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Behavioural studies: So what have we learned?

e Bayesian models offer parsimonious description of behaviour (descriptive
tool)

e Transparent assumptions and emphasis on “why” question.

» Behaviour consistent with Bayesian hypothesis in that:
- Brains take into account uncertainty, and combine sources of
information combines information optimally (cue combination)
- Use priors that are constantly updated
- Those priors are consistent with (some approximation) of statistics of
environment at different time scales. --> increase accuracy.

e Deviations from optimality are possibly informative about underlying
biological constraints, or nature of approximations.

e Priors (+cost functions, likelihood) can be measured in individuals --
Bayesian modelling as a tool to describe the internal model used by
individuals, possibly differentiating groups.



What does this tell us about the Brain ?

Will this change our
understanding of
neurobiology?
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A Bit of Philosophy

e Marr’s levels of analysis: computational / algorithmic / implementation.

Levels function mostly independently.

» ‘Bayesian models are not COluATON

s

that 1he ccgritve system must
e onn®?

L what is 2 onal of the computaticn h

intended to provide

mechanistic or process

accounts of cognition” ALGORITHN

4 N
what iz the resreeantalior of inputs and

outputs? What e the algontm for tha

Iransfarmaninn?

[Jacobs and Kruschke, 2010]

IMPLEMENTATION

™~ .“
How do neural syslers parfo'm avd
r2rry cat hasa nagniiva hinections?

e only an approximation of

Bayesian inference anyway.

*Bowers and Davis, 2012; O’Reilly et al., 2012



Debates: Criticism

e Confusion about optimality

o Falsifiability: Bayesian models are flexible enough to account
for everything

e Rarely compared with alternative (non-Bayesian) hypotheses

e Integration with previous research knowledge (just a new
vocabulary?)

e Lack of neurobiological predictions / evidence



Debates: Some Answers

e Optimality: claim is not that the system is optimally designed, but that
given a potentially bad design, the combination of noisy inputs is
optimal.

e Bayesian approach: a framework = typically not falsifiable only
individual models are falsifiable.

e Rarely compared with alternative hypotheses: should be compared
with hypotheses formulated at same level (computational).

e Not incompatible with mechanistic models, not even based on simple
heuristics.
“There need to be nothing intrinsically Bayesian about
algorithms that approximate Bayesian inference”

Griffith, Norris, Chater, Pouget (2012)



Neural implementation of Bayesian inference ?

1.

How do populations of neurons represent uncertainty ? Does neural

activity represent probabilities? (log probabilities?)

How can a prior be implemented? ( baseline - spontaneous activity,

number of neurons, gain, connectivity?). Can we distinguish stages

where the likelihoods, priors, posterior could be ‘measured’

experimentally ?

Can networks of neurons implement optimal inference? How?

Recently, active topic of theoretical research (e.g. A. Pouget, S.

Deneve, P. Dayan, R. Rao, J. Fiser, M. Lengyel, W.J. Ma).



1) How could neurons represent probability distributions?

|ldeas (explicit representations):

* neural activity of a given neuron with preferred stimulus s represents
the probability that feature s is present

* or log probability

* or log probability that a feature takes on a particular value.

* Probabilities are functions: neural activity could represent the
parameters of that function, possibly parameter in basis function
parametrisation. ldea defended by the proponent of Probabilistic

Population Codes (Pouget, Latham, Wei-Ji Ma, etc...)



1) How could neurons represent probability distributions?

* very few plausible computational models proposed for a neural
implementation of probabilistic learning that would provide easily testable

predictions. Offer proof of principle.

e 2 categories :
1.1) Probabilistic Population Codes (Pouget, Latham, Deneve, ..) Neural
activities represent parameters of the probability distribution. A full

probability distribution is represented (implicitly) at any moment in time.



1.1 Probabilistic population codes (PPC):
spiking rates could represent the coefficients of a basis function
parametrisation of the log probability
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1.1 Optimal cue integration with PPC

A simple linear combination of the population patterns of activity guarantees

optimal integration if neural variability is Poisson-like.
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Current Opinion in Neurobio

[Ma, Beck, Latham & Pouget, Nat Neuro 2006]
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1) How could neurons represent probability distributions?

Implementation of probabilistic learning that would provide easily testable

predictions.

1.1) Probabilistic Population Codes (Pouget, Latham, Deneve, ..) Neural
activities represent parameters of the probability distribution. A full
probability distribution is represented (implicitly) at any moment in time.
1.2) Sampling Hypothesis (Fiser, Lengyel, ..): Neural activities represent
the latent variables themselves, temporal variability represents

uncertainty.



1.2 Sampling Hypothesis: Experimental Evidence

e What makes certain stimuli bistable ? (Necker Cube,

Binocular Rivalry)
» Reflecting the fact that the posterior is bimodal?

» Hypothesis : the visual system draws a sequence of

samples from the posterior over scene interpretations

e Gershman, Vul, Tenenbaum NIPS 2009

Probability Distribution

Relstive Frequency




2) How could priors be implemented in the brain ?

Priors: Where in the brain ?

- Top down inputs (predictive coding)

Increase or decrease of activity ? [e.g. Summerfield & Egner 2009]
iIn Tuning of neurons? [Gershick et al 2011; Fischer & Pena 2011]

in Baseline activity? [Berkes et al 2010]

The representation or the read-out?

different time scale // different mechanisms



Can the effect of prior expectations be observed in

fMRI ? (1)

Tre bl of Mevsmscirce Coobar 9, 0073+ 23T 1S5 1 S84 - 1627

RehaviaraliCognitive

Prior Expectations Bias Sensory Representations in Visual

Cortex

Peter Kok,' Gljs Jonst Bravwer,” Marael AL van Gerven,' and Floels P. de Lange'
Radha oA oo e Nocwesen oo ers sttt foe Bz, Cog,” wes a0 Behiaooos, 8500 5E & ey, Sethe danls
1enartment of Perhnlogy snd enterfne Newea Sewrer, Sew tack, Now Yark 11X

Pervep o s strongly willueconl by expedabivns, Avcordiogly, perception luss sonmelimes beve cast s
sensocy cipals are cocbared wil pruoe kuow sdge. Homever, despabe a wealth of belaviosad llesaluce s
bon as probabihisiic infererce, the neural mechanisms unde-dying thas process remaun largely unka:
whether toz-down expectation beases siomulus representabions 1o sarly sensocy cariex, 1.e., whethes the
and bottom-up inputs is already observable a1 the eaddiest Jevels of sensory srocessing Alternstively, ¢
unaffecsed by top-own expectatians, and integration of prior kacwled 32 2nd bottam-upinpat may take,
aress that are “ropossd 10 he irvabved in perceptiml decisian-making, Tere, we implicisly manipalated
tians ahoat vienal matian stimuli, and prhed the offacts om Sech perception 29d sersory repeesentatior:
mersurad nemeal activity momime sively nsing fundianal magnesic resomance ‘maging, nnd applied =
rocrnstmuct ~he matica direatian of the peresivesd stime:li fmm the signn! i1 visaal enrtex. Our results 51
hins represen-arions in visunl oortex, demonsrrating that the intezration rf miar informas“on and sences
srzpes af sensory processie g,

A

AL 1|lr-rv cua Stimulus I')OO
200ms  550ms  1000ms  2000ms

Ros

nse ??"D

30C0ms 4230 ms

o))

o)

-» 10°
F VRS
A 45°
A 628"
4 a0°

10%
50%
10%
10%
10%

10%
10%
10%
60%
10%




Can the effect of prior expectations be observed

in fMRI 2 (2)

fMRI decoding

- Decoding from visual cortex : Does activity in visual cortex (V1, V2, V3, V4, MT)
correspond to real stimulus or percept ? A: percept.

- Integration of prior expectations and sensory information in population activity is
observed at the level of BOLD signals as early as in V1
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The Tuning of Neurons could implement a Prior

* The selectivities of neurons is a way by which (long-term) priors are

implemented. e.g. selectivity to orientation

e Girshick and Simoncelli, Nat Neuro 2010.

Non-uniform preferences,
non-uniform tuning widths
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Interpreting Orientation: A prior on Cardinal Directions

e Girshick and Simoncelli, Nat Neuro 2010.

a
* Orientation judgments are

more accurate at cardinal

(horizontal and vertical) . .
orientations. is L stimulus CW or CCW
* Biased toward cardinal compared to H?

orientations.

* Prior towards cardinal
orientation match orientation
distribution measured in
photographs.
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Simple Decoding Strategies
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2. Simpler Decoding Strategies

Population Vector
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Interpreting Orientation: A prior on Cardinal Directions

Non-uniform preferences,
non-uniform tuning widths
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Spontaneous activity represents the Prior

Spontaneous Cortical Activity Reveals
Hallmarks of an Optimal Internal
Model of the Environment

Pietro Berkes,'t Gergé Orban,™*> Maté Lengyel,>* Jozsef Fiser'*>*

The brain maintains internal models of its environment to interpret sensory inputs and to prepare
actions. Although behavioral studies have demonstrated that these internal models are optimally
adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown.
Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous
neural activities to inferences and prior expectations in an internal model and predicted that they
should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical
activity of awake ferrets during development. Similarity between spontaneous and evoked activities
increased with age and was specific to responses evoked by natural scenes. This demonstrates the
progressive adaptation of internal models to the statistics of natural stimuli at the neural level.

ur percepts rely on an internal model of
the environment, relating physical pro-

cesses of the world to inputs received by

our senses, and thus their veracity critically hinges
upon how well this internal model is adapted to
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Spontaneous activity is the statistical prior:
Berkes et al, Science 2011

* Evoked activity should represent the posterior for a given input image
* Spontaneous activity should represent the posterior for a blank stimulus

* This posterior should converge to prior distribution.

visual stimulation | decreasing contrast > no stimulus
b7 T |
[ o /R0
prior | N\
posterior (EA) N | posterior = prior (SA)
feature 2 i multiunit
(neuron 2) e recording
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Spontaneous activity is the statistical prior:
Berkes et al, Science 2011

* Measured population activity within visual
cortex of awake, freely viewing ferrets in
response to natural scene movies and in
darkness at different stages in development
(postnatal P29, P44 and mature P83 and P129)
* Found that divergence between Evoked
Activity and Spontaneous Activity decreases witt
age

» Similarity between EA and SA is specific to
natural scenes

* Temporal correlations similar as well.
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Neural Substrate of Priors

* Priors: Where in the brain ?

« Top down inputs (predictive coding)

 Increase or decrease of activity ? [e.g. Summerfield & Egner 2009]
* in Tuning of neurons? [Gershick et al 2011; Fischer & Pena 2011]

 in Baseline activity? [Berkes et al 2010]

- The representation or the read-out?

« different time scale // different mechanisms



3. How could approximate inference be
implemented?

Machine learning informs us about possible approximate inference
schemes:

e Sampling, Gibbs and MCMC;

* Deterministic approximation methods:

Laplace approximation and variational inference approximations

One type of variational inference approximation: Predictive Coding.



Priors as top-down inputs : Predictive Coding

* Perceptual inference: iterative matching process of top-down predictions against
bottom-up evidence, along the visual cortical hierarchy.

* expectations or ‘representational units’ that encode prediction, and error units that
encode mismatch between sensory evidence and prediction and forward it to higher
level.

* Mumford 1992, Rao & Ballard 1999; Lee & Mumford 2003; Friston 2005.

* experimental evidence still unclear
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Predictive Coding:
Neural Implementation of Bayesian Inference

» Algorithms based on minimising prediction errors can approximate
Bayesian inference.

- earning involves making the predictions more and more similar to the
input: minimizing the prediction error.

prior p(h)

pOSterlor Pragictions ,+ bE
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* Prediction errcrs
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‘ ,'- Prediclion errors
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Sensory input

input p(e|h)



Conclusion

Bayesian models successful at the behavioural level

As as benchmark for performance, provide also constraints to more
mechanistically models

Much to do about: characterisation of internal models, and how they are
learned, and the limits of learning.

Applications to Psychiatry a promising avenue.

Some confusion about the claims -- what exactly makes a neural model
“Bayesian”.

Neural implementation largely unknown. Many theories, little

electrophysiological evidence, lots of very interesting questions.



This is the end of CCN lectures



