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Outline of Lecture

• Encoding and decoding in populations of neurons

• Fisher Information

• Noise correlations

• Relationship between neural coding and behavioural performance

• Impact of learning and attention on population codes
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The Decoding Problem



Why Decode?

Decoding has several purposes: 

1) It sheds light on fundamental scientific questions. How much information is there in a 
population of neurons? Are perceptual limits dictated by neural coding or something 
else? Does the brain encode and decode optimally or suboptimally?

2) It has biomedical applications. Brain machine interfaces, neural prosthetics, etc.

3) It’s something the brain does all the time. How does the brain make use of its own 
activity patterns? For example, in order to use of visual information to make a motor 
decision, motor brain areas must “decode” the activity of visual brain areas. 



Decoding with Bayes Rule

Given a population of N neurons with responses

How can we estimate the stimulus s from the response r? 

Optimal decoder uses Bayes rule:



Bayes Decoders

Bayes decoders are an “ideal observer” - they give the best possible readout.

We need to know likelihood p(r|s) and prior p(s) - hard to estimate from data! And perhaps 
hard for the brain to learn/store.

To make a decision, need to convert to a point estimate, e.g.:
This is typically hard to do!

Alternative: use a simpler, but suboptimal decoder. (Maybe the brain does this too…)



The Winner Takes All Decoder

Decoded stimulus value = stimulus preference of neuron with highest firing rate. 
Simple, but highly suboptimal! 



The Population Vector Decoder
A kind of weighted average of neurons’ stimulus preferences. Still suboptimal, but better!
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Population Vector vs Maximum Likelihood

Population vector is 
equivalent to fitting a 
cosine to the population 
response

Maximum likelihood fits 
a template that matches 
the true response shape



Maximum Likelihood Decoding: Independent Poisson Neurons

Gaussian Tuning Curves
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Maximum Likelihood Decoding via a Readout Network

• Finding the ML solution requires finding the maximum of a 
complicated function – often requires numerical 
optimisation methods.

• One can build a recurrent network of neurons that performs 
such an optimisation via gradient ascent (see figure).

• Whether/how the brain decodes activity encoded in neural 
populations is not known. The ML (or MAP) decoder gives 
an upper bound on what the brain could do.



Fisher Information

• How can we quantify the quality of a given population code?

• Imagine you record a population of neurons. You want to decode the stimulus s, and 
you know their response statistics p(r|s).

• How accurately can you decode s from r? What will be the decoding error? How does it 
depend on the tuning curves f(s)? What about the trial-to-trial variability?

• We use Fisher information to answer questions such as these. Fisher information 
quantifies the performance of an optimal estimator of s from r.



Fisher Information

• Fisher information is the expected curvature of the likelihood function about the true 
stimulus s:

• The expectation is taken over the distribution of responses r, for a fixed stimulus s. Fisher 
information is therefore a local measure (mutual information is global)

• Intuitively, if the likelihood is very curved about s, then a small change in the stimulus s will 
invoke a large change in response r, therefore enabling s to be well estimated from r

• This intuition is formalised by the Cramer-Rao lower bound



The Cramer-Rao Lower Bound

• Definition: an estimator has bias b(s) and variance

An estimator is unbiased if b(s) = 0 for all s.

• Theorem: the variance of any unbiased estimator satisfies

• Thus, Fisher information quantifies the precision of an optimal estimator.



Decoders and Fisher Information: Summary

• Stimuli can be decoded from the response of a population of neurons in many ways

• Optimal decoders follow Bayes rule. Maximum likelihood is optimal under a uniform 
prior over stimuli

• Suboptimal decoders are often easier to use, but involve either bias or increased 
decoding error (or both)

• Fisher information sets a lower bound on the variance of an unbiased estimator

• Thus, we can use Fisher information as a measure of the quality of stimulus encoding in 
a population of neurons



Fisher Information: Tuning Curve + Noise Model

• Consider a single neuron with tuning curve r=f(s) and Poisson spike count n: 
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• Consider a single neuron with tuning curve r=f(s) and Poisson spike count n: 

• The Fisher information is:



Fisher Information and Tuning Curves

• The Fisher information is highest at flanks of 
tuning curve, and zero at the peak!

• Fisher information increases with T

• Fisher information increases with f’(s)^2, 
decreases with f(s)

• This is because Poisson has variance=mean. 
In general, Fisher info is a signal-to-noise 
ratio (mean^2/variance)



Effects of Perceptual Learning on Tuning Curves

• Monkeys were trained to discriminate 
between very similar orientations

• With practice, their performance improved 

• The slope of tuning curves flanking the 
trained orientation increased

• This suggests changes with learning 
increase Fisher information 

• Influential study, but some failed 
replications… still debated

Schoups et al., 2001



Summary: Fisher Information in Single Neurons

• For single neurons, Fisher information depends on the slope of the tuning curve and the 
response variability

• We derived the Fisher information for Poisson noise (see lecture notes for the Gaussian 
noise case)

• For Gaussian tuning curves, Fisher information is highest at flanks and lowest at peak 
(exercise: how would this look for a sigmoidal tuning curve?)

• Learning a fine-scale stimulus discrimination task seems to alter tuning curves to 
enhance Fisher information

• How learning and attention influence neural responses and Fisher information is an 
ongoing debate



Fisher Information for Independent Poisson Neurons

• Consider a population of independent Poisson neurons with rates r=f(s-si):



Fisher Information for Independent Poisson Neurons

• Consider a population of independent Poisson neurons with rates r=f(s-si):

• The population Fisher information is:

• Note: the Fisher information increases linearly with the number of neurons - unlimited 
information is unrealistic (recall the Data Processing Inequality).
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Dependence of Fisher Information on Tuning Curve Width

• In the limit of many neurons, assuming homogenous and dense tuning curves, we have:

• Where      is the density of neurons in stimulus space. For Gaussian tuning curves we have:

• So narrower tuning curves yield higher Fisher information!



Evidence for Tuning Curve Sharpening in Data

• Monkeys were trained to discriminate orientations. 
For difficult decisions, monkeys paid closer attention

• Attention sharpened and amplified orientation tuning 
curves in visual cortex (area V4)

• This should cause Fisher information to increase, 
enabling better discrimination performance

• Reality is more complicated - attention also influences 
noise, and its hard to measure Fisher information 
directly. How learning and attention shape population 
codes is still debated

Spitzer et al., 1988

Tuning curve of neuron



Narrow vs Broad Tuning Curves in Higher Dimensions

• When s is 1-dimensional, narrow tuning 
curves are best

• For 2-D stimuli s=[s1,s2] (e.g., 
orientation+speed), Fisher information is 
independent of tuning width 

• For 3-D and higher, broader tuning curves 
are best

• Other factors also matter, e.g. noise model, 
correlations between neurons, etc. 

Zhang and Sejnowski, 1999 



Summary: Fisher Information in Independent Populations

• We assumed a population of neurons with independent Poisson noise

• For independent neurons, Fisher information of each neuron simply adds to give the 
population information

• This can lead to some implausible results, e.g. unlimited information with increasing N

• For a large population of neurons with homogeneous Gaussian tuning curves, 
information increases as tuning width decreases (for 1D stimuli…)

• This suggests that sharpening of tuning curves might increase information – whether 
learning or attention cause tuning curve sharpening has been long debated



Fisher Information in Correlated Populations

• Assuming independent responses of neurons predicted an unrealistic scaling of Fisher 
information with population size…

• But are responses of neurons really independent?

• How would correlations between responses of different neurons influence population 
Fisher information?

• Take home message: 1) responses of neurons are actually correlated 2) this limits the 
amount of information in the population 3) the influence of correlations on Fisher 
information depends on the specific pattern of correlations
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correlated over repeats of a fixed stimulus

• These correlations are called noise correlations
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Noise Correlations in Neural Data

• Noise correlations in cortex tend to be weak but positive

• Suggested to limit information in populations

Similar orientation preferences

Different orientation preferences



Fisher Information for Correlated Gaussian Neurons

• Model correlated population response as a multivariate normal distribution:
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Fisher Information for Correlated Gaussian Neurons

• Model correlated population response as a multivariate normal distribution:

• The Fisher information is:

• The first term is called the linear Fisher information, and depends on the relationship 
between the tuning curves and noise (it is a signal-to-noise ratio)

• The second term involves stimulus-dependent noise, and is less intuitive (but interesting 
nonetheless!)



Information-Limiting Correlations

• What kinds of noise correlations are harmful for stimulus coding? 

• Correlations which limit information take on a precise form:



Information-Limiting Correlations

• What kinds of noise correlations are harmful for stimulus coding? 

• Correlations which limit information take on a precise form:

• These correlations cause the population tuning curve to shift from side to side, which 
looks like a change in stimulus to a decoder

Moreno-Bote et al., 2014



Information-Limiting Correlations

• Adding information-limiting correlations causes population Fisher information to 
decrease:

• For example, information increases linearly with N for independent neurons, but 
asymptotes to 1/epsilon when ILCs are added

• ILCs are hard to accurately estimate from data, so there is some debate on how strong 
they are in real neural populations

Moreno-Bote et al., 2014



Does Fisher Information Determine Perceptual Performance?

Recent study: argued that neural coding is 100x more accurate than perceptual threshold!



Does Fisher Information Determine Perceptual Performance?

Another recent study: argued that neural coding threshold = perceptual threshold…



Summary: Fisher Information in Correlated Populations

• We used a multivariate normal distribution to investigate the impact of correlations on 
Fisher information

• Noise correlations can strongly influence Fisher information

• Noise correlations in cortex are typically weak but positive

• Such noise correlations should cause information to saturate as population size increases, 
resolving the unrealistic scaling of the independent population model

• There is debate about the extent to which noise correlations impact population 
information, and the relationship between Fisher information and perceptual performance



Fisher Information: Limitations

• Fisher information quantifies the information available to an optimal estimator, but it 
is not clear that the brain uses an optimal estimator (indeed, the brain rarely needs to 
“decode”)

• Fisher information is parametric – we have to define stimulus features of interest. 
Does the brain care about orientation for example? 

• Fisher information is a local measure. Sometimes global errors may occur, which 
Fisher information is blind to (e.g., perceptual illusions)

• Ignores mechanistic/physical constraints. Can get infinite information. In practice, 
response statistics depend on connectivity and external inputs to a neural circuit, and 
infinite information is impossible.



Fisher Information vs Mutual Information

• Mutual information is the reduction in uncertainty about s upon observing r

• Fisher information is the decoding error on s from r.

• Mutual information is a global measure over all s. Fisher information is local to a 
given value of s.

• In practice: Fisher information is much easier to compute and estimate from data, 
so most calculations involving population codes use Fisher information.
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