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Outline of Lecture

• Cortical networks

• Models for orientation tuning (the ring network)

• State space perspective

• Linear Stability Analysis

• Stability of E-I networks

Drawings of cortical layers by Ramon y Cajal
(Golgi [left, middle] and Nissl staining methods)
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Is There a “Canonical” Cortical Computation?



Random vs Structured Networks

• Connections in cortex look fairly random, but also exhibit structure

• For example, connections depend on cell type (excitatory vs inhibitory) and on stimulus 
preference

• How do networks with random vs structured connections behave?

• Random networks are already interesting: chaos, E-I balance, reservoir computing, etc.

• Structured connectivity causes the network to respond in specific ways to specific input 
patterns, which can be the basis for useful computations



Connections in Visual Cortex

• Connections from a local region of tree 
shrew V1 (black dots)

• Locally unspecific (random?), but long 
range connections are selective to 
orientation preference 



Connections in Visual Cortex

• Neurons with similar preferred 
orientations have stronger connections. 

Harris and Mrsic-Flogel (2013)
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Connections in Visual Cortex

• Neurons with similar preferred 
orientations have stronger connections. 

• This seems to be true for both topographic 
and salt and pepper maps

• Inhibitory neurons seem to have much 
broader/less selective connections in local 
circuit (but some debate)

• How do these local V1 connections 
influence orientation tuning?

Harris and Mrsic-Flogel (2013)



Feedforward Models for Orientation Tuning

• Hubel and Wiesel proposed an elegant conceptual model for the emergence of orientation tuning: 
summation of spatially shifted on-off receptive fields

• A weighted sum of thalamic (LGN) feedforward inputs can produce an elongated receptive field which 
responds selectively to stimulus orientation



Recurrent Models for Orientation Tuning: The Ring Network

• An alternative hypothesis: connectivity between V1 neurons selectively amplifies feedforward inputs that are 
only weakly tuned to orientation

• Continuous network of V1 neurons labelled by preferred orientation (on a ring)

• Recurrent connectivity W depends only on difference in preferred orientations

• Inputs u depend only on difference between preferred orientation and stimulus orientation

• The model has rotational symmetry (this enables us to solve it analytically)
Ben-Yishai et al., 1995

Thalamic Input



The Ben-Yishai Recurrent Ring Model: Two Regimes 
in

p
u

t

• Varying inputs and connectivity yields either:

   -  Hubel and Wiesel regime (strongly tuned inputs and 
weak/no recurrent connections) 

   -  a novel “marginal” regime (strongly tuned recurrent 
weights and weakly tuned inputs)

Marginal
Hubel&
Wiesel

Marginal

Hubel&Wiesel



Tuning Curves in the Two Regimes

• Both regimes generate orientation tuning curves

• In the Hubel and Wiesel regime, responses are determined only by feedforward 
input and threshold nonlinearity

• In the marginal regime: 

 - shape of tuning curves becomes independent of the shape of inputs

- weakly tuned inputs are selectively amplified into strongly tuned outputs by 
recurrent connectivity

- a tuned response bump can spontaneously form even when feedforward inputs 
have no tuning at all! (called “spontaneous symmetry breaking” in physics)



Hubel and Wiesel Regime

Marginal Regime

Intermediate Regime

Thalamic Input

Dynamics of the Ben-Yishai Model – Stimulus Rotation
Change of response 

following stimulus rotation



Contrast-Invariant Orientation Tuning
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Which Regime is V1 in?

• There has been much debate about the contribution of feedforward and recurrent 
mechanisms to orientation tuning

• We now know that feedforward input has roughly the same degree of orientation tuning 
as recurrent input (ruling out a full-on marginal regime) [Lien and Scanziani, 2013]

• But recurrent connections do amplify tuning curves, and may be important for many 
things, such as: contrast-invariant tuning curves, attentional modulation, interactions 
between simultaneously presented stimuli, etc.

• Spontaneous bump formation is more relevant to theories of working memory and 
navigation than to V1 orientation tuning



Ring Networks Beyond the Visual Cortex

Neurons are Physically Arranged on a Ring 
in the Fly Brain!

A Conceptual Model for Rodent V1
 (functionally arranged on a ring) 

Orientation map

Mouse V1

Synaptic Connectivity





A Ring in the Fly Brain

Schematic of fly brain ring

Image of real fly brain ring



A Ring in the Fly Brain

Fly in virtual reality

Activity of fly ring in virtual reality



Summary: The Ring Network

• The ring network assumes that connectivity depends only on difference in preferred 
orientation (angle around ring)

• This is consistent with connectivity in V1: 

  - excitatory neurons connect preferentially to neighbours with similar orientation 
preference to their own

 - inhibitory neurons seem to connect randomly connect to their neighbours (but debated…)

- this would imply local excitation and long range inhibition around the ring

• The ring network can be in different regimes (Hubel and Wiesel and “marginal”)

• The ring model has since found applications in many domains outside of V1 (e.g., 
navigation, working memory, etc.)



Dynamics in State Space

It is useful to rewrite the network dynamics in vector notation:



Dynamics in State Space

It is useful to rewrite the network dynamics in vector notation:

This allows us to visualise the network 
dynamics in state space: 

- A pattern of firing rates r defines a 
point in an N-dimensional space.

 
- Network dynamics generate 

trajectories r(t) in N-dimensional 
space. 



Computation Through Dynamics

Dynamics in state space can be a 
substrate for computations.

Figure shows a toy example (3-bit 
memory) – the network 
remembers the state of three 
inputs (+1 or -1), storing them in 
8 fixed points in its state space.



Fixed Points

For constant input Iext, the fixed points of the network are defined as:

Fixed points form the basis of various computations in recurrent networks. 

For example, a fixed point may represent a decision or a memory stored in the network. A line 
of fixed points may store a continuous valued variable (e.g. the spatial location of an object). 



Linear Dynamical Systems

A common choice of transfer function is threshold-linear:
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Linear Dynamical Systems

A common choice of transfer function is threshold-linear:

If all neurons are above the threshold    , this reduces to a purely linear model:

Rearranging terms gives a simpler form:

Such linear dynamical systems are a popular model due to their analytical tractability. 



Linear Dynamical Systems: Fixed Points and Stability

For constant input u, we can find the fixed points of an LDS analytically:



Linear Dynamical Systems: Fixed Points and Stability

For constant input u, we can find the fixed points of an LDS analytically:

If the network is initialised at r(0), activity evolves over time as:

Where        are the eigenvectors of A, are the eigenvalues, and       are constants related to 
the initial condition r(0).  



Linear Dynamical Systems: Fixed Points and Stability

We can now perform a stability analysis on the LDS: a fixed point is stable if network 
activity is attracted towards the fixed point, and unstable if activity is repelled away from 
the fixed point.

We have the solution: 

Thus, if all eigenvalues of A have negative real part, the fixed point is stable; if any 
eigenvalue has positive real part, the fixed point is unstable.

Networks of neurons in the brain ought to be stable. For example, epileptic seizures may 
arise due to unstable network dynamics.



Linear Dynamical Systems: Fixed Points and Stability

When do both eigenvalues have 
negative real part? 

-   Det(A)<0 if each has a different 
sign (saddle point)
- Det(A)>0 if both have same sign 
- If Det(A)>0 and Trace(A)<0, both 

are negative 

For 2D systems, dynamics around fixed point can be visualised as a phase plane. Stability 
depends on the trace and determinant of the dynamics matrix A. 



Stability of Linear E-I Networks
Consider a linear network comprised of an E population and an I population:

What are the conditions for the network to be stable?



Stability of Linear E-I Networks
Consider a linear network comprised of an E population and an I population:

What are the conditions for the network to be stable?

We need both eigenvalues to have negative real part…

As we just saw, this means that we need:



Stability of Linear E-I Networks

To determine conditions for stability, we need to do some algebra:
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Stability of Linear E-I Networks

To determine conditions for stability, we need to do some algebra:

Thus, stability requires: 1) E-E loops are sufficiently weak 2) E-I-E loops are strong enough to 
counteract E-E loops. But (surprisingly) also depends on strength of I-I loops…

Some aspects are intuitive (role of E-E and E-I-E) while others are less intuitive (role of I-I)



Summary: Linear Networks and E-I Stability

• We can approximate nonlinear networks as linear ones 

• This is especially valid for threshold-linear neurons, but also works for other 
nonlinearities (via linearisation of nonlinear system)

• Linearisation allows us to perform a stability analysis around a fixed point

• Stability analysis of linear E-I model revealed conditions for network stability – 
inhibition must be strong enough to cancel runaway excitation

• A similar analyses can be applied to analyse paradoxical inhibition in inhibitory-
stabilised networks



Linear Networks: Advantages and Limitations

• Linear networks have many advantages: we can solve them analytically and we can fit 
them to data to infer dynamics from neural recordings

• Real neurons in the brain are nonlinear – what do linear networks miss?

• Linear networks can’t exhibit: chaos, multiple separate fixed points

• Linear networks can generate a line of fixed points, but this requires an eigenvalue with 
real part exactly zero – nonlinear networks don’t require such fine tuning

• Many important insights have been generated using linear networks, but they are too 
limited for some applications



Summary of Neural Networks (Lecture 2)

• Cortical connectivity is structured, not random

• Structured connectivity can be useful for computations

• The ring network incorporates properties of connectivity from visual cortex

• Feedforward and recurrent mechanisms for orientation tuning can both emerge in 
the ring model

• State space analysis allows tools from dynamical systems and linear algebra to be 
applied to understand neural circuit computation

• Linear stability analysis reveals the conditions under which inhibition can stabilise E-I 
networks


	Slide 1: Networks of Neurons (2 of 2)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

