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Networks of Neurons

e Neurons in the brain connect to form networks

* Networks of neurons transform external inputs into a pattern of
spiking output

* This input-output transformation may be viewed as a computation

* These computations are thought to be the neural basis for perception,
decision making, memory, motor control, etc.

* |n this lecture we focus on models of biological networks of neurons
(in contrast to artificial neural networks)
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What do we want to know? (1 of 2)

* What are the properties of neural networks? (experimental/descriptive modelling
guestion)

* How do networks generate their activity patterns and associated computations?
(mechanistic question)

* Why are networks the way they are? What are problems do they solve and what
constraints do they solve them under? (“teleological” question, ultimately appeals to
evolution)



Marr’s 3 Levels of Analysis

"...trying to understand perception by studying only neurons is like
trying to understand bird flight by studying only feathers. It cannot
be done" - David Marr (1982/2010, p. 27)

We are mainly taking a “bottom-up”
approach to understanding networks...

But remember Marr’s three levels

- we saw examples of “top-down”
approaches with e.g. sparse coding,
predictive coding, etc.




What do we want to know? (2 of 2)

* How do the connectivity and single-neuron properties relate to the global
properties (dynamics, input-output transformation, etc.)?

 How do networks /learn? What are the learning rules? What are the initial
conditions?

 What aspects of biological networks can be distilled into artificial applications
(Al, neural hardware, etc.)? What aspects can we ignore?

* When do networks go wrong? How does this relate to disease?



What Tools do we Use?

Experiment: measurements of connectivity, neuronal activity, etc.

Mathematical analysis: on simplified or reduced models (e.g., firing rate models,
mean field theory)

Numerical simulation: often of more biologically-plausible models

Machine learning: e.g., by training an artificial neural network to solve a task and
studying the learned network solution

Neural data analysis tools: e.g., inference of network dynamics from recordings
of neural activity



Outline of Lecture

Introduction to networks
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Feedforward and recurrent networks
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The “brainbow” (an image of a real network)



Spiking Network Models: An Example

* Consider a leaky integrate and fire neuron receiving inputs through a set of synapses:

av
Membrane potential dynamics: Tm% — —(V — Em) Sy‘n( )/gm
Spike-reset rule: if V(t) > Vihreshold, Set V(t) = Vieset

synapse

Synaptic input current: Syn E gsynjj ) — Esyn,j)



Spiking Network Models: An Example

* Consider a leaky integrate and fire neuron receiving inputs through a set of synapses:

dV
Membrane potential dynamics: TmE — _(V — Em) syn( )/gm
Spike-reset rule: if V(t) > Vihreshold, Set V(t) = Vieset
synapse
Synaptic input current: Syn z stn,g t) — Esyn,j)

* Now consider multiple such neurons coupled together via these synapses:

dV;
Membrane potential of neuron i: Tm’i'dif = —(V;, — Em,-i) — Z 9syn,ij (t)(vz — Esyn,“ij)/gm..'i



Spiking Network Models

* A spiking network consists of:

1) A neuron model (e.g., Hodgkin-Huxley, leaky integrate and fire, etc.)

2) A synapse model (e.g., delta synapse, exponential synapse, etc.)

3) A set of parameters for the synaptic and membrane conductances, etc.

 Mathematically, a spiking network model is a set of coupled differential equations

* For example, a network of Hodgkin-Huxley neurons has 4N neuron equations, and O(N*2)
synapse equations (depending on synapse model, could be more...)

* We typically make simplifications to reduce the number/complexity of equations



A Simple Spiking Network
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Figure 5.20 Two synaptically coupled integrate-and-fire neurons. (A) Excitatory
synapses (Es = 0 mV) produce an alternating, out-of-phase pattern of firing. (B) In-
hibitory synapses (Es = -80 mV) produce synchronous firing. Both model neurons
have Ef =-70mV, Vi, =-54 mV, Vieget =-80mV, 1y =20 ms, rm g, = 0.05, Pmax =1,
Rmle =25 mV, and 74 = 10 ms.



A More Complex Spiking Network
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Spiking Network Models — Current-Based Synapses

* The leaky integrate and fire model with conductance-based synapses is:

dV;
Tm,i at — _(I/? — Em,?) — ngyn,ij (t)(‘/z — E-Sy?’l,ij)/gm,i




Spiking Network Models — Current-Based Synapses

* The leaky integrate and fire model with conductance-based synapses is:

dV;
Tm,i at — _(I/? — Em,?) — ngyn,ij (t)(‘/z — E-Sy?’l,ij)/gm,i

* We often simplify these synaptic currents by neglecting their voltage-dependence:

dV;
Toi gy = (Vi = Emi) + Y wijgsynii(t)  wij = —((Vi) = Esyn.ij)/9m,i

J71



Spiking Network Models — Current-Based Synapses

* The leaky integrate and fire model with conductance-based synapses is:

dV;
Tm,i at — _(I/? — Em,?) — ngyn,ij (t)(‘/z — E-Sy?’l,ij)/gm,i

ji

* We often simplify these synaptic currents by neglecting their voltage-dependence:

dV;
Toi gy = (Vi = Emi) + Y wijgsynii(t)  wij = —((Vi) = Esyn.ij)/9m,i

J7F1
* This approximation assumes that (V-Esyn) is roughly constant (Esyn is synaptic reversal
potential: -80 mV for excitatory and 0 mV for inhibitory)

* These current-based synapse models are easier to work with analytically, and form the
basis of further simplified firing-rate network models



Dales Law

* Synapses are either excitatory or inhibitory (E or 1)
* For any neuron, all of its outgoing synapses are the same type (E or |)

* This suggests an important simplification - we can write the synaptic conductance as:

fixed weight of jto i timecourse of all outgoing
conductance of (number of ion channels etc.) synapses from neuron j
synapse fromjtoi 1

Gsyn.ij(t) = Gsyn,ijGsyn,j (1)

* This reduces the number of synaptic conductance equations from N*2 to N

* This makes quite strong assumptions — in reality, half of synapses may fail on any given
spike, synapses may release different amounts of neurotransmitter, etc.



Firing Rate Network Models

Firing rate models abstract the spiking of a neuron into a firing rate (spikes/second)

We can replace our spiking network models with firing rate models using two key
approximations:

1) We replace spikes with the time- or neuron-averaged firing rates

2) We model the inputs as an average current

Spiking Network [current based synapses]

= —(Vi—Enq)+ Z WijGsyn,ij (L) + Leawt,i(t)/Gm,i
J

dV;
Tm,i
"odt




Firing Rate Network Models

Firing rate models abstract the spiking of a neuron into a firing rate (spikes/second)

We can replace our spiking network models with firing rate models using two key
approximations:

1) We replace spikes with the time- or neuron-averaged firing rates

2) We model the inputs as an average current
Spiking Network [current based synapses]

= —(Vi—Enq)+ Z WijGsyn,ij (L) + Leawt,i(t)/Gm,i

] firing rate transzr function

aV;
Tm.,i
"odt

Rate Approximation Jsyn,ij (t) — <gsyn,ij (i)> X Gsyn,ij T (t) ~ gsyn,ijcb(‘/j)



Firing Rate Network Models

Firing rate models abstract the spiking of a neuron into a firing rate (spikes/second)

We can replace our spiking network models with firing rate models using two key
approximations:

1) We replace spikes with the time- or neuron-averaged firing rates

2) We model the inputs as an average current
Spiking Network [current based synapses]

= —(Vi—Enq)+ Z WijGsyn,ij (L) + Leawt,i(t)/Gm,i

] firing rate transzr function

dV;
Tm,i
"odt

Rate Approximation Jsyn,ij (t) — <gsyn,ij (i)> X Gsyn,ij T (t) ~ gsyn,ijcb(‘/j)

dV; _
Firing Rate Network Tm’iﬁ = — (Vi — Enq)+ Z Wi (Vi) + Leat i(t))Gm.i
7



Firing Rate Network Models

What do we mean by firing rate? What are we averaging over?

Two interpretations: average over neurons or time (or both). Usually we don’t specify which.

Time-Average
Neuron-Average
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Firing Rate Network Models

Advantages of firing rate network models:

Numerically efficient

Analytically tractable

Can train to optimise cost functions (e.g., train RNNs via backprop)

Simpler to visualise/understand

Disadvantages:
Lose information about spike timing
Assumptions required for averaging may be unrealistic

Sometimes a firing rate network behaves very differently when converted to a
spiking network (e.g., may become unstable, or require fine-tuning of parameters)



Firing Rate Models: Assumptions

 When is it reasonable to approximate a neuron’s spike pattern in terms of its rate?

* We are ignoring spike patterns, e.g. synchrony, sequences, refractory periods, etc.

* Firing rate models make sense for neurons that fire asynchronously and irregularly
(e.g., Poisson firing)

* This is often a reasonable approximation for neurons in cortex, but some brain
regions or brain states have reliable temporal spike patterns that are ignored by
firing rate models



Two Firing Rate Network Models

* There are two common variants of firing rate network models in the field

* We discussed the following model earlier:

dV - -
Ton.i dt (V Em @ 1 Z wzg@ _|_ Iext z( )/gmﬂ_ ‘/3 = membrane potential

= “transfer function”

* This would usually be rewritten in a simpler form: (the -l curve)

dvi _
- = —(Vi— En +wa¢> ) 4 u;(t)

Tm



Two Firing Rate Network Models

* There are two common variants of firing rate network models in the field

* We discussed the following model earlier:

dV

Toni—— 7 (V Em @ 1 Z wzg@ _|_ Iext z( )/gmﬂ_ ‘/3 = membrane potential

= “transfer function”

* This would usually be rewritten in a simpler form: (the -l curve)

dvi _
- = —(Vi— En +wa¢> ) 4 u;(t)

Tm

* A very common alternative equation for a firing rate network is:

d?"i
Tm dt (spikes per second)

= —r;, + ¢ Z w;; 75 + w;(t) F'q = "firing rate”



Transfer Functions are f-1 Curves

* Many choices of transfer function are available: rectified-linear, rectified-power law,
sigmoid, rectified-tanh etc.

e Often a threshold-linear function is used, and sometimes even a purely linear function.

* Neurons can’t have negative firing rates, and their firing rates saturate for very strong input
currents, so threshold-sigmoid transfer functions may be more realistic.
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Summary: Network Models

Spiking network models couple together neurons via synapses to capture spiking
patterns of the network

Firing rate models abstract spike patterns into a single firing rate for each neuron

Firing rate models can be justified using various approximations, and are much simpler
and easier to work with, but less realistic

Usually, our goal is to create the simplest model that captures some phenomenon, not
the most detailed model. Unless we are interested in spike timing, firing rate models
are the default option
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Computations in Feedforward Networks

* Feedforward networks are those with no loops

* Feedforward networks are simple to analyse and can capture important properties of
sensory systems (as we saw with convolutional neural networks)

e But they omit the recurrent and top-down (feedback) connections found in the brain,
and are therefore unrealistic biologically
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Feedforward Networks: Synfire Chains
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* A synfire chain is a feedforward spiking network comprising multiple layers
* Spiking propagates in volleys from one layer to the next

* We can ask questions such as: will spiking propagate indefinitely or eventually die out?
How does this depend on connectivity?

* This can offer a useful model of sensory processing (first ~100 ms after stimulus onset).



Feedforward vs Recurrent Processing

Box 2.The feedforward sweep

<40 ms <50 ms

Initial feedforward sweep is like a
synfire chain. We can already recognise
and categorise objects with this.

Later, recurrent and top-down process
take place, which are necessary for
higher level “conscious” perception

k(,% OrbFr \(ﬂ\;\
b= S TE2 — N
PGa/IPa TE1  EntRh
<80 ms <115 ms

REVIEW

The distinct modes of vision offered by
feedforward and recurrent processing

Victor A.F. Lamme and Pieter R. Roelfsema

An analysis of response latencies shows that when an image is presented to the visual system,
neuronal activity is rapidly routed to a large number of visual areas. However, the activity of cortical
neurons is not determined by this feedforward sweep alone. Horizontal connections within areas,
and higher areas providing feedback, result in dynamic changes in tuning.The differences between
feedforward and recurrent processing could prove pivotal in understanding the distinctions
between attentive and pre-attentive vision as well as between conscious and unconscious vision.
The feedforward sweep rapidly groups feature constellations that are hardwired in the visual brain,
yet is probably incapable of yielding visual awareness; in many cases, recurrent processing is
necessary before the features of an object are attentively grouped and the stimulus can enter

consciousness.
Trends Newrosci. (2000) 23, 571-579



Recurrent Networks: Fixed Points, Oscillations and Chaos

Recurrently connected networks of neurons admit many kinds of emergent
collective behaviour depending on their connectivity and transfer functions

We can use dynamical systems theory to study these different kinds of behaviour

Can exhibit fixed points (attractors), oscillations (limit cycles) or chaotic dynamics

These dynamics confer different computational capabilities to the network

» Attractors may be useful for memory, oscillations may be useful for neuronal
communication, chaos may be useful for high-capacity input discrimination



Network Dynamics: Fixed Points, Oscillations and Chaos

A Continuum of Fixed Points (Line Attractor)
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Chaos in Randomly Connected Spiking Networks

VOLUME 61, NUMBER 3

PHYSICAL REVIEW LETTERS

18 JuLy 1988

Chaos in Random Neural Networks

H. Sum.polinsky'“} and A. Crisanti
AT&T Bell Laboratories, Murray Hill, New Jersey 07974, and
Racah Insiitute of Physics, The Hebrew University, 91904 Jerusalem, Israel™

and

H. J. Sommers “’

Fachbereich Physik, Universitdat-Gesamthochschule Essen, D-4300 Essen, Federal Republic of Germany

(Received 30 March 1988)

A continuous-time dynamic model of a network of N nonlinear elements interacting via random asym-
metric couplings is studicd. A sclf-consistent mean-field theory, exact in the N — e limit, predicts a
transition from a stationary phase to a chaotic phase occurring at a critical value of the gain parameter.

The autocorrelations of the chaotic flow as well as the maximal Lyapunov exponent are calculated.

PHYSICAL REVIEW E 84, 051908 (2011)

Beyond the edge of chaos: Amplification and temporal integration by recurrent networks

in the chaotic regime

T. Toyoizumi'*" and L. F. Abbolt'
' Department of Neuroscience and Department of Physiology and Cellular Biophysics, Columbia University,
New York, New York 10032, L/SA
*RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
(Received 24 January 201 1: revised manuscript received 29 September 2011; published 14 November 2011)

Randomly connected networks of neurons exhibit a transition from fixed-point to chaotic activity as the
variance of their synaptic connection strengths is increased. In this study, we analytically evaluate how well
a small external input can be reconstructed from a sparse linear readout of network activity. At the transition
point, known as the edge of chaos, networks display a number of desirable features, including large gains and
integration times. Away from this edge, in the nonchaotic regime that has been the focus of most models and
studhes, gains and integration times fall off dramatically, which implies that parameters must be fine tuned with
considerable precision il high performance is required. Here we show that, near the edge, decoding performance
is characlerized by a critical exponent that takes a dillerent value on the lwo sides. As a resull, when the network
units have an odd saturating nonlinear response function, the falloff in gains and integration times is much slower
on the chaotic side of the transition. This means that, under appropriate conditions, good performance can be
achieved with less fine tuning beyond the edge, within the chaotic regime.

LETTER Communicated by Peter Latham

Real-Time Computation at the Edge of Chaos in Recurrent
Neural Networks

Nils Bertschinger

nilsb@iqi.tugraz.at

Institute for Theoretical Computer Science, Technische Universitaet Graz,
A-8010 Graz, Austria

Thomas Natschliager
Thomas.Natschlaeger@scch.at
Software Compentence Center Hagenberg, A-4232 Hagenberg, Austria

Depending on the connectivity, recurrent networks of simple computa-
tional units can show very different types of dynamics, ranging from
totally ordered to chaotic. We analyze how the type of dynamics (ordered
or chaotic) exhibited by randomly connected networks of threshold gates
driven by a time-varying input signal depends on the parameters describ-
ing the distribution of the connectivity matrix. In particular, we calculate
the critical boundary in parameter space where the transition from or-
dered to chaotic dynamics takes place. Employing a recently developed
framework for analyzing real-time computations, we show that only near
the critical boundary can such networks perform complex computations
on time series. Hence, this result strongly supports conjectures that dy-
namical systems that are capable of doing complex computational tasks
should operate near the edge of chaos, that is, the transition from ordered
to chaotic dynamics.



Summary: Feedforward and Recurrent Networks

Two models of feedforward networks: deep neural networks and synfire chains

Offer a good model for the multi-layer propagation of sensory activity following
stimulus onset

Recurrent networks are far richer due to their dynamics

Dynamics can be used for computation, e.g. fixed points for memory, line
attractors for evidence integration, etc.

We will see examples of such networks later in the course

(ring network, Hopfield network, etc.)
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E-1 Firing Rate Networks

 Some models consider a single population of cells whose outgoing synaptic weights may be
positive or negative (violating Dale’s principle)

e Other models include separate E and | populations:

drt
e = rF 4+ o WEERE - S W 4 uf)
J J
B (S WIERE S W )
dt ¢ j ij ' : ij ' z

* For firing rate models, it is often assumed that we are averaging over both E and | neurons,
so don’t need to treat E and | separately

* For spiking models, E and | neurons are usually treated separately



Balanced Excitatory-Inhibitory Network Models

Chaos in Neuronal Networks with Balanced
Excitatory and Inhibitory Activity

C. van Vreeswijk and H. Sompolinsky

Neurons in the cortex of behaving animals show temporally irregular spiking patterns.
The origin of this irregularity and its implications for neural processing are unknown. The
hypothesis that the temporal variability in the firing of a neuron results from an approx-
imate balance between its excitatory and inhibitory inputs was investigated theoretically.
Such a balance emerges naturally in large networks of excitatory and inhibitory neuronal
populations that are sparsely connected by relatively strong synapses. The resulting
state is characterized by strongly chaotic dynamics, even when the external inputs to the
network are constant in time. Such a network exhibits a linear response, despite the
highly nonlinear dynamics of single neurons, and reacts to changing external stimuli on
time scales much smaller than the integration time constant of a single neuron.
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Balanced Excitatory-Inhibitory Network Models

* The theory of balanced network dynamics explains the irregular asynchronous regime of
cortex

* Network generates this regime even when inputs are constant!

* Network has sparse but strong synapses. Take limit of many neurons and solve analytically
(uses tools from statistical physics)

e Behaviour of network:

- excitatory and inhibitory inputs to each neuron are strong and balanced, and almost cancel
one another

- Fluctuations in external input are rapidly cancelled by recurrent inhibition

- Spiking is generated by fluctuations in E-I balance



Evidence for E-l Balance

* E-| balance has been confirmed in multiple experiments. A successful theoretical
prediction! Below shows how E and | inputs to a neuron track each other in time.
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Instantaneous correlation of
Neocortical Network Activity In Vivo Is Generated througha  excitation and inhibition during

Dynamic Balance of Excitation and Inhibition ongoing and sensory-evoked

Bilal Haider, Alvaro Duque, Andrea R. Hasenstaub, and David A. McCormick
Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510 Michael Okun & Ilan Lampl



Other Dynamical Regimes

Other dynamical regimes are possible, and have been studied theoretically

Dynamics of Sparsely Connected Networks of Excitatory
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Asynchronous Activity and E-I Balance

* Two states in cortex:
1) balanced regime, characterised by irregular, asynchronous, Poisson spiking

2) synchronous regime, characterised by global, synchronous fluctuations in network
activity

Cortical state is modulated by attention, alertness, etc.
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Inhibitory Stabilization and Paradoxical Inhibition

Paradoxical Effects of External Modulation of
Inhibitory Interneurons

Misha V. Tsodyks,'-2:3 William E. Skaggs,? Terrence J. Sejnowski,>* and Bruce L. McNaughton?

1Department of Neurobiology, Weizmann Institute, Rehovot 76100, Israel, ?Arizona Research Laboratories, Division of

Neural Systems, Memory and Aging, University of Arizona, Tucson, Arizona 85724, 3Howard Hughes Medical Institute,

Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
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* Networks in the brain are often “inhibitory-stabilised”
(recurrent excitation causes unstable positive feedback, but
inhibition stabilises this)

* Inhibitory-stabilised networks exhibit a counter-intuitive
behaviour called “paradoxical inhibition”
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Inhibitory Stabilization and Paradoxical Inhibition
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Inhibitory Stabilization and Paradoxical Inhibition
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Summary: E-I Networks

Networks in the brain are made of excitatory and inhibitory neurons

When coupled together, these can generate interesting dynamical behaviour, including:

Balanced network dynamics (with asynchronous irregular firing)

Synchronised dynamics (with large collective fluctuations)

Paradoxical inhibition (where positive input to | cells decreases their firing rate)

* There are many open questions, including:

how tightly/loosely balanced are cortical networks?

What are the roles of different types of inhibitory neurons?

How does specific (non-random) connectivity lead to computations?

How do learning and attention influence networks?



Summary of Neural Networks (Lecture 1)

* Networks can be used to perform computations

* Two main classes of network — feedforward and recurrent

Two mains strategies for modelling biological networks — spiking and firing rate

Recurrent networks exhibit rich and complex dynamics

During alert brain states, cortical networks are characterised by E-| balance,
asynchronous activity, and inhibitory-stabilized dynamics

Next time: structured networks and their computations
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