
Networks of Neurons (1 of 2)

Angus Chadwick

School of Informatics, University of Edinburgh, UK

Computational Neuroscience (Lecture 11, 2023/2024)



Outline of Lecture

• Introduction to networks 

• Spiking and firing rate network models

• Feedforward and recurrent networks

• Excitatory-inhibitory networks

The “brainbow” (an image of a real network)



Outline of Lecture

• Introduction to networks 

• Spiking and firing rate network models

• Feedforward and recurrent networks

• Excitatory-inhibitory networks

The “brainbow” (an image of a real network)



Networks of Neurons

• Neurons in the brain connect to form networks

• Networks of neurons transform external inputs into a pattern of 
spiking output

• This input-output transformation may be viewed as a computation

• These computations are thought to be the neural basis for perception, 
decision making, memory, motor control, etc.

• In this lecture we focus on models of biological networks of neurons 
(in contrast to artificial neural networks)



Networks of the Brain



Networks Dynamics and Computation

Song et al., 2016



What do we want to know? (1 of 2)

• What are the properties of neural networks? (experimental/descriptive modelling 
question)

• How do networks generate their activity patterns and associated computations? 
(mechanistic question)

• Why are networks the way they are? What are problems do they solve and what 
constraints do they solve them under? (“teleological” question, ultimately appeals to 
evolution)



Marr’s 3 Levels of Analysis

We are mainly taking a “bottom-up” 
approach to understanding networks…

But remember Marr’s three levels
- we saw examples of “top-down” 
approaches with e.g. sparse coding, 
predictive coding, etc.



What do we want to know? (2 of 2)

• How do the connectivity and single-neuron properties relate to the global 
properties (dynamics, input-output transformation, etc.)?

• How do networks learn? What are the learning rules? What are the initial 
conditions?

• What aspects of biological networks can be distilled into artificial applications 
(AI, neural hardware, etc.)? What aspects can we ignore?

• When do networks go wrong? How does this relate to disease?



What Tools do we Use?

• Experiment: measurements of connectivity, neuronal activity, etc.

• Mathematical analysis: on simplified or reduced models (e.g., firing rate models, 
mean field theory)

• Numerical simulation: often of more biologically-plausible models

• Machine learning: e.g., by training an artificial neural network to solve a task and 
studying the learned network solution

• Neural data analysis tools: e.g., inference of network dynamics from recordings 
of neural activity



Outline of Lecture

• Introduction to networks 

• Spiking and firing rate network models

• Feedforward and recurrent networks

• Dynamics of recurrent networks 

• Excitatory-inhibitory networks
The “brainbow” (an image of a real network)



Spiking Network Models: An Example

• Consider a leaky integrate and fire neuron receiving inputs through a set of synapses:

Membrane potential dynamics:

Spike-reset rule:

Synaptic input current:



Spiking Network Models: An Example

• Consider a leaky integrate and fire neuron receiving inputs through a set of synapses:

• Now consider multiple such neurons coupled together via these synapses:

Membrane potential of neuron i:

Membrane potential dynamics:

Spike-reset rule:

Synaptic input current:



Spiking Network Models

• A spiking network consists of: 

1) A neuron model (e.g., Hodgkin-Huxley, leaky integrate and fire, etc.)

2) A synapse model (e.g., delta synapse, exponential synapse, etc.)

3) A set of parameters for the synaptic and membrane conductances, etc.

 

• Mathematically, a spiking network model is a set of coupled differential equations

• For example, a network of Hodgkin-Huxley neurons has 4N neuron equations, and O(N^2) 
synapse equations (depending on synapse model, could be more…)

• We typically make simplifications to reduce the number/complexity of equations



A Simple Spiking Network



A More Complex Spiking Network



• The leaky integrate and fire model with conductance-based synapses is:

Spiking Network Models – Current-Based Synapses



• The leaky integrate and fire model with conductance-based synapses is:

• We often simplify these synaptic currents by neglecting their voltage-dependence:

Spiking Network Models – Current-Based Synapses



• The leaky integrate and fire model with conductance-based synapses is:

• We often simplify these synaptic currents by neglecting their voltage-dependence:

• This approximation assumes that (V-Esyn) is roughly constant (Esyn is synaptic reversal 
potential: -80 mV for excitatory and 0 mV for inhibitory)

• These current-based synapse models are easier to work with analytically, and form the 
basis of further simplified firing-rate network models

Spiking Network Models – Current-Based Synapses



• Synapses are either excitatory or inhibitory (E or I)

• For any neuron, all of its outgoing synapses are the same type (E or I)

• This suggests an important simplification - we can write the synaptic conductance as:

• This reduces the number of synaptic conductance equations from N^2 to N

• This makes quite strong assumptions – in reality, half of synapses may fail on any given 
spike, synapses may release different amounts of neurotransmitter, etc.

Dales Law

conductance of 
synapse from j to i

fixed weight of j to i
(number of ion channels etc.)

timecourse of all outgoing 
synapses from neuron j



Firing Rate Network Models

Firing rate models abstract the spiking of a neuron into a firing rate (spikes/second)

We can replace our spiking network models with firing rate models using two key 
approximations:

1) We replace spikes with the time- or neuron-averaged firing rates

2) We model the inputs as an average current

Spiking Network [current based synapses] 
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Firing Rate Network Models

Firing rate models abstract the spiking of a neuron into a firing rate (spikes/second)

We can replace our spiking network models with firing rate models using two key 
approximations:

1) We replace spikes with the time- or neuron-averaged firing rates

2) We model the inputs as an average current

Spiking Network [current based synapses] 

Rate Approximation

Firing Rate Network

firing rate transfer function



Firing Rate Network Models

Neuron-Average
Time-Average

What do we mean by firing rate? What are we averaging over?

Two interpretations: average over neurons or time (or both). Usually we don’t specify which.



Firing Rate Network Models

• Advantages of firing rate network models: 

- Numerically efficient 

- Analytically tractable

- Can train to optimise cost functions (e.g., train RNNs via backprop)

- Simpler to visualise/understand

• Disadvantages: 

- Lose information about spike timing

- Assumptions required for averaging may be unrealistic 

- Sometimes a firing rate network behaves very differently when converted to a 
spiking network (e.g., may become unstable, or require fine-tuning of parameters)



Firing Rate Models: Assumptions

• When is it reasonable to approximate a neuron’s spike pattern in terms of its rate?

• We are ignoring spike patterns, e.g. synchrony, sequences, refractory periods, etc.

• Firing rate models make sense for neurons that fire asynchronously and irregularly 
(e.g., Poisson firing)

• This is often a reasonable approximation for neurons in cortex, but some brain 
regions or brain states have reliable temporal spike patterns that are ignored by 
firing rate models



Two Firing Rate Network Models

• There are two common variants of firing rate network models in the field

• We discussed the following model earlier:

• This would usually be rewritten in a simpler form:

= membrane potential

= “transfer function” 
      (the f-I curve)



Two Firing Rate Network Models

• There are two common variants of firing rate network models in the field

• We discussed the following model earlier:

• This would usually be rewritten in a simpler form:

• A very common alternative equation for a firing rate network is:

= membrane potential

= “transfer function” 
      (the f-I curve)

= “firing rate” 
(spikes per second)



Transfer Functions are f-I Curves

• Many choices of transfer function are available: rectified-linear, rectified-power law, 
sigmoid, rectified-tanh etc.

• Often a threshold-linear function is used, and sometimes even a purely linear function.

• Neurons can’t have negative firing rates, and their firing rates saturate for very strong input 
currents, so threshold-sigmoid transfer functions may be more realistic.

Rectified linear

Sigmoid

Rectified 
tanh



Summary: Network Models

• Spiking network models couple together neurons via synapses to capture spiking 
patterns of the network

• Firing rate models abstract spike patterns into a single firing rate for each neuron

• Firing rate models can be justified using various approximations, and are much simpler 
and easier to work with, but less realistic

• Usually, our goal is to create the simplest model that captures some phenomenon, not 
the most detailed model. Unless we are interested in spike timing, firing rate models 
are the default option
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Computations in Feedforward Networks

• Feedforward networks are those with no loops

• Feedforward networks are simple to analyse and can capture important properties of 
sensory systems (as we saw with convolutional neural networks)

• But they omit the recurrent and top-down (feedback) connections found in the brain, 
and are therefore unrealistic biologically



Feedforward Networks: Synfire Chains

• A synfire chain is a feedforward spiking network comprising multiple layers

• Spiking propagates in volleys from one layer to the next

• We can ask questions such as: will spiking propagate indefinitely or eventually die out? 
How does this depend on connectivity?

• This can offer a useful model of sensory processing (first ~100 ms after stimulus onset).



Feedforward vs Recurrent Processing

Initial feedforward sweep is like a 
synfire chain. We can already recognise 
and categorise objects with this.

Later, recurrent and top-down process 
take place, which are necessary for 
higher level “conscious” perception



Recurrent Networks: Fixed Points, Oscillations and Chaos

• Recurrently connected networks of neurons admit many kinds of emergent 
collective behaviour depending on their connectivity and transfer functions

• We can use dynamical systems theory to study these different kinds of behaviour

• Can exhibit fixed points (attractors), oscillations (limit cycles) or chaotic dynamics

• These dynamics confer different computational capabilities to the network

• Attractors may be useful for memory, oscillations may be useful for neuronal 
communication, chaos may be useful for high-capacity input discrimination



Network Dynamics: Fixed Points, Oscillations and Chaos

One Fixed Point (Point Attractor) Multiple Discrete Fixed Points A Continuum of Fixed Points (Line Attractor) 

Chaos (Lorenz Attractor)Stable Oscillation (Limit Cycle)



Chaos in Randomly Connected Spiking Networks



Summary: Feedforward and Recurrent Networks

• Two models of feedforward networks: deep neural networks and synfire chains

• Offer a good model for the multi-layer propagation of sensory activity following 
stimulus onset

• Recurrent networks are far richer due to their dynamics

• Dynamics can be used for computation, e.g. fixed points for memory, line 
attractors for evidence integration, etc.

• We will see examples of such networks later in the course 

    (ring network, Hopfield network, etc.)
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E-I Firing Rate Networks

• Some models consider a single population of cells whose outgoing synaptic weights may be 
positive or negative (violating Dale’s principle)

• Other models include separate E and I populations:

• For firing rate models, it is often assumed that we are averaging over both E and I neurons, 
so don’t need to treat E and I separately 

• For spiking models, E and I neurons are usually treated separately



Balanced Excitatory-Inhibitory Network Models



Balanced Excitatory-Inhibitory Network Models

• The theory of balanced network dynamics explains the irregular asynchronous regime of 
cortex

• Network generates this regime even when inputs are constant!

• Network has sparse but strong synapses. Take limit of many neurons and solve analytically 
(uses tools from statistical physics)

• Behaviour of network: 

- excitatory and inhibitory inputs to each neuron are strong and balanced, and almost cancel 
one another

- Fluctuations in external input are rapidly cancelled by recurrent inhibition 

- Spiking is generated by fluctuations in E-I balance 



Evidence for E-I Balance

• E-I balance has been confirmed in multiple experiments. A successful theoretical 
prediction! Below shows how E and I inputs to a neuron track each other in time.

Inhibitory current into neuron (measured in V1)

Excitatory current into neuron (measured in V1)



Other Dynamical Regimes

Synchronous Regular Fast Oscillations

• Other dynamical regimes are possible, and have been studied theoretically

Synch. Irreg.Asynch. Irreg.



Asynchronous Activity and E-I Balance

• Two states in cortex: 

1) balanced regime, characterised by irregular, asynchronous, Poisson spiking 

2) synchronous regime, characterised by global, synchronous fluctuations in network 
activity

Cortical state is modulated by attention, alertness, etc.

Harris et al., 2011



Inhibitory Stabilization and Paradoxical Inhibition

• Networks in the brain are often “inhibitory-stabilised” 
(recurrent excitation causes unstable positive feedback, but 
inhibition stabilises this)

• Inhibitory-stabilised networks exhibit a counter-intuitive 
behaviour called “paradoxical inhibition” 



Inhibitory Stabilization and Paradoxical Inhibition

• Networks in the brain are often “inhibitory-stabilised” 
(recurrent excitation causes unstable positive feedback, but 
inhibition stabilises this)

• Inhibitory-stabilised networks exhibit a counter-intuitive 
behaviour called “paradoxical inhibition” 

• Positive external current input to interneurons causes their 
firing rate to decrease



Inhibitory Stabilization and Paradoxical Inhibition

Sanzeni et al., 2020Tsodyks et al., 1997 Sadeh et al., 2017

Theory - Simulation - Experiment



Summary: E-I Networks

• Networks in the brain are made of excitatory and inhibitory neurons

• When coupled together, these can generate interesting dynamical behaviour, including:

- Balanced network dynamics (with asynchronous irregular firing)

- Synchronised dynamics (with large collective fluctuations)

- Paradoxical inhibition (where positive input to I cells decreases their firing rate)

• There are many open questions, including: 

- how tightly/loosely balanced are cortical networks? 

- What are the roles of different types of inhibitory neurons? 

- How does specific (non-random) connectivity lead to computations? 

- How do learning and attention influence networks?



Summary of Neural Networks (Lecture 1)

• Networks can be used to perform computations

• Two main classes of network – feedforward and recurrent

• Two mains strategies for modelling biological networks – spiking and firing rate

• Recurrent networks exhibit rich and complex dynamics

• During alert brain states, cortical networks are characterised by E-I balance, 
asynchronous activity, and inhibitory-stabilized dynamics

• Next time: structured networks and their computations
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