An update on mentoring

- Mentoring from Advanced Design Informatics students available from next week
- One 15-minute slot per person, bookable via a poll
- Will send out an e-mail with booking instructions this week
Large Language Models & the Creative Industries

Dr. Susan Lechelt
CDI1
In this lecture...

1. Overview of creative industries and creative processes
2. Introduction to large language models
3. Deep dive: Large language models and the creative industries
4. Issues and questions with large language models
1. An Overview of Creative Industries and Creative Processes
What is creativity?

- New, imaginative, innovative, original
- Divergent thinking: opening up the space of possibility
- Convergent thinking: focus, direction
The Creative Industries

Those industries which ‘have their origin in individual creativity, skill and talent and which have a potential for wealth and job creation through the generation and exploitation of intellectual property’

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Crafts</th>
<th>IT, Software & Computer Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising and Marketing</td>
<td>Design (Product, graphic & fashion)</td>
<td>Publishing</td>
</tr>
<tr>
<td>Museums, Galleries and Libraries</td>
<td>Music, Performing and Visual Arts</td>
<td>Film, TV, Video, Radio & Photo</td>
</tr>
</tbody>
</table>
Aspects of the creative process

- Pre-ideation/background research
- Ideation
- Implementation
- Evaluation/critique
- Iteration
- Project management

Key Reference
Frich, J., et al. (2019). Mapping the landscape of creativity support tools in HCI. In CHI 2019
Aspects of the creative process

Key Reference
Frich, J., et al. (2019). Mapping the landscape of creativity support tools in HCI. In CHI 2019
Creativity Support Tools (CSTs)

- Throughout history, creativity has been supported through the development of **tools**
- E.g., paintbrush, printing press, video camera
- Today, many technologies have been designed to support creative processes

- **Facilitating tasks**
 - e.g., computer-aided design tools

- **Automating processes**
 - e.g., data visualisation software

- **Extending capabilities**
 - e.g., digital graphic design software

Key Reference
Creativity Support Tools (CSTs)

https://miro.com/app/board/uXiVNXBdCx4=/?share_link_id=491936201613
AI/Machine Learning as a CST?

Facilitating Tasks

Example:
Helping architects and urban planners plan and develop early designs, drawing in data about cities and the environment

https://www.autodesk.co.uk/products/forma/
AI/Machine Learning as a CST?

Automating Processes

Example:
Framing shots from 4K video for video production

Key Reference
Wright, et al. (2020). AI in production: video analysis and machine learning for expanded live events coverage. SMPTE Motion Imaging Journal
AI/Machine Learning as a CST?

Extending Capabilities

Example:
Extracting and remixing audio for music production

https://www.youtube.com/watch?v=Klvwi1bP3Mk
2. Introduction to Large Language Models
A brief history of natural language processing (NLP)

- 1940s (WWII era) - start of machine translation
- 1950 - Alan Turing proposes Turing test for demonstrating whether a machine can demonstrate human intelligence: can the machine engage in a conversation with a human without being detected as a machine?
- From 1950s - split of NLP into symbolic (rule-based) and statistical (probabilistic) research
- From 1990s - most NLP methods became probabilistic
- From 2000s - rise of neural NLP (self-learning systems inspired by the architecture of the human brain)
- 2018 - OpenAI’s GPT-1: first large-scale unsupervised learning model for text
- 2020 - OpenAI’s GPT-3
- 2022 - OpenAI ChatGPT & DALL-E 2
- 2023 - GPT-4 & DALL-E 3
Student question!

• Does AI understand things the way we do?
How do LLMs work?

- GPT: Generative Pre-trained Transformer
- Transformer: Read huge datasets, find patterns in how words relate to one another, and use these patterns to predict what words should come next
- So… they don’t actually “understand”/“know” the meaning of their output
- Include randomness and variation in model (=not same output every time)
- Feedback from data annotators and users
How do LLMs work?

GPT-3 learns like a student studying from lots of books. It starts with a big "textbook" of internet text. It reads this book and looks for patterns in how words are used together. It learns what words often follow others. Then, it practices by trying to guess the missing words in sentences. Over time, it gets better at this guessing game. The more it reads and practices, the smarter it becomes. It's like learning a language by reading and talking a lot, except GPT-3 does it with computer "books" and lots of math.”

- ChatGPT
How do LLMs work?

DALL·E, developed by OpenAI, is a variant of the GPT-3 model designed to generate images from textual descriptions. It's trained on a large corpus of text from the internet, much like GPT-3, but it also uses a dataset of text-image pairs. This text-image dataset helps DALL·E learn how to generate images from textual descriptions, making it capable of understanding and creating visual content based on the text input it receives.

- ChatGPT
How do LLMs work?

DALL·E, developed by OpenAI, is a variant of the GPT-3 model designed to generate images from textual descriptions. It's trained on a large corpus of text from the internet, much like GPT-3, but it also uses a dataset of text-image pairs. This text-image dataset helps DALL·E learn how to generate images from textual descriptions, making it capable of understanding and creating visual content based on the text input it receives.

A multi-modal model (i.e., not just a language model)

- ChatGPT
3. Deep Dive into Large Language Models and Creative Processes
Current state of LLMs for creativity
Case studies today

1. LLMs for supporting interaction design (Tholander & Jonsson, 2023)
2. LLMs for supporting journalism (Petridis et al., 2023)
3. LLMs for supporting performance art (Jones et al., 2023)
Case Study 1: LLMs for Interaction Design Ideation

- Many creativity support tools exist for supporting ideation, but they are typically highly specialised, whereas LLM is more open-ended/generic, while providing access to domain-specific information
- Focus on using LLMs to support idea development and sketching in interaction design process
- AI as *co-creator* rather than *replacement* for human creativity

Key Reference
Case Study 1: LLMs for Interaction Design Ideation

- Use of OpenAI’s GPT-3 (text) and DALL-E 2 (image)
- Input: prompt presets, including information about the design brief and personas
- Output: Generation of design ideas, alternatives, scenarios, etc.

Key Reference

Persona A: Sigrid, 3 years old
Sigrid suffers from asthma and regularly visits the emergency. She is an active child and sometimes has a hard time sitting still in the waiting room. She likes playing with her parents’ mobile phones while waiting, but only for a limited time. Sigrid is curious about the other patients, especially other children, and does not understand why her parents will not let her play with them. She worries about meeting the doctor, due to previous bad experiences with needles and taking blood samples. Sigrid needs to be distracted, entertained, and calmed in the waiting room.
Case Study 1: LLMs for Interaction Design Ideation

Table 1: Design Activities performed during the workshop

<table>
<thead>
<tr>
<th>Design activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Group ideation (without AI)</td>
</tr>
<tr>
<td>2. Ideation with GPT-3, using three different presets</td>
</tr>
<tr>
<td>3. Select three concepts (without AI)</td>
</tr>
<tr>
<td>4. Design critique on concepts with GPT-3</td>
</tr>
<tr>
<td>5. Create design alternatives with GPT-3</td>
</tr>
<tr>
<td>6. Choose one concept (without AI)</td>
</tr>
<tr>
<td>7. Create concept visualisations using Dall-E</td>
</tr>
<tr>
<td>8. Create a mood-board using Dall-E</td>
</tr>
<tr>
<td>9. Create an implementation and testing plan using GPT-3</td>
</tr>
<tr>
<td>10. Create a scenario using GPT-3</td>
</tr>
</tbody>
</table>

Key Reference
Case Study 1: LLMs for Interaction Design Ideation

https://www.fluxspace.io/resources/the-4-ds-double-diamond-design-thinking-model
Case Study 1: LLMs for Interaction Design Ideation

https://www.fluxspace.io/resources/the-4-ds-double-diamond-design-thinking-model
Usefulness of LLMs in Design Ideation

- Saving time, by quickly mapping out a design space
- Identifying the most obvious ideas
- Finding potential flaws in various design challenges
- Generating complementary working materials such as scenarios and personas

Key Reference
Many Bad Ideas?

- Good at very rapidly generating design alternatives…but the ideas were not always good
- Often “simplistic” and didn’t always provide added value
- Sometimes the generated ideas were too similar
 - Does this risk of narrowing the designer’s perspective on a design challenge?
- Rather than supporting the identification of the best idea, system could be good for getting rid of ideas that are too obvious?

Key Reference
Deep vs. Shallow

• Not so good at providing deep ideas and developing them over time
• E.g., wasn’t good at elaborating/unpacking ideas more deeply, or remembering how concepts related to each other
• This is at odds with design’s goal of reformulating and evolving concepts over time and through reflection
• Tied to GPT3’s bad memory

Key Reference
The Tradeoffs of Polished Images

- Early-stage design sketches are often ambiguous/open-ended
- Images generated with DALL-E felt too “polished”
- No integration of text with visuals (although this is key in design processes)

Key Reference
Student question!

- What is "the interaction metaphor"?
Interaction metaphors

• Interaction metaphors help us know the purpose of a tool and how to use it (e.g., menu) - afford certain user expectations/behaviour

• **Conversation-based**: user might assume the system can understand or interpret - an issue here

• **Command-based**: user needs to formulate the right set of instructions to get the desired response - focus on prompt engineering, less natural

• **Search-based**: user needs to become skilled at creating the right search query, and browsing through the data

• **Chance-based**: system outputs with surprise and randomness rather than the best solution - can support creativity through the unexpected

Key Reference
Case Study: LLMs for Interaction Design

- Use of new tools can help us reflect on what’s important in a creative process
- In Interaction Design, idea generation is important
- But so is openness/ambiguity, slowness/reflection, and developing ideas over time
- LLMs & generative AI can be valuable to some respect, but are (currently) often at odds with these processes (but could be designed to support them in the future!)

Key Reference
Case Study 2: LLMs for Journalism

• Focus on journalistic angles: framings of an event or document through which a writer highlights particular themes and filters information, creating a particular perspective

• In early stage of writing process, journalists often ideate many angles and choose between them, but this can be quite time consuming

• RQ: How might LLMs support exploring alternative angles to a story?

Key Reference

Creative Context:
Publishing
Case Study: LLMs for Journalism

- Focus on **press releases**: official statements issued to media bodies that provide key information on a particular event/matter
- Key sources for journalists
- But often include biased claims
- How to think of interesting angles? E.g., about the implications of the event?

Key Reference

AngleKindling

- Tool co-designed with professional journalists (i.e., involving them throughout the design process)
- Uses OpenAI’s GPT-3 API
- Design goals based on journalists’ typical workflow:
 1. Summarise the press release into a set of main points, to help journalists quickly cut through the fluff and identify important details
 2. Provide angles that focus on elements of conflict and controversy
 3. Facilitate trust in the angles provided by the system, by grounding them in the source material
 4. Provide relevant historical background to contextualize and spark new angles.

Key Reference
AngleKindling sidebar

Main points of press release

- 1. The changes to the zoning code could lead to gentrification.
- 2. The housing plan might not do enough to help those who are struggling to afford their rent or homeownership.

Potential sources of controversy

- Challenges to zoning changes and displacement of low-income residents.

Potential negative outcomes

- Consequences for some neighborhoods.
- Negative impact on the environment.
- People might not want more housing.

Report Finds A City Incentive Is Not Producing Enough Affordable Housing

"Inclusionary zoning" is producing too few units for low-income New Yorkers, and developers should be required to build more of them, the report says. (08/16/2013)

Figure 1: AngleKindling’s interface displays the press release on the right and the article’s main points (a1) along with angle suggestions in the green sidebar on the left. The angle suggestions include potential controversies (a2), areas of investigation (b1), and negative outcomes (a4) that could arise. To help users trust these angles, they can select them (b3) to view related context from the press release (b5), and they can skim through up to five pieces of text with the related context button (b6). Finally, each angle is connected to a New York Times article from the past decade (starting in 2012) to provide historical background (b4). The title, lead paragraph, and publication date are provided for the article, as well as a link to the article itself, via the blue arrow.

Key Reference

Figure 2: To generate the angles and main points, AngleKindling first splits the press release into a set of sections, to fit the input length of the LLM (A). Each section is then inputted to a set of four LLM prompts, to (1) extract the main points of the section (2) ideate potential controversies, (3) identify areas to investigate, and (4) ideate potential negative outcomes (B). Each LLM prompt is few-shot and contains three examples of converting a section into a set of main points or angles. The examples are taken from the angles thought of by the journalists in the formative study. Finally, the angles ideated from each section are then merged together into a single list.
Without examples, output for angles and main points was sometimes biased or unhelpful.

E.g., Potential controversy - “The plan will fail”

Final design includes training examples that demonstrate what the output should look like.

Key Reference
Student question!

• What do designers need to pay attention to when providing and setting up prompts? How can we make it easier and more accurate for users to use prompts?
• Prompt engineering: techniques for structuring a prompt to receive a desirable response
• e.g., https://www.promptingguide.ai/
Supporting Trust

- Linking the generated angles to the source text: sentence similarity measure

Key Reference

Supporting Trust

- Linking the generated angles to the source text: sentence similarity measure
- Linking to articles that provide historical background - extracting keywords for the press release using the LLM, and then searching through the New York Times database using the NYT Developer API

Key Reference
Evaluation

1. Reduced the cognitive load of brainstorming angles with specific angles that easily inspired next steps
2. Provided angles that were useful for multiple, different types of stories (e.g., day-of stories and longer features)
3. Helped journalists quickly and deeply engage with the press release
4. Incorporated contextualized historical background

Key Reference
Questions

• Bias of LLM dataset - e.g., lots of articles online are click-bait/fear-mongering
 -> how to avoid generating angles that lean in this direction?
• How to support journalists’ reflection about the angles they tend to use?

Key Reference
Summary

- Nice example of developing a tool using LLMs alongside other techniques (e.g., search through archival news databases)
- "Zero-shot prompt" wasn’t very good - training on examples that were specific to the task were important
- Use of prompt engineering to support better responses
- Good consideration of the process and values of journalism, with a focus on trust

Key Reference
Case Study 3: LLMs and the Performing Arts

- Performing arts: music, drama, art, etc. performed to an audience
- **Endurance performance art:** "performer(s) endure a source of stress, hazard, or perform a repeated activity over a length of time or until a condition is met"

Creative Context:
Music, Performing and Visual Arts

Key Reference

Abramović sat silently beside museum visitors for 8 hours a day for three months

https://www.flickr.com/photos/sixteen-miles/4422517148/
LLMs and Performing Arts

RQ: What is it like for endurance performance artists to be directed by an LLM?

1. LLM used to create the “rules of engagement” - i.e., instructions for the performance
2. Performers free to reinterpret instructions to avoid physical/mental suffering
3. Performed the performances in their home studios and video recorded themselves
4. Authors interviewed the performers about their experiences

Key Reference
Title: Beans
GPT-3 Completion:
The performance starts with the artist sitting with a pillow on the floor and holding two tins of beans. The performance will end when the artist dies. All the time the artist holds the tins of beans and the pillow he will talk about his life, his thoughts, his dreams, his feelings, his hopes, his fears, his doubts, his disappointments, his loves, his hates and his fears. The artist will be given a one-hour break every three days. In the break he will try to eat the beans. The performance will go on till the artist dies. The artist will not be allowed to stop or to go back to the beginning. The performance will last as long as the artist lives.
Title: Program/Sleep/Stop/Cry/Shutdown GPT-3 Completion:
In space, there is no up or down.
You are not allowed to program.
You are not allowed to sleep.
You are not allowed to stop.
You are not allowed to shut down.
You are not allowed to speak.
You are not allowed to cry.
You are not allowed to sleep.
You are not allowed to sleep.
You are not allowed to stop.

Instructions for an Endurance Performance:

Chelsea Coon
LLMs can support creative interpretation

- Interpretation of the LLM response is part of the art
- “Weird” instructions
- e.g., what does it mean to “look with your ears”? Or to “sacrifice a cake by night”?

Key Reference

Figure 3: Still from Program/Sleep/Stop/Cry/Shutdown 2021. Artist: Chelsea Coon
LLMs lack understanding about the embodied human experience

- Demonstrated lack of understanding of human body
- Lacked consideration of bodily limits
- Performers had to push back against instructions
- LLMs potential for creative support seems different in embodied contexts, where a physical body is important for the creative practice

Key Reference
LLMs not a great co-creator for the performing arts

- LLM couldn’t be a collaborator - because it couldn’t provide feedback to the performer
- “It’s got no memory like it doesn’t know what it’s told you previously so it can’t offer you feedback on some interpretation that you’ve done based on its ideas . . . There’s no understanding between us.”
- “As collaboration is based on reciprocal understanding and sense-making, collaboration is also impossible to achieve with an algorithmic system which is not capable of understanding in a human way”

Key Reference
Synthesising across the cases

• Differences in contexts and values across industries/practices
 • *Interaction design*: divergent ideas that support a design brief, and are developed over time leading to a *useful solution*
 • *Journalism*: time efficiency, interesting angles on a story and *trust*
 • *Performance art*: developing ideas over time, but also uniqueness, thought-provocation, art, *interpretation*
LLMs as a co-creator?

- Co-creation and collaboration implies dialogue/feedback
- Creative practice often requires synthesis across different modalities (e.g., visual/text/tangible/embodied)
- Currently LLMs are limited in terms of the stages of the creative process in which they can support co-creativity (depending on the creative domain)
LLMs as a co-creator?

• When supporting an overarching creative process, rather than just, e.g., providing ideas, there are currently issues with context and memory with GPT-3
• This could change in the future
Opportunities for new tools

- Many opportunities for new tools and interfaces built using LLMs as an enabling technology (e.g., AngleKindling)
- Questions about what the appropriate interaction styles might be to support a given creative industry/process (e.g., Search-based? Chance-based? Integration of text with other modalities?)
Can you think of some other ideas of where else LLMs could support creative process?

(Miro: https://miro.com/app/board/uXjVNXBdCx4=/?share_link_id=492451751535)

<table>
<thead>
<tr>
<th>Crafts</th>
<th>IT, Software & Computer Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Publishing</td>
</tr>
<tr>
<td>Design (Product, graphic & fashion)</td>
<td>Film, TV, Video, Radio & Photo</td>
</tr>
<tr>
<td>Advertising and Marketing</td>
<td>Music, Performing and Visual Arts</td>
</tr>
</tbody>
</table>

- Iteration
- Project management
- Pre-ideation/background research
- Implementation
- Idea generation/ideation
- Evaluation/critique
4. LLMs: Issues and Questions
Issues and questions: Environment

• Computing is physical: requires physical equipment and energy
• Both training and use of LLMs has a huge carbon footprint

Key Reference
Issues and questions: Lack of “knowledge”

- LLMs are based on prediction and patterns - they don’t actually “know” concepts/facts
- “Contrary to how it may seem when we observe its output, an LM is a system for haphazardly stitching together sequences of linguistic form it has observed in its vast training data, according to probabilistic information about how they combine, but without any reference to meaning” (Bender et al.)
- How do we know whether to trust LLM output?

Key Reference
Issues and questions: Hallucinations

- LLMs have a tendency to "hallucinate" - make up facts that aren’t real
- Does this matter?
 - If you are looking for evidence, this is really bad!
 - If you are looking for inspiration and "truthfulness" doesn’t matter, this could be a benefit
Issues and questions: Training data

- Large, un-curated Internet-based training sets
- Size ≠ diversity and representative
- Who contributes to the Internet (in English)?
- Encode stereotypical and derogatory associations on gender, race, ethnicity and disability status
- Filtering out data linked to identity that might be considered obscene / “bad” by some people (e.g., LGBTQIA+ specific language)
- Can harm people at the margins / miss out important dialogues

Key Reference
Issues and questions: Copyright

- Datasets underlying generative AI models often include copyrighted material
- OpenAI claims "Under current law, training AI systems [such as its GPT models] constitutes fair use"
Issues and questions: Copyright

- But... original sources of AI-generated output difficult to trace
- Potential for generating copyright-violating material
- E.g., some artists have raised concerns that generative models may be copying their styles (and have not given consent for their works to be used)
Issues and questions: Creativity

- Student question: *Will AI ultimately limit our creativity? Why or why not?* (Teams)

Key Reference
Issues and questions: Creativity

• Generative AIs are good at generating new output
• But ultimately, they all reflect existing data rather than true novelty
• They lack the real-world experience, emotion and inspiration that characterises creative practice
• AI to augment creative processes rather than as replacement

Key Reference
Problematising a potential case

(Miro: https://miro.com/app/board/uXjVNXBdCx4=/?share_link_id=492451751535)
Considerations for using LLMs and AI in your own work

• You might be inspired to use LLMs/ AI in your own design process
• Do not use AI to simply generate a response to your assignment and submit this as your own work - this is regarded as academic misconduct (see [1] for UoE guidelines)
• Check terms of service for Generative AI tools - there may be limitations on how their output can be used
• **Always acknowledge the use of Generative AI and reference, reference, reference!**

Guiding questions

• What other tools might I use to support this part of the creative process? (Example: Flickr Commons vs. Midjourney)
• What are the limitations of Generative AI & the dangers of relying on it in this context (e.g., trust, bias, originality?)
• What are the relative benefits and risks/implications of using it? (e.g., better output vs. environmental implications, potential of bias)
Prep work for next week

1. Read the **INTRODUCTION** and the section called **REVIEWING BLOCKCHAIN** (second page) of this paper: https://doi.org/10.1145/3173574.3174032 - you can read the rest of this paper if you want as well, but the first two pages will give a basic intro to blockchain.

3. Watch this video: https://youtu.be/3hgU4gudHf8?si=8zqs2kcAz7880CZW

4. Choose ONE of these papers and read it!:
 - Oxfam smart donations: https://doi.org/10.1145/3441000.3441014
 - Gigbliss: https://doi.org/10.1145/3290605.3300617
 - BitBarista: https://doi.org/10.1145/3274439
 - CariCrop: https://doi.org/10.1145/3313831.3376364
 - GeoCoin: https://doi.org/10.1145/3173574.3173737
 - Programmable Donations: https://doi.org/10.1145/3290605.3300609
Further reading