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Outline of Lecture

Encoding and decoding in populations of neurons

Fisher Information

Noise correlations

Relationship between neural coding and behavioural performance

Impact of learning and attention on population codes



Representations in Populations of Neurons

Many neurons, each with a Noisy response of population to a
different preferred orientation single stimulus presentation
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Representations in Populations of Neurons

Many neurons, each with a Noisy response of population to a
different preferred orientation single stimulus presentation
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The Decoding Problem
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Why Decode?

Decoding has several purposes:

1)

2)

3)

It sheds light on fundamental scientific questions. How much information is there in a
population of neurons? Are perceptual limits dictated by neural coding or something
else? Does the brain encode and decode optimally or suboptimally?

It has biomedical applications. Brain machine interfaces, neural prosthetics, etc.

It’s something the brain does all the time. How does the brain make use of its own
activity patterns? For example, in order to use of visual information to make a motor
decision, motor brain areas must “decode” the activity of visual brain areas.



Decoding with Bayes Rule

Given a population of N neurons with responses 1 = [?“1, (15 T ?“N] ~ p(r|8)

How can we estimate the stimulus s from the response r?

(5)

Optimal decoder uses Bayes rule: p(S‘I‘) — p(I'|S) p_
P

(r)



Bayes Decoders

Bayes decoders are an “ideal observer” - they give the best possible readout.

We need to know likelihood p(r/s) and prior p(s) - hard to estimate from data! And perhaps
hard for the brain to learn/store.

To make a decision, need to convert to a point estimate, e.g.:  Sp77, = argmax [p(r|s)]

This is typically hard to do! A
Sprap = argmax |p(s|r)]

Alternative: use a simpler, but suboptimal decoder. (Maybe the brain does this too...)



The Winner Takes All Decoder

Decoded stimulus value = stimulus preference of neuron with highest firing rate.
Simple, but highly suboptimal!
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The Population Vector Decoder

A kind of weighted average of neurons’ stimulus preferences. Still suboptimal, but better!
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The Population Vector Decoder

A kind of weighted average of neurons’ stimulus preferences. Still suboptimal, but better!

Population Vector

7 = Z r; [cos s;, sin ;]
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Population Vector vs Maximum Likelihood

A

Population vector is

equivalent to fitting a
cosine to the population

response
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Maximum Likelihood Decoding: Independent Poisson Neurons

Gaussian Tuning Curves <nz> — fz(s) fZ(S) — Ae_(s_si)Q/(Zo-Q)



Maximum Likelihood Decoding: Independent Poisson Neurons

Gaussian Tuning Curves <nz> — fz(s) fz(S) — Ae_(s_si)Q/(Qo-Q)
Independent Poisson (f (S))n% e_f’i (3) o
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Maximum Likelihood Decoding: Independent Poisson Neurons
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Maximum Likelihood Decoding: Independent Poisson Neurons
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Maximum Likelihood Decoding: Independent Poisson Neurons

Gaussian Tuning Curves <nz> — fz(s) fz(s) — Ae_(s_si)Q/(Qo-Q)
Independent Poisson (fz (S))nz e_f?l (3) o
Spike Counts p(nz‘s) o p(ﬂ|8) — Hp(nz|3)
" i=1

N
Log likelihood log p(n|s) = Z (n;log(fi(s)) — fi(s) —logn;!]

=1
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Assume Zf@(s) = const ~ — Z 1, (S 20{27‘) + const




Maximum Likelihood Decoding via a Readout Network

Snp = argmax [p(r|s)

Finding the ML solution requires finding the maximum of a
complicated function — often requires numerical
optimisation methods.

One can build a recurrent network of neurons that performs
such an optimisation via gradient ascent (see figure).

Whether/how the brain decodes activity encoded in neural
populations is not known. The ML (or MAP) decoder gives

an upper bound on what the brain could do.
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Fisher Information

 How can we quantify the quality of a given population code?

* Imagine you record a population of neurons. You want to decode the stimulus s, and
you know their response statistics p(r/s).

 How accurately can you decode s from r? What will be the decoding error? How does it
depend on the tuning curves f(s)? What about the trial-to-trial variability?

* We use Fisher information to answer questions such as these. Fisher information
guantifies the performance of an optimal estimator of s fromr.



Fisher Information

* Fisher information is the expected curvature of the likelihood function about the true
stimulus s:

1o (s) = <(d10gd1;(r|s))2 > <d2 log;(r|5)>

* The expectation is taken over the distribution of responses r, for a fixed stimulus s. Fisher
information is therefore a local measure (mutual information is global)

* Intuitively, if the likelihood is very curved about s, then a small change in the stimulus s will
invoke a large change in response r, therefore enabling s to be well estimated from r

* This intuition is formalised by the Cramer-Rao lower bound



The Cramer-Rao Lower Bound

e Definition: an estimator has bias b(s) and variance b(S) — <§> — g

An estimator is unbiased if b(s) = O for all s.

* Theorem: the variance of any unbiased estimator satisfies ’UCL’I"(S) >

* Thus, Fisher information quantifies the precision of an optimal estimator.



Decoders and Fisher Information: Summary

e Stimuli can be decoded from the response of a population of neurons in many ways

* Optimal decoders follow Bayes rule. Maximum likelihood is optimal under a uniform
prior over stimuli

* Suboptimal decoders are often easier to use, but involve either bias or increased
decoding error (or both)

* Fisher information sets a lower bound on the variance of an unbiased estimator

* Thus, we can use Fisher information as a measure of the quality of stimulus encoding in
a population of neurons



Fisher Information: Tuning Curve + Noise Model

e Consider a single neuron with tuning curve r=f(s) and Poisson spike count n:

p(ns) = Poiss(n|f(s)T) = (f(s)T)"e 7 /)



Fisher Information: Tuning Curve + Noise Model

e Consider a single neuron with tuning curve r=f(s) and Poisson spike count n:

p(n|s) = Poiss(n|f(s)T) = (f(s)T)"e™ 7" /n!

 The Fisher information is:

1r(s) = ~( LD (L mtog((9)T) - ST —tognd) )



Fisher Information: Tuning Curve + Noise Model

e Consider a single neuron with tuning curve r=f(s) and Poisson spike count n:
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 The Fisher information is:
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Fisher Information: Tuning Curve + Noise Model

e Consider a single neuron with tuning curve r=f(s) and Poisson spike count n:

p(n|s) = Poiss(n|f(s)T) = (f(s)T)"e™ 7" /n!

 The Fisher information is:

1r(s) =~ 102;;(”'8) >= (2 0B (5)T) — J(5)T ~ log)
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Fisher Information: Tuning Curve + Noise Model

e Consider a single neuron with tuning curve r=f(s) and Poisson spike count n:

p(n|s) = Poiss(n|f(s)T) = (f(s)T)"e™ 7" /n!

 The Fisher information is:

Ir(s) = <d210§f2(”' )= (s log(£(6)T) — J(5)T — Tog)
=~(a ("7 ~707) )
<<n n fj Q—f%@T>>

_ f'(9)?
f(s)

/g (since (n) = f(s)T)



Fisher Information and Tuning Curves

* The Fisher information is highest at flanks of = -

tuning curve, and zero at the peak! N S TI;E?)

* Fisher information increases with T

* Fisher information increases with f’(s)"2,
decreases with f{s)

firing rate / Fisher info

* This is because Poisson has variance=mean. ‘ * ' .
In general, Fisher info is a signal-to-noise ‘ v '
ratio (mean”2/variance) '




Effects of Perceptual Learning on Tuning Curves

cell 1

. . . . b Il 4 Il 2 cell3 celld
* Monkeys were trained to discriminate 2 a7 +16°  +37°
between very similar orientations
* With practice, their performance improved
* The slope of tuning curves flanking the \
trained orientation increased °
5 3.0
* This suggests changes with learning 5 20
increase Fisher information g 15
O
t 1.0
°8’_ 0.5
* |Influential study, but some failed ®

. . . 47 40 -32 24 -16 -8 0 8 16 24 32 40 47
replications... still debated
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Schoups et al., 2001



Summary: Fisher Information in Single Neurons

* For single neurons, Fisher information depends on the slope of the tuning curve and the
response variability

* We derived the Fisher information for Poisson noise (see lecture notes for the Gaussian
noise case)

* For Gaussian tuning curves, Fisher information is highest at flanks and lowest at peak
(exercise: how would this look for a sigmoidal tuning curve?)

* Learning a fine-scale stimulus discrimination task seems to alter tuning curves to
enhance Fisher information

* How learning and attention influence neural responses and Fisher information is an
ongoing debate



Fisher Information for Independent Poisson Neurons

* Consider a population of independent Poisson neurons with rates r=f(s-si):

p(ni|s) = Poiss(n;|f(s — s:)T) = (f(s — s;)T)" e I 75T /!

p(als) = [ plnils)



Fisher Information for Independent Poisson Neurons

* Consider a population of independent Poisson neurons with rates r=f(s-si):

p(ni|s) = Poiss(n;|f(s — s:)T) = (f(s — s;)T)" e I 75T /!

= Hp(n@-IS)

* The population Fisher information is:

d? log p(n|s) d? lOOp n;ils f
o= (F_ (Pt

]

* Note: the Fisher information increases linearly with the number of neurons - unlimited
information is unrealistic (recall the Data Processing Inequality).



Dependence of Fisher Information on Tuning Curve Width

* In the limit of many neurons, assuming homogenous and dense tuning curves, we have:

e 00 Fhf.. . XD
Z f(s—si T — /)T/ fle—¢) ds’
9 — o4 o'e f(q il Sl)

* Where p is the density of neurons in stimulus space.



Dependence of Fisher Information on Tuning Curve Width

* In the limit of many neurons, assuming homogenous and dense tuning curves, we have:

e 00 Fhf.. . XD
Z f(s—si T — /)T/ fle—¢) ds’
q — o4 o'e f(q il S’)

* Where p is the density of neurons in stimulus space. For Gaussian tuning curves we have:

(5 — 87) = Ae—(s=30%/20)



Dependence of Fisher Information on Tuning Curve Width

* In the limit of many neurons, assuming homogenous and dense tuning curves, we have:

e 00 Fhf.. . XD
Z fi(s—si T — /)T/ fle—¢) ds’
q — o4 o'e f(q il S,)

* Where p is the density of neurons in stimulus space. For Gaussian tuning curves we have:

f(s — s8;) = Ae~(575:)°/(207)

TA N\ 2 2
— IF( ) P / (8 - 81)26—(8—8) /(20) dSl

0-4



Dependence of Fisher Information on Tuning Curve Width

* In the limit of many neurons, assuming homogenous and dense tuning curves, we have:

]‘ S — 8; /OO f'(s — .s’)2 '
E T T : s
(s — s; o s f(s—.s")(S

* Where p is the density of neurons in stimulus space. For Gaussian tuning curves we have:

f(s — ;) = Ae~(575:)°/(207)

TA I\ 2 2
— IF( ) P / (3 o 81)26—(8—8) /(20) dSI

0-4

- V27mpTA

o)

* So narrower tuning curves yield higher Fisher information!



Evidence for Tuning Curve Sharpening in Data

* Monkeys were trained to discriminate orientations.

For difficult decisions, monkeys paid closer attention Tuni
uning curve of neuron

Difficult

S

* Attention sharpened and amplified orientation tuning
curves in visual cortex (area V4)

8

* This should cause Fisher information to increase,
enabling better discrimination performance

Spikes/second

20 Easy -
» Reality is more complicated - attention also influences i
noise, and its hard to measure Fisher information o
directly. How learning and attention shape population 0° 45" 90" 13%°
codes is still debated Orientation

Spitzer et al., 1988



Narrow vs Broad Tuning Curves in Higher Dimensions

When s is 1-dimensional, narrow tuning

curves are best 910 . | | ! |
w
O
o
c
For 2-D stimuli s=[s1,s2] (e.g., 2 . ]
orientation+speed), Fisher information is 2
independent of tuning width 8
S
T | o
: , £ 10 _
For 3-D and higher, broader tuning curves S
are best GE)
2
L 10 | ] ] | ]
0 5 10 15 20 25

Other factors also matter, e.g. noise model,

) Average tuning width
correlations between neurons, etc.

Zhang and Sejnowski, 1999



Summary: Fisher Information in Independent Populations

We assumed a population of neurons with independent Poisson noise

For independent neurons, Fisher information of each neuron simply adds to give the
population information

This can lead to some implausible results, e.g. unlimited information with increasing N

For a large population of neurons with homogeneous Gaussian tuning curves,
information increases as tuning width decreases (for 1D stimuli...)

* This suggests that sharpening of tuning curves might increase information — whether
learning or attention cause tuning curve sharpening has been long debated



Fisher Information in Correlated Populations

* Assuming independent responses of neurons predicted an unrealistic scaling of Fisher
information with population size...

* But are responses of neurons really independent?

* How would correlations between responses of different neurons influence population
Fisher information?

* Take home message: 1) responses of neurons are actually correlated 2) this limits the
amount of information in the population 3) the influence of correlations on Fisher
information depends on the specific pattern of correlations



Noise Correlations

a Tuning curves
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Noise Correlations

* Responses of pairs of neurons may be
correlated over repeats of a fixed stimulus

* These correlations are called noise correlations

a Tuning curves
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Noise Correlations Influence Coding
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Noise Correlations Influence Coding
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Noise Correlations Influence Coding
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Noise Correlations in Neural Data

* Noise correlations in cortex tend to be weak but positive

e Suggested to limit information in populations

Correlated neuronal discharge
rate and its implications for
psychophysical performance

Ehud Zohary, Michael N. Shadien
& William T. Newsome™

Department of Neurobiology, Stanford University School of Medicine,
Stanford, California 94305, USA

SINGLE neurons can signal subtle changes in the sensory environ-
ment with surprising fidelity, often matching the perceptual sensi-
tivity of trained psychophysical observers'™'’. This similarity poses
an intriguing puzzle: why is psychophysical sensitivity not greater
than that of single neurons? Pooling responses across neurons
should average out noise in the activity of single cells, leading to
substantially improved psychophysical performance. If, however,
noise is correlated among these neurons, the beneficial effects of
pooling would be diminished'® "%, To assess correlation within a

Similar orientation preferences
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Fisher Information for Correlated Gaussian Neurons

* Model correlated population response as a multivariate normal distribution:

1
; V2mdet(3(s))

p(r|s) = N(f(s),2(s)) exp [—(r — f(s))TE_l(s)(r — f(s))]



Fisher Information for Correlated Gaussian Neurons

* Model correlated population response as a multivariate normal distribution:

1

p(r|s) = N(f(s), X(s)) = et (5(s)

exp [—(r — £(s)) TS (s)(r — £(s))]

1 2(s)\
* The Fisher informationis: Ip(s) ="' (s)X7"(s)f'(s) + §Tra,ce (El(s)d (S))




Fisher Information for Correlated Gaussian Neurons

* Model correlated population response as a multivariate normal distribution:

1
; V2mdet(3(s))

p(r|s) = N(f(s),2(s)) exp [—(r — (s (s)(r — f(s))]

2
* The Fisher informationis: [ (s) = £ (s)X 7' (s)f'(s) + %Tra,ce (El(s)dﬂ(s))

* The first term is called the linear Fisher information, and depends on the relationship
between the tuning curves and noise (it is a signal-to-noise ratio)



Fisher Information for Correlated Gaussian Neurons

* Model correlated population response as a multivariate normal distribution:

1
; V2mdet(3(s))

p(r|s) = N(f(s),2(s)) exp [—(r — (s (s)(r — f(s))]

2
* The Fisher informationis: [ (s) = £ (s)X 7' (s)f'(s) + %Tra,ce (21(5)‘12(3))

* The first term is called the linear Fisher information, and depends on the relationship
between the tuning curves and noise (it is a signal-to-noise ratio)

* The second term involves stimulus-dependent noise, and is less intuitive (but interesting
nonetheless!)



Information-Limiting Correlations

 What kinds of noise correlations are harmful for stimulus coding?

* Correlations which limit information take on a precise form: ».;; ~ f’(s)f’T(s)



Information-Limiting Correlations

 What kinds of noise correlations are harmful for stimulus coding?
* Correlations which limit information take on a precise form: ;7 ~ o f’(s)f’T(s)

* These correlations cause the population tuning curve to shift from side to side, which
looks like a change in stimulus to a decoder

a 00, b
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Moreno-Bote et al., 2014



Information-Limiting Correlations

* Adding information-limiting correlations causes population Fisher information to
decrease:

,_dr 1
1—|—€IF_€

¥ = N+ ef(s)f (s5) = Ip

* For example, information increases linearly with N for independent neurons, but
asymptotes to 1/epsilon when ILCs are added

* |LCs are hard to accurately estimate from data, so there is some debate on how strong
they are in real neural populations

Moreno-Bote et al., 2014



Does Fisher Information Determine Perceptual Performance?

Recent study: argued that neural coding is 100x more accurate than perceptual threshold!

High-precision coding in visual cortex

Graphical abstract

1. single neurons are noisy
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In brief

Large-scale recordings in mouse primary
visual cortex and higher order visual
areas uncover neural representations
more precise than behavioral
discrimination thresholds, suggesting
visual perception is limited by non-
sensory brain networks.



Does Fisher Information Determine Perceptual Performance?

Another recent study: argued that neural coding threshold = perceptual threshold...

Article

Fundamental bounds on the fidelity of
sensory cortical coding

Joan Savall'?%, Radostaw Chrapkiewicz'2, Jane Li**, Hongkui Zeng®, Surya Ganguli*= &
Mark J. Schnitzer'2%46=

https://doi.org/10.1038/s41586-020-2130-2  Oleg I. Rumyantsev'?**, Jéréme A. Lecoq'?*®, Oscar Hernandez'?, Yanping Zhang'2®

Received: 1 August 2017

Accepted: 21 January 2020

Published online: 18 March 2020

How the brain processes information accurately despite stochastic neural activityisa
M Check for updates longstanding question’. For instance, perception is fundamentally limited by the
information that the brain can extract from the noisy dynamics of sensory neurons.
Seminal experiments?*? suggest that correlated noise in sensory cortical neural
ensembles is what limits their coding accuracy*™®, although how correlated noise
affects neural codes remains debated” ™. Recent theoretical work proposes that how a
neural ensemble’s sensory tuning properties relate statistically to its correlated noise
patternsis agreater determinant of coding accuracy thanis absolute noise
strength™. However, without simultaneous recordings from thousands of cortical
neurons with shared sensory inputs, it is unknown whether correlated noise limits
coding fidelity. Here we present a16-beam, two-photon microscope to monitor
activity across the mouse primary visual cortex, along with analyses to quantify the
information conveyed by large neural ensembles. We found that, in the visual cortex,
correlated noise constrained signalling for ensembles with 800-1,300 neurons.




Summary: Fisher Information in Correlated Populations

We used a multivariate normal distribution to investigate the impact of correlations on
Fisher information

Noise correlations can strongly influence Fisher information

Noise correlations in cortex are typically weak but positive

Such noise correlations should cause information to saturate as population size increases,
resolving the unrealistic scaling of the independent population model

* There is debate about the extent to which noise correlations impact population
information, and the relationship between Fisher information and perceptual performance



Fisher Information: Limitations

Fisher information quantifies the information available to an optimal estimator, but it
is not clear that the brain uses an optimal estimator (indeed, the brain rarely needs to

“decode”)

Fisher information is parametric — we have to define stimulus features of interest.
Does the brain care about orientation for example?

Fisher information is a local measure. Sometimes global errors may occur, which
Fisher information is blind to (e.g., perceptual illusions)

lgnores mechanistic/physical constraints. Can get infinite information. In practice,
response statistics depend on connectivity and external inputs to a neural circuit, and
infinite information is impossible.



Fisher Information vs Mutual Information

* Mutual information is the reduction in uncertainty about s upon observing r

* Fisher information is the decoding error on s from r.

* Mutual information is a global measure over all s. Fisher information is local to a
given value of s.

* |In practice: Fisher information is much easier to compute and estimate from data,
so most calculations involving population codes use Fisher information.
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