the Rescorla-Wagner model are two important (and innovative) assumptions or
hypotheses: 1) learning happens only when events are not predicted, and 2) predictions due to
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• Most influential model of animal learning, explains puzzling behavioural 
phenomena such as blocking, overshadowing and conditioned inhibition.   
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Rescorla & Wagner model of classical conditioning (1972)

actual reward prediction

learning rate



How do we know that animals use an error-correcting rule ?

• (Kamin) Blocking: Adding a second stimulus How do we know that animals use an 

error-correcting learning rule?
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+

Phase 1 Phase II

Blocking
(NB. Also in humans)

Leon Kamin 
(1917-2017)



How do we know that animals use an error-correcting rule ?

• (Kamin) Blocking: Why does the light not make the animal 
salivate? How do we know that animals use an 

error-correcting learning rule?

25

+

Phase 1 Phase II

Blocking
(NB. Also in humans)

• Interpretation: the bell fully predicts the food and the presence of the 
light adds no new predictive information -- therefore no association 
develops to the light.

Leon Kamin 
(1917-2017)



Limitations of the Rescorla & Wagner Model

• Does not extend to 2d order conditioning, i.e. A->B->reward;  
where A gains reward predictive value 

• Basic unit of learning = conditioning trial as discrete temporal object 
 This fails to account for the temporal relations between CS and US stimuli 
within a trial 

  Temporal Difference (TD) learning, first described by Sutton (1988) 
- a means to overcome these limitations  
- extension of Rescorla-Wagner to take into account timing of events. 

→

Richard Sutton



Temporal Difference (TD) learning (1)

• Consider a succession of states S, following each other with P(St+1|St)  
• Rewards observed in each state with probability P(r|St) 
(This is a Markov Decision Process) 

• Useful quantity to predict is the expected sum of all future rewards, given 
current state St, = value of state S, V(St)

In order to formally introduce TD learning, let us depart for the moment from animal condition-
ing and human decision-making. Consider a dynamic process (called a Markov chain) in which
different states S 2 S follow one another according to some predefined probability distribution
P(St+1|St), and rewards are observed at each state with probability P(r|S). As mentioned, a
useful quantity to predict in such a situation is the expected sum of all future rewards, given the
current state St , which we will call the value of state St , denoted V (St). Thus

V (St) = E
⇥

rt + ⇥rt+1 + ⇥2rt+2 + ...
��St

⇤
= E

"
⌅

⇧
i=t

⇥i�t ri

�����St

#
(2)

where ⇥  1 discounts the effect of rewards distant in time on the value of the current state.
The discount rate was first introduced in order to ensure that the sum of future rewards is finite,
however, it also aligns well with the fact that humans and animals prefer earlier rewards to later
ones, and such exponential discounting is equivalent to an assumption of a constant ‘interest
rate’ per unit time on obtained rewards, or a constant probability of exiting the task per unit
time. The expectation here is with respect to both the probability of transitioning from one state
to the next, and the probability of reward in each state. From this definition of state values it
follows directly that

V (St) = E [rt |St ]+ ⇥E [rt+1|St ]+ ⇥2E [rt+2|St ]+ ... = (3)
= E [rt |St ]+ ⇥ ⇧

St+1

P(St+1|St)(E [rt+1|St+1]+ ⇥E [rt+2|St+1]+ ...) = (4)

= P(r|St)+ ⇥ ⇧
St+1

P(St+1|St)V (St+1) (5)

(assuming here for simplicity that rewards are Bernoulli distributed with a constant probability
P(r|St) for each state). This recursive relationship or consistency between consecutive state
values lies at the heart of TD learning. The key to learning these values is that the consistency
holds only for correct values (ie, those that correctly predict the expected discounted sum of
future values). If the values are incorrect, there will be a discrepancy between the two sides of
the equation, which is called the temporal difference prediction error

�t = P(r|St)+ ⇥ ⇧
St+1

P(St+1|St)V (St+1)�V (St). (6)

This prediction error is a natural ‘error signal’ for improving estimates of the function V (St). If
we substitute this prediction error for the ‘surprise’ term in the Rescorla-Wagner learning rule,
we get

V (St)new = V (St)old +⇤ · �t , (7)

which will update and improve the state values until all prediction errors are 0, that is, until the
consistency relationship between all values holds, and thus the values are correct.

However, returning to prediction learning in real-world scenarios, we note that this updating
scheme (which is at the basis of a collection of methods collectively called “dynamic program-
ming”; Bellman, 1957) has one major problem: it requires knowledge of the dynamics of the
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P(St+1|St) 

where E denotes expected value (or mean) and gamma the discount factor
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• Incorporating probabilities P(St+1|St) and P(r|St), we get recursive form 

In order to formally introduce TD learning, let us depart for the moment from animal condition-
ing and human decision-making. Consider a dynamic process (called a Markov chain) in which
different states S 2 S follow one another according to some predefined probability distribution
P(St+1|St), and rewards are observed at each state with probability P(r|S). As mentioned, a
useful quantity to predict in such a situation is the expected sum of all future rewards, given the
current state St , which we will call the value of state St , denoted V (St). Thus

V (St) = E
⇥

rt + ⇥rt+1 + ⇥2rt+2 + ...
��St

⇤
= E

"
⌅

⇧
i=t

⇥i�t ri

�����St

#
(2)

where ⇥  1 discounts the effect of rewards distant in time on the value of the current state.
The discount rate was first introduced in order to ensure that the sum of future rewards is finite,
however, it also aligns well with the fact that humans and animals prefer earlier rewards to later
ones, and such exponential discounting is equivalent to an assumption of a constant ‘interest
rate’ per unit time on obtained rewards, or a constant probability of exiting the task per unit
time. The expectation here is with respect to both the probability of transitioning from one state
to the next, and the probability of reward in each state. From this definition of state values it
follows directly that

V (St) = E [rt |St ]+ ⇥E [rt+1|St ]+ ⇥2E [rt+2|St ]+ ... = (3)
= E [rt |St ]+ ⇥ ⇧

St+1

P(St+1|St)(E [rt+1|St+1]+ ⇥E [rt+2|St+1]+ ...) = (4)

= P(r|St)+ ⇥ ⇧
St+1

P(St+1|St)V (St+1) (5)

(assuming here for simplicity that rewards are Bernoulli distributed with a constant probability
P(r|St) for each state). This recursive relationship or consistency between consecutive state
values lies at the heart of TD learning. The key to learning these values is that the consistency
holds only for correct values (ie, those that correctly predict the expected discounted sum of
future values). If the values are incorrect, there will be a discrepancy between the two sides of
the equation, which is called the temporal difference prediction error

�t = P(r|St)+ ⇥ ⇧
St+1

P(St+1|St)V (St+1)�V (St). (6)

This prediction error is a natural ‘error signal’ for improving estimates of the function V (St). If
we substitute this prediction error for the ‘surprise’ term in the Rescorla-Wagner learning rule,
we get

V (St)new = V (St)old +⇤ · �t , (7)

which will update and improve the state values until all prediction errors are 0, that is, until the
consistency relationship between all values holds, and thus the values are correct.

However, returning to prediction learning in real-world scenarios, we note that this updating
scheme (which is at the basis of a collection of methods collectively called “dynamic program-
ming”; Bellman, 1957) has one major problem: it requires knowledge of the dynamics of the

6

• Goal of TD learning =  learn the values V(St). 



Temporal Difference (TD) learning (2)

• prediction error is a natural signal for improving estimates V(St), giving:

• When estimated values are incorrect, there is a discrepancy between 2 sides of 
equation: prediction error:
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• = Optimal learning rule, basis of “dynamic programming”.  
• One problem:  assumes knowledge of P(St+1|St) and P(r|St) which is 
unreasonable in basic learning situations.  
• Model-free Approximation which can be formally justified (sampling):

environment, that is, P(r|St) and P(St+1|St) (the “world model”) must be known in order to
compute the prediction error �t in equation (6). This is clearly an unreasonable assumption
when considering an animal in a Pavlovian conditioning task, or a human predicting the trends
of a stock. Werbos (1977) in his “heuristic dynamic programming methods”, and later Barto,
Sutton, and Watkins (1989) and Bertsekas and Tsitsiklis (1996), suggested that in a “model-free”
case in which we can not assume knowledge of the dynamics of the environment, the environ-
ment itself can supply this information stochastically and incrementally. Every time an animal is
in the situation that corresponds to state St , it can sample the reward probability in this state, and
the probabilities of transitions from this state to another. As it experiences the different states
repeatedly within the task, the animal will obtain unbiased samples of the reward and transition
probabilities. Updating the estimated values according to these stochastic samples (with a de-
creasing learning rate or ‘step-size’) will eventually lead to the correct predictive values. Thus
the stochastic prediction error

�t = rt + ⇥V (St+1)�V (St) (8)

(where rt is the reward observed at time t, when in state St , and St+1 is the next observed state
of the environment) can be used as an approximation to equation (6), in order to learn in a
“model-free” way the true predictive state values. The resulting learning rule is

Vnew(St) = Vold(St)+⇤(rt + ⇥V (St+1)�V (St)). (9)

Finally, incorporating into this learning rule the Rescorla-Wagner assumption that predictions
due to different stimuli Si comprising the state of the environment are additive (which is not the
only way, or necessarily the most sensible way to combine predictions, see Dayan, Kakade, &
Montague, 2000), we get for all Si present at time t
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which is the TD learning rule proposed by Sutton and Barto (1990). As detailed above, the
formal justification for TD learning as a method for optimal RL derives from its direct relation to
dynamic programming methods (Sutton, 1988; Watkins, 1989; Barto, Sutton, & Watkins, 1990).
This ensures that using TD learning, animals can learn the optimal (true) predictive values of
different events in the environment, even when this environment is stochastic and its dynamics
are unknown.

Indeed this rule is similar, but not identical, to the Rescorla-Wagner rule. As in the Rescorla-
Wagner rule, ⇤ is a learning rate or step-size parameter, and learning is driven by discrepan-
cies between available and expected outcomes. However, one difference is that in TD learning
time within a trial is explicitly represented and learning occurs at every timepoint within a trial.
Moreover, in the specific tapped delay line representation variant of TD learning described in
equation (10), stimuli create long-lasting memory traces (representations), and a separate value
V (Si,t) is learned for every timepoint of this trace (for instance, a stimulus might predict a reward
exactly five seconds after its presentation). A second and more important difference is in how
predictions, or expectations, are construed in each of the models. In TD learning, the associative
strength of the stimuli (and traces) at time t is taken to predict not only the immediately forth-
coming reward rt , but also the future predictions due to those stimuli that will still be available
in the next time-step ⌅S j@t+1V (S j,t+1), with ⇥⇥ 1 discounting these future delayed predictions.
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• Resulting learning rule:

• This is TD(0) learning rule as proposed by Sutton & Barton (1990). 

• reduces to Rescorla-Wagner model if only one step  i.e.  V(St+1)=0.  
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TD in practice
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e.g. = random walk, at each state 
go left or right with 50% chance

π

Sutton & Barton (1990). 



Instrumental conditioning: adding control

• Animals not only learn associations between stimuli and reward 

but also between actions and reward 

• Learning to select actions that will increase the probability of 

rewarding events and decrease the probability of aversive events. 

• Rat lever pressing in boxes -- operant conditioning (Skinner)

Skinner 
1904-1990



Actor/Critic Methods

•  How can such action selection be learned?  

• Barto (1983): credit assignment problem can be solved by 
a learning system  comprised of 2 neurons-like elements: 
- the critic, uses TD learning to construct values of states 
- the actor, learn to select actions at each state using 
prediction error. 

Idea: if positive prediction error is encountered, current 
action should be repeated. 
Learning of policies

at each state. These two elements were the precursors of the modern-day Actor/Critic framework
for model-free action selection which has been closely associated with reinforcement learning
and action selection in the brain.

The insight in the ASE-ACE model, first due to (Sutton, 1978), is that even when the external
reinforcement for a task is delayed (as when playing checkers), a temporal difference predic-
tion error can convey, at every timestep, a surrogate ‘reinforcement’ signal that embodies both
immediate outcomes and future prospects, to the action just chosen. This is because, in the
absence of external reinforcement (ie,rt = 0), the prediction error �t in equation (8) becomes
⇥V (St+1)�V (St), that is, it compares the values of two consecutive states and conveys informa-
tion regarding whether the chosen action has led to a state with a higher value than the previous
state (ie, to a state predictive of more future reward) or not. This means that whenever a positive
prediction error is encountered, the current action has improved prospects for future rewards,
and should be repeated. The opposite is true for negative prediction errors, which signal that the
action should be chosen less often in the future. Thus the agent can learn an explicit policy –
a probability distribution over all available actions at each state ⌅(S,a) = p(a|S), by using the
following learning rule at every timestep

⌅(S,a)new = ⌅(S,a)old +⇤⌅�t (11)

where ⇤⌅ is the policy learning rate and �t is the prediction error from equation (8).

Thus, in Actor/Critic models, a Critic module uses TD learning to estimate state values V (S)
from experience with the environment, and the same TD prediction error is also used to train the
Actor module, which maintains and learns a policy ⌅ (Figure 1). This method is closely related to
policy improvement methods in dynamic programming (Sutton, 1988), and Williams (1992) and
Sutton et al. (2000) have shown that in some cases the Actor/Critic can be construed as a gradient
climbing algorithm for learning a parameterized policy, which converges to a local maximum
(see also Dayan & Abbott, 2001). However, in the general case Actor/Critic methods are not
guaranteed to converge on an optimal behavioral policy (cf. Baird, 1995; Konda & Tsitsiklis,
2003). Nevertheless, some of the strongest links between RL methods and neurobiological data
regarding animal and human decision making have been related to the Actor/Critic framework.
Specifically, Actor/Critic methods have been extensively linked to instrumental action selection
and Pavlovian prediction learning in the basal ganglia (eg. Barto, 1995; Houk et al., 1995; Joel
et al., 2002), as will be detailed below.

1.3.2 State-action values

An alternative to Actor/Critic methods for model-free RL, is to explicitly learn the predictive
value (in terms of future expected rewards) of taking a specific action at a certain state, that is,
learning the value of the state-action pair, denoted Q (S,a). In his PhD thesis, Watkins (1989)
suggested Q -learning as a modification of TD learning that allows one to learn such Q -values
(and brings TD learning closer to dynamic programming methods of ‘policy iteration’; Howard,
1960). The learning rule is quite similar to the state-value learning rule above

Q (St ,at)new = Q (St ,at)old +⇤�t (12)
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Q-learning

• Watkins (1989) 
• Alternative: explicitly learn the predictive value (future expected rewards) of 
taking an action at each state = learn the value of state-action pairs Q(S,a) 
• Learning rule:
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Figure 1: Actor/Critic architecture: The state
St and reinforcement signal rt are conveyed to
the Critic by the environment. The Critic then
computes a temporal difference prediction er-
ror (equation 8) based on these. The predic-
tion error is used to train the state value predic-
tions V (S) in the Critic, as well as the policy
⇤(S,a) in the Actor. Note that the Actor does
not receive direct information regarding the ac-
tual outcomes of its actions. Rather, the TD pre-
diction error serves as a surrogate reinforcement
signal, telling the Actor whether the (immedi-
ate and future expected) outcomes are better or
worse than previously expected. Adapted from
Sutton & Barto, 1998.

albeit with a slightly different TD prediction error driving the learning process

�t = rt +max
a

⇥Q (St+1,a)�Q (St ,at) (13)

where the max operator means that the temporal difference is computed with respect to what is
believed to be the best action at the subsequent state St+1. This method is considered ‘off-policy’
as it takes into account the best future action, even if this will not be the action that is actually
taken at St+1. In an alternative ‘on-policy’ variant called SARSA (the acronym for state-action-
reward-state-action), the prediction error takes into account the next chosen action, rather than
the best possible action, resulting in a prediction error of the form:

�t = rt + ⇥Q (St+1,at+1)�Q (St ,at). (14)

In both cases, action selection is easy given Q -values, as the best action at each state S is that
which has the highest Q (S,a) value. That is, learning Q -values obviates the need for sepa-
rately learning a policy. Furthermore, dynamic programming results regarding the soundness
and convergence of ‘policy iteration’ methods (in which a policy is iteratively improved through
bootstrapping of the values derived given each policy; Howard, 1960; Bertsekas & Tsitsiklis,
1996) ensure that if the proper conditions on the learning rate are met and all state-action pairs
are visited infinitely often, both Q -learning and SARSA will indeed converge to the true op-
timal (in case of Q -learning) or policy-dependent (in the case of SARSA) state-action values.
Interestingly, recent electrophysiological recordings in non-human primates (Morris et al., 2006)
and in rats (Roesch et al., 2007) suggest that dopaminergic neurons in the brain may indeed be
conveying a prediction error that is based on state-action values (rather than state values, as in
the Actor/Critic model), with the former study supporting a Q -learning prediction error, and
the latter a SARSA prediction error. Whether these results mean that the brain is not using an
Actor/Critic scheme at all, or whether the Actor/Critic framework could be modified to use state-
action values (and indeed, the potential advantages of such a scheme) is still an open question
(Niv et al., 2006)
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• Q prediction error: 

~ current reward+ prediction of next best action- current prediction

• SARSA algorithm a slightly different version 
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A recent application of Q-learning to deep learning, by Google DeepMind has 
been successful at playing some Atari 2600 games at expert human levels.

https://www.youtube.com/watch?v=V1eYniJ0Rnk 

Machine learning applications  
of Q learning (deep Q learning)

https://medium.freecodecamp.org/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8 

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://medium.freecodecamp.org/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8


Does the  brain do anything like that ?
• “the largest success of computational neuroscience”,  
dopamine and prediction error



What is Dopamine ?

Parkinson’s Disease

! Motor control / initiation?

Dorsal Striatum (Caudate, Putamen) 

Ventral Tegmental Area 
Substantia Nigra

Nucleus Accumbens
(ventral striatum) 

Prefrontal Cortex

31

What is dopamine and why do 

we care about it?
• A neurotransmitter 
• Dopaminergic neurons in 
Ventral Tegmental Area (VTA) 
and Substantia Nigra (SN), both 
in the midbrain 
• Parkinson’s Disease : motor 
control/ initiation 
• Addiction, gambling, natural 
rewards 
• also involved in : working 
memory, novel situations, 
ADHD, schizophrenia, Tourette.



Former idea: Dopamine signals Reward (Wise, ‘80s)

• Initial idea: dopamine represent reward signals 

• brain self stimulation by rats 

• antipsychotic drugs (dopamine antagonists) cause anhedonia 

• ‘wanting’ more than ‘liking’ 

• dopamine important for reward mediated conditioning

http://www.youtube.com/watch?
v=7HbAFYiejvo

the anhedonia hypothesis (Wise, ’80s)

• Anhedonia = inability to experience positive emotional 

states derived from obtaining a desired or biologically 

significant stimulus 

• Neuroleptics (dopamine antagonists) cause anhedonia

• Dopamine is important for reward-mediated conditioning
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http://www.youtube.com/watch?v=7HbAFYiejvo
http://www.youtube.com/watch?v=7HbAFYiejvo


New idea: Phasic Dopamine signals Prediction Error 

• Schultz et al 90s 
• Monkeys underwent simple 
instrumental or pavlovian conditioning 
• Disappearance of dopaminergic 
response at reward delivery after 
learning 
• If reward is not presented, response 
depression below basal firing at 
expected time of reward.

DopamineResponse  
= RewardOccurred – RewardPredicted  
= prediction error

Schultz, Dayan, Montague, 1997 36
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A Neural Substrate of
Prediction and Reward

Wolfram Schultz, Peter Dayan, P. Read Montague*

The capacity to predict future events permits a creature to detect, model, and manipulate
the causal structure of its interactions with its environment. Behavioral experiments
suggest that learning is driven by changes in the expectations about future salient events
such as rewards and punishments. Physiological work has recently complemented these
studies by identifying dopaminergic neurons in the primate whose fluctuating output
apparently signals changes or errors in the predictions of future salient and rewarding
events. Taken together, these findings can be understood through quantitative theories
of adaptive optimizing control.

An adaptive organism must be able to
predict future events such as the presence of
mates, food, and danger. For any creature,
the features of its niche strongly constrain
the time scales for prediction that are likely
to be useful for its survival. Predictions give
an animal time to prepare behavioral reac-
tions and can be used to improve the choic-
es an animal makes in the future. This
anticipatory capacity is crucial for deciding
between alternative courses of action be-
cause some choices may lead to food where-
as others may result in injury or loss of
resources.

Experiments show that animals can pre-
dict many different aspects of their environ-
ments, including complex properties such as
the spatial locations and physical character-
istics of stimuli (1). One simple, yet useful
prediction that animals make is the proba-
ble time and magnitude of future rewarding
events. “Reward” is an operational concept
for describing the positive value that a crea-
ture ascribes to an object, a behavioral act,

or an internal physical state. The function
of reward can be described according to the
behavior elicited (2). For example, appeti-
tive or rewarding stimuli induce approach
behavior that permits an animal to con-
sume. Rewards may also play the role of
positive reinforcers where they increase the
frequency of behavioral reactions during
learning and maintain well-established ap-
petitive behaviors after learning. The re-
ward value associated with a stimulus is not
a static, intrinsic property of the stimulus.
Animals can assign different appetitive val-
ues to a stimulus as a function of their
internal states at the time the stimulus is
encountered and as a function of their ex-
perience with the stimulus.

One clear connection between reward
and prediction derives from a wide variety
of conditioning experiments (1). In these
experiments, arbitrary stimuli with no in-
trinsic reward value will function as reward-
ing stimuli after being repeatedly associated
in time with rewarding objects—these ob-
jects are one form of unconditioned stimu-
lus (US). After such associations develop,
the neutral stimuli are called conditioned
stimuli (CS). In the descriptions that fol-
low, we call the appetitive CS the sensory
cue and the US the reward. It should be
kept in mind, however, that learning that
depends on CS-US pairing takes many dif-
ferent forms and is not always dependent on
reward (for example, learning associated

with aversive stimuli). In standard condi-
tioning paradigms, the sensory cue must
consistently precede the reward in order for
an association to develop. After condition-
ing, the animal’s behavior indicates that the
sensory cue induces a prediction about the
likely time and magnitude of the reward
and tends to elicit approach behavior. It
appears that this form of learning is associ-
ated with a transfer of an appetitive or
approach-eliciting component of the re-
ward back to the sensory cue.

Some theories of reward-dependent
learning suggest that learning is driven by
the unpredictability of the reward by the
sensory cue (3, 4). One of the main ideas is
that no further learning takes place when
the reward is entirely predicted by a sensory
cue (or cues). For example, if presentation
of a light is consistently followed by food, a
rat will learn that the light predicts the
future arrival of food. If, after such training,
the light is paired with a sound and this pair
is consistently followed by food, then some-
thing unusual happens—the rat’s behavior
indicates that the light continues to predict
food, but the sound predicts nothing. This
phenomenon is called “blocking.” The pre-
diction-based explanation is that the light
fully predicts the food that arrives and the
presence of the sound adds no new predic-
tive (useful) information; therefore, no as-
sociation developed to the sound (5). It
appears therefore that learning is driven by
deviations or “errors” between the predicted
time and amount of rewards and their ac-
tual experienced times and magnitudes [but
see (4)].

Engineered systems that are designed to
optimize their actions in complex environ-
ments face the same challenges as animals,
except that the equivalent of rewards and
punishments are determined by design
goals. One established method by which
artificial systems can learn to predict is
called the temporal difference (TD) algo-
rithm (6). This algorithm was originally
inspired by behavioral data on how animals
actually learn predictions (7). Real-world
applications of TD models abound. The
predictions learned by TD methods can also
be used to implement a technique called
dynamic programming, which specifies how
a system can come to choose appropriate
actions. In this article, we review how these
computational methods provide an inter-
pretation of the activity of dopamine neu-
rons thought to mediate reward-processing
and reward-dependent learning. The con-
nection between the computational theory
and the experimental results is striking and
provides a quantitative framework for future
experiments and theories on the computa-
tional roles of ascending monoaminergic
systems (8–13).
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Dopamine and Prediction 

• The idea: dopamine encodes prediction 
error (Montague, Dayan, Barto, 1996) 
Teaching signal, crucial for learning 

• Provided normative basis for 
understanding not only when dopamine  
neurons fire when they do, but also why, 
and what the function of these firing might 
be. 

• Evidence for dopamine-dependent, or 
dopamine-gated plasticity in synapses 
between cortex and striatum.

40

dopamine and synaptic plasticity

Wickens et al, 1996

• prediction errors are for learning…

• cortico-striatal synapses show 

dopamine-dependent plasticity
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• Is the size of response at onset of CS proportional to reward 
size? 
• Recording of midbrain dopaminergic neurons in 2 macaque 
monkeys, different visual stimuli predict different amount of juice 
reward (Tobler et al, Science 2005). 

Testing that dopamine signals prediction error 
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low spontaneous activity levels. Conditioned
stimuli elicited the typical phasic activations
(8–10), with their magnitude increasing with
increasing reward probability (r 2 ! 0.80,
P ! 0.04 and r 2 ! 0.69, P ! 0.08 in
monkeys A and B, respectively) (Figs. 2, A
and E, and 3, A and B). In summary, the
phasic activations varied monotonically with
reward probability, although further conclu-
sions about the quantitative relations are not
warranted (13).

The present work revealed an additional,
previously unreported activation of dopamine
neurons. There was a sustained increase in
activity that grew from the onset of the con-
ditioned stimulus to the expected time of
reward (Fig. 3, A and B). At P ! 0.5, 29% of
188 neurons showed significant increases in
activity before potential reward, whereas 3%
showed decreases (P " 0.05, Wilcoxon test).
By contrast, at P ! 1.0, only 9% showed
significant increases, and 5% showed signif-
icant decreases. For the population response,
the sustained activation was maximal at P !
0.5, less pronounced at P ! 0.25 and 0.75,
and absent at P ! 0.0 and 1.0 (Fig. 3C and
fig. S3B). Statistical analysis revealed a sig-
nificant effect of uncertainty on the popula-
tion response (P " 0.005 in each of four data
sets) (11), indicating that the sustained acti-
vation codes uncertainty (14 ). Furthermore,
the peak of the sustained activation occurs at
the time of potential reward, which corre-
sponds to the moment of greatest uncertainty
(15). The particular function of uncertainty
signaled by dopamine neurons is not known
(13), but we note that common measures of
uncertainty (variance, standard deviation, and
entropy) are all maximal at P ! 0.5 and have
highly nonlinear relations to probability, be-
ing very sensitive to small changes in prob-
ability near the extremes (P ! 0 or 1).

The phasic and sustained activations dif-
fered not only in timing and relation to re-
ward probability, but also in their occurrence
in single neurons. In Fig. 3D, the magnitude
of the phasic and sustained activation is
shown for each neuron (n ! 241). First, a
substantial number of neurons had little or no
response of either type (13); however, the
magnitudes of each type of response fell
along a continuum, with no evidence for
subpopulations among dopamine neurons.
Second, the magnitude of the sustained ac-
tivation showed no consistent relation to
the magnitude of phasic activation across
neurons. This was the case both for the
phasic response to conditioned stimuli (r !
0.095, P # 0.10) and for the response to
unpredicted reward (r ! – 0.024) (Fig. 3D).
In contrast, there was a significant positive
correlation of phasic responses between
conditioned stimuli and reward (r ! 0.196,
P " 0.01) (fig. S4). Thus, the phasic and
sustained activations appear to occur inde-

pendently and within a single population of
dopamine neurons.

Although the sustained activation occurs
in response to reward uncertainty, it is impor-
tant to know whether it is specific to motiva-
tionally relevant stimuli or generalizes to all
uncertain events. We conditioned two visual
stimuli in a series, with the second following
the first in only half of the trials (P ! 0.5).
The stimuli were distinct but entirely analo-
gous to the other stimuli used for condition-
ing. Dopamine neurons showed neither
sustained (Figs. 3C and 4A) nor phasic re-
sponses (Fig. 2, D and E) to either the first or
second of these stimuli. Thus, the sustained
activation seems to be related to uncertainty
about motivationally relevant stimuli.

If the sustained dopamine activation is re-
lated to the motivational properties of uncertain

rewards, it should vary with reward magnitude.
We used distinct visual stimuli to predict the
magnitude of potential reward at P ! 0.5 and
found that the sustained activation of dopamine
neurons increased with increasing reward mag-
nitude (n ! 84, P " 0.02 in each monkey) (Fig.
4A) (11). The sustained activation could reflect
the discrepancy in potential reward rather than
absolute reward magnitude. To address this is-
sue, we performed an additional experiment (53
neurons in monkey B) in which reward was
delivered in each trial but varied between two
magnitudes at P ! 0.5. One stimulus predict-
ed a small or medium reward, another pre-
dicted a small or large reward, and a third
predicted a medium or large reward. The
sustained activation was maximal after the
stimulus predicting the largest variation
(small versus large reward) (P " 0.01) (Fig.

Fig. 3. Sustained activation
of dopamine neurons pre-
cedes uncertain rewards. (A)
Rasters and histograms of ac-
tivity in a single cell with re-

ward probabilities ranging from 0.0 (top) to 1.0 (bottom). This neuron showed sustained activation
before potential reward at all three intermediate probabilities. Both rewarded and unrewarded
trials are shown at intermediate probabilities; the longer vertical marks in the rasters indicate the
occurrence of reward. Bin width! 20 ms. (B) Population histograms at reward probabilities ranging
from 0.0 (top) to 1.0 (bottom). Histograms were constructed from every trial in each neuron in the
first picture set in monkey A (35 to 44 neurons per stimulus type; 638 total trials at P! 0 and 1200
to 1700 trials for all other probabilities). Both rewarded and unrewarded trials are included at
intermediate probabilities. At P ! 0.5, the mean ($SD) rate of basal activity in this population was
2.5 $ 1.4 impulses per second before stimulus onset and 3.9 $ 2.7 in the 500 ms before potential
reward. (C) Median sustained activation of dopamine neurons as a function of reward probability.
In analogy, means ($SEM) are shown in fig. S3B for a subset of responsive neurons (11). Symbols
have the same meaning as in Fig. 2C. For monkey A, set 1, the points at P ! 0.25 and 0.75 may
underestimate the amount of sustained activation, as 11 cells with unusually high levels of
sustained activity at P ! 0.5 (median activation of 72%) were not tested at P ! 0.25 or 0.75. This
was because, at the time of those experiments, the novel form of activation cast doubt on the
dopaminergic identity of the neurons. For P ! 0 in monkey A, set 2, and in monkey B, set 1, there
was a 50% chance of a neutral stimulus following the conditioned stimulus. (D) Sustained
responses (at P ! 0.5) plotted against phasic responses to unpredicted reward (P ! 0) for all
neurons recorded in both monkeys (188 neurons, with an additional 53 neurons tested with
different reward magnitudes as in Fig. 4B; five outlying neurons, in both dimensions, are not
shown).
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• checking that size of response at onset of CS is proportional to reward 
probability (Fiorillo et al, Science 2003)

Testing that dopamine signals prediction error 



Using fMRI to visualise prediction errors in humans

• Model-driven analysis  -- search the 
brain for predicted hidden variables that 
should control learning: 

• 1) collect behavioural data in fMRI 

scanner 

• 2) fit a model, e.g. TD or Rescorla 

Wagner, to subjects’performance;  

• 3) Once best-fitting model parameters 

have been found, then the different model 

components (time series, e.g. values and 

prediction error) can be regressed against 

the fMRI data.

1 Reinforcement learning: Theoretical background

The modern form of RL arose historically from two separate and parallel lines of research. The
first axis is mainly associated with Richard Sutton, formerly an undergraduate psychology ma-
jor, and his doctoral thesis advisor, Andrew Barto, a computer scientist. Interested in artificial
intelligence and agent-based learning and inspired by the psychological literature on Pavlovian
and instrumental conditioning, Sutton and Barto developed what is today the core algorithms and
concepts of RL (Sutton, 1978; Barto et al., 1983; Sutton & Barto, 1990, 1998). In the second
axis, stemming from a different background of operations research and optimal control, electrical
engineers such as Dimitri Bertsekas and John Tsitsiklis developed stochastic approximations to
dynamic programming methods (which they termed ‘neuro-dynamic programming’), which led
to similar reinforcement learning rules (eg. Bertsekas & Tsitsiklis, 1996). The fusion of these
two lines of research couched the behaviorally-inspired heuristic reinforcement learning algo-
rithms in more formal terms of optimality, and provided tools for analyzing their convergence
properties in different situations.

1.1 The Rescorla-Wagner model

The early impetus for the artificial intelligence trajectory can be traced to the early days of the
field of ‘mathematical psychology’ in the 1950’s, within which statistical models of learning
were considered for the first time. In a seminal paper Bush and Mosteller (1951) developed
one of the first detailed formal accounts of learning. Together with Kamin’s (1969) insight
that learning should occur only when outcomes are ‘surprising’, the Bush and Mosteller ‘linear
operator’ model found its most popular expression in the now-classic Rescorla-Wagner model of
Pavlovian conditioning (Rescorla & Wagner, 1972). The Rescorla-Wagner model, arguably the
most influential model of animal learning to date, explained puzzling behavioral phenomena such
as blocking, overshadowing and conditioned inhibition (see below) by postulating that learning
occurs only when events violate expectations. For instance, in a conditioning trial in which two
conditional stimuli CS1 and CS2 (say, a light and a tone) are presented, as well as an affective
stimulus such as food or a tail-pinch (the unconditional stimulus; US), Rescorla and Wagner
postulated that the associative strength of each of the conditional stimuli V (CSi) will change
according to

Vnew(CSi) = Vold(CSi)+�

�
⇥US�⇤

i
Vold(CSi)

⇥
. (1)

In this error correcting learning rule, learning is driven by the discrepancy between what was
predicted (⇤iV (CSi) where i indexes all the CSs present in the trial) and what actually happened
(⇥US, whose magnitude is related to the worth of the unconditional stimulus, and which quantifies
the maximal associative strength that the unconditional stimulus can support). � is a learning
rate that can depend on the salience properties of both the unconditional and the conditional
stimuli being associated.

At the basis of the Rescorla-Wagner model are two important (and innovative) assumptions or
hypotheses: 1) learning happens only when events are not predicted, and 2) predictions due to

4



29

! " #! #" $! $" %! %"
!#

!

#

&
'(
)
*+
,*
-
.
/(
''
-
'

,*0(12(+-.)23

! " #! #" $! $" %! %"
!#

!

#

,*0(12(+-.)23

'(
4
'(
2
2
-
'

short aside: functional magnetic 

resonance imaging (fMRI)
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• Prediction errors signals found  
in nucleus accumbens (part of striatum) and orbito-frontal cortex, both major 
dopaminergic targets. 

• O’Doherty et al (2004): fMRI correlates of prediction error signals can be 
dissociated in dorsal and ventral striatum, according to whether instrumental 
vs pavlovian conditioning,  
-- supporting an Actor/Critic architecture.

Using fMRI to visualise prediction errors

ventral striatum activity 
found in both Pavlovian 
and instrumental task 

dorsal striatum activity 
found only in 
instrumental task
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• Frontal cortex responses in the patient group were suggestive of 

disrupted prediction-error processing.  

• Across subjects, the extent of disruption was significantly related 

to an individual’s propensity to delusion formation. 

• Delusions as a consequence of abnormal learning. 

New Promising Applications to Psychiatry

• Model-based fMRI opens the door to investigating decision-
making and reward signals differences in mental illness, e.g. 



Summary

• Optimal learning depends on prediction and control 

• The problem: prediction of future reward (or punishment) 

• The algorithm: TD learning (or variants) 
Update values so as to minimise prediction error. 

• Neural implementation: phasic dopamine as prediction error signal.  
dopamine-dependent learning in cortico-striatal synapses in basal ganglia 

• RL has revolutionised how we think of learning in the brain. 
Implications for the understanding of disorders, such as Parkinson’s and 
schizophrenia, as well as addiction, depression and more.. 


