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Outline of Lecture

Overview of memory

The neurobiological basis of memory

The Hopfield network (associative memory)

Spatial memory and cognitive maps

Working memory

Cells in the hippocampus of a mouse representing a fear
memory (in red). Josselyn and Tonegawa, Science (2020).



What is Memory?

Psychologists classify memory in several ways: short vs long term, implicit vs explicit, etc.

Explicit memory (episodic/declarative/semantic) — conscious recollection of events and facts
(“what did | have for lunch yesterday?”, “where is the Eiffel Tower?”) [timescale — days, months,
years]

Implicit/procedural memory — knowledge used unconsciously, e.g., how to tie your shoes
[timescale — long term]

Associative memory — learn and remember relationships between items (e.g., a persons name)
[timescale — long term] (a form of explicit memory!)

Working memory — store items in mind for short period (e.g., a phone number or shopping list)
[timescale — seconds]
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How are Memories Stored in the Brain?

* Very short term memories are maintained dynamically in distributed network activity patterns

(“reverberatory” or persistent activity — first postulated by Karl Lashley [1930s] and Donald Hebb
[1940s])

» Storage of long-term memories requires structural changes, especially synaptic plasticity which
forms an “engram” or memory trace

* Memory involves orchestrated interaction between multiple brain areas, most notably
hippocampus and cortex



Donald Hebb — Hebbian Learning and Cell Assemblies (1948)

* “When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells

iring B, is increased”
/

* More commonly put: “Cells which fire together, wire together” i
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Donald Hebb — Hebbian Learning and Cell Assemblies (1948)

» Coactivation of a group of cells causes connections to form/strengthen (Hebbian learning)
e Subsequent activation of a subset of those cells will reactivate the whole group (a “cell assembly”)

* A mechanism for forming and retrieving associations/memories

Banana
Assembly
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Patient H.M. (1927-2008)

Had his hippocampus bilaterally removed in 1953 (to treat epilepsy)

Suffered permanent anterograde amnesia — could not form new
episodic/declarative/semantic memories

Relatively intact cognition otherwise — procedural memory, working
memory, previously stored episodic memory etc.

Conclusion: hippocampus is required for storing new episodic
memories?

Hippocampus

“Hippocampus” means seahorse!






Standard Model of Systems Consolidation

Memory initially formed in
hippocampus

(one-shot learning)

Memory slowly transferred from
hippocampus to cortex (during sleep)

Eve nt ua | |yl memo rl es b ecome Cell ensembles contributing to...
hippocampus-independent

Recently encoded neocortical part of a representation ./. Associated pre-existing representation

O®

‘ ./° Recently encoded hippocampal part of a representation o © Unrelated pre-existing representation

Explains why H.M. could recall previous
memories but not store new ones



The Hopfield Network (1982)

« How many memories can be stored in a network? How should the synaptic weights be set?

* The Hopfield network comprises N binary neurons (i.e., with states s =-1 or +1) connected via a

symmetric coupling matrix J:

(—|‘1 if Zj J?;ij(t — 1) > 0;

\—1 if Zj Jiij(t — 1) < 92



The Hopfield Network (1982)

« How many memories can be stored in a network? How should the synaptic weights be set?

* The Hopfield network comprises N binary neurons (i.e., with states s =-1 or +1) connected via a
symmetric coupling matrix J:
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* We can define the following “Energy function” (or Lyapunov function) for the Hopfield network:

E = —% Zj’ijsisj + 2839@

1<J ()



The Hopfield Network (1982)

« How many memories can be stored in a network? How should the synaptic weights be set?

* The Hopfield network comprises N binary neurons (i.e., with states s =-1 or +1) connected via a
symmetric coupling matrix J:

(—|‘1 if Zj J?;ij(t — 1) > 0;
\—1 if Zj Jiij(t — 1) S 92

* We can define the following “Energy function” (or Lyapunov function) for the Hopfield network:

attractor basin

E = —% Zj’ijsisj + 2839@

1<J ()
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* Updates always decrease E — this means that the activity s will
“«— attractor state

eventually reach a stable local minimum (a “memory” of the network) Sy




Hebbian Learning in the Hopfield Network

* If we start with a pattern that is sufficiently close to a local minimum, the network will converge to that
pattern (pattern completion)

K
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* As we store more patterns, their basins of attraction will become smaller causing catastrophic interference

* There is also the creation of spurious patterns — extra local minima that don’t correspond to any stored
pattern. The more patterns we store, the more spurious patterns appear.



Hebbian Learning in the Hopfield Network

Convergence to stored pattern

attractor basin

~<— attractor state

) Final (35)



Associative Memory Recall




Hopfield Network Summary

1)

2)

3)

4)

5)

6)

A model for associative memory

Patterns stored in couplings between neurons

Uses a Hebbian learning rule

These couplings cause activity to converge to a stored pattern (a memory)

Storing too many memories causes interference

A model for pattern completion/memory in hippocampus



The Hippocampus — Memory or Cognitive Map?

Hippocampus

The
Hippocampus

asa
Cognitive Map

John O’Keefe and

Lynn Nadel



Cell Types in the Cognitive Map

A B
(A) CA1 place cells (8) MEC grid cells

HIPPOCAMPUS ENTORHINAL CORTEX

(Place cell location) (Grid cell location)

9.9 Hz 7.1 Hz

Figure 2: When a rat walks freely in a recording arena, place cells in the hippocampus fire only when it is at certain locations in the environment.
The location that causes each place cell to fire is known as its place field. In the entorhinal cortex, a major input region to the hippocampus,
grid cells create hexagonal patterns covering the local area.

Place cells — fire when the animal visits one location Aot
Grid cells — fire when the animal visits a set of locations

Head direction cells — fire when animal faces a particular direction

Many others spatial cell types...






Cell Types in the Cognitive Map

John O'Keefe

John O’Keefe discovered, in 1971, that certain nerve cells

in the brain were activated when a rat assumed a particular
. place in the environment. Other nerve cells were activated at
“ other places. He proposed that these “place cells” build up
N A an inner map of the environment. Place cells are located in a
' part of the brain called the hippocampus.

Fig. 1

May-Britt Moser and
Edvard |. Moser

4

May-Britt och Edvard I. Moser discovered in 2005 that other nerve cells in *\ s

L .
a nearby part of the brain, the entorhinal cortex, were activated when the rat | 57
passed certain locations. Together, these locations formed a hexagonal grid, i ' > : j : 3 ;
each “grid cell” reacting in a unique spatial pattern. Collectively, these gridcells "% =

form a coordinate system that allows for spatial navigation.



Attractor Models for Place Cells and Grid Cells

Ring attractor (e.g., head direction cells)




Attractor Models for Place Cells and Grid Cells

Ring attractor (e.g., head direction cells)

Sheet Attractor (e.g., place cells)




Attractor Models for Place Cells and Grid Cells

Ring attractor (e.g., head direction cells) Torus attractor (e.g., grid cells)

Sheet Attractor (e.g., place cells)




Spatial Memory Summary

1) Hippocampus contains representations of space/location

2) Can be understood as a form of spatial memory (memory for different places,
contexts, etc.)

3) The exact role of hippocampus in navigation, memory, etc. is still debated



Working Memory
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Persistent activity in the prefrontal
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Working Memory
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Working Memory
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Working Memory

TRENDS in Cognitive Sciences Vol.7 No.9 September 2003
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Working Memory — Ben-Yishai Ring Model

* Recall the Ben-Yishai model for orientation tuning in V1

Stimulus (cue)
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Working Memory — Ben-Yishai Ring Model

* Recall the Ben-Yishai model for orientation tuning in V1
* When the stimulus is removed, the network maintains the activity through recurrent dynamics (an attractor)
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Working Memory — Dynamic Coding Models

(A) Schematic example temporal profiles (B) State-space representation
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Working Memory — Activity-Silent Models
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Working Memory — Activity-Silent Models

Synaptic model of WM
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Working Memory — Activity-Silent Models

Probe input

Synaptic model of WM
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Working Memory Summary

1)

2)

3)

4)

Involves persistent activity in neural circuits during delay period

Various brain regions involved, including prefrontal cortex

Three major hypotheses: attractor models, dynamic coding models, activity-silent
models

Probably involves a combination of all three mechanisms



Summary of Lecture

Various kinds of memory — short vs long, implicit vs explicit etc.

Memory is linked to persistent activity (network dynamics) and synaptic plasticity

Long term memory involves temporary storage in hippocampus and then transfer to
cortex (standard model)

Spatial memory and navigation are well-studied as a model system (in hippocampus and
related brain systems)

Working memory involves persistent activity in recurrent networks



Further Reading (optional)

e Dayan and Abbott (Chapter 8)

e Gerstner (Chapter 17,19)

* Eichenbaum — The Cognitive Neuroscience of Memory
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