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Outline of Lecture

* Introduction to neural coding

* Information theory (surprise, entropy, and mutual information)

* The data processing inequality

* The efficient coding hypothesis

* Applications: filtering in the retina, histogram equalisation in the blowfly visual system



Neural Coding

The big picture
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Neural Coding: Encoding vs Decoding

Activity in the brain
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Neural Coding: Decoding vs Information Theory

| | i Decoding
y (apple)

/

/ IIIIIII[

7
&

theory (n bits)
Il | I

® S

Nature Reviews | Neuroscience



Neural Coding: Spike Timing vs Rate

How is information represented by neurons? Number of spikes? Spike times?
Relationships between spikes of different neurons?
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Coding vs Computation

Is coding a relevant metaphor for the brain? A
message ) --. .. ..."--,.
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Abstract B
“Neural coding” is a popular metaphor in neuroscience, where objective properties of the di I | || |
world are communicated to the brain in the form of spikes. Here I argue that this metaphor encoding i
is often inappropriate and misleading. First, when neurons are said to encode experimental ' I l H l ﬁ 7 nZ
signal decoding JIN\

* Coding: How is information “represented” in the brain?

(relationship between world and neural activity)

* Computation: How is information transformed, manipulated, and combined in the
brain to achieve a particular goal?



Information Theory

Developed by Shannon for his masters
thesis (!)

Answers question such as:

- What is the optimal code for sending
messages down a noisy channel?

- How can signals be compressed to
transmit them more efficiently?

- What are the fundamental limits at
which signals can be encoded,
transmitted, and decoded?

The Bell System Technical Journal

Vol. XXVII July, 1948 No. 3

A Mathematical Theory of Communication
By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM

and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist' and Hartley*
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a sel of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized copsiderably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance

! Nyquist, H., **Certain Factors Affecting Telegraph Speed,”” Bell System Technical Jouwr-
nal, April 1924, p. 324; “*Certain Topics in Telegraph Transmission Theory,” 4. 1. E. E
Trans., v. 47, April 1928, p. 617

* Hartley, R. V. L., “Transmission of Information,” Bell System Technical Jowrnal, July
1928, p. 545
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Claude Shannon



Surprise

You observe draws x from a probability distribution p(x). How surprised are you at a given outcome?
To quantify this, we define a measure h(p(x)), called surprise, that satisfies two properties.

Property 1: The surprise of an observation is a decreasing function of the probability of that
observation (i.e., unlikely observations are more surprising).

Property 2: The surprise of two independent observations is the sum of the surprises of the
individual observations:

h(p(z)p(y)) = h(p(x)) + h(p(y))



Surprise

You observe draws x from a probability distribution p(x). How surprised are you at a given outcome?
To quantify this, we define a measure h(p(x)), called surprise, that satisfies two properties.

Property 1: The surprise of an observation is a decreasing function of the probability of that
observation (i.e., unlikely observations are more surprising).

Property 2: The surprise of two independent observations is the sum of the surprises of the
individual observations:

h(p(z)p(y)) = h(p(x)) + h(p(y))

The unigue™* function satisfying these two properties turns out to be:
h(p(z)) = —log p(z)

*unique up to a constant factor, i.e. a change of base of the logarithm



Entropy

The entropy of the distribution p(x) is the expected surprise:
H = (h(p(z))) = — ) _p(x)logp(x)
X

In other words, entropy quantifies how surprising observations are on average.

Note 1: Surprise pertains to individual observations, entropy to the whole distribution.

Note 2: The sum implies a discrete distribution — it can be replaced with an integral for
continuous distributions, but there are some subtleties involved



Entropy: Example

Consider the binomial distribution. It has two outcomes, x+ and x-, with p(.’l’}_) = 1 — p(.’L‘_|_)

The entropyis: H — —(1 — p(;c+)) log(l — p(a;’_|_)) — p(a’;+) logp(a?+)



Entropy: Example

Consider the binomial distribution. It has two outcomes, x+ and x-, with p(a;‘_) = 1 — p(.’L‘_|_)

The entropyis: H — —(1 — p(;c+)) log(l — p(aj+)) — p(a’:+) logp(a:+)

1.0 —
e.g., a biased coin flip - entropy is low when the 0.8 —
coin lands heads every time, and high —
when heads/tails are 50/50. %} 0.6+

- 0.4

Remember, entropy is average surprise — 0.2
in the biased case, one outcome may be 0.0 | | I | |
very surprising, but the average surprise is lower 00 02 04 06 08 1.0



Mutual Information

How much information does one variable convey about another? For example, how much
information does a neural response convey about a stimulus?

Mutual information quantifies how much of the variation in the response distribution is explained
by variation in the stimulus distribution.



Mutual Information

How much information does one variable convey about another? For example, how much
information does a neural response convey about a stimulus?

Mutual information quantifies how much of the variation in the response distribution is explained
by variation in the stimulus distribution.

Definition: given two random variables x and y the mutual information /(x;y) is:
I(z;y) = H(ply)) — (Hp(ylr)))
N, e’ N— —

total entropy  conditional entropy

The total entropy quantifies the variation in y, the conditional entropy quantifies the variation in y
for fixed x. The difference is the variation in y that is coupled to variation in x.



Mutual Information

Mutual information can be rewritten multiple ways:

I(z;y) = H(ply)) — (H(pylr)))

total entropy  conditional entropy

== py)logp(y) + (O plylz)logp(y|z))

Y



Mutual Information

Mutual information can be rewritten multiple ways:

I(z;y) = H(p(y) — (H(p(ylr)))

total entropy  conditional entropy

== p)logp(y) + (> plylz)logp(y|z))

= —> p(¥)logp(y) + Y p(x)p(yl)log p(y|x)

The last line shows that I(y;x) = I(x;y) — mutual information is symmetric.



Mutual Information: Limiting Cases

 If xandy are independent, mutual information is zero:

p(ylz) =ply) = I(x;y) =0



Mutual Information: Limiting Cases

 If xandy are independent, mutual information is zero:
plylz) =ply) = I(z;y) =0

* Ifyis perfectly predictable given x, i.e. there is deterministic one-to-one mapping, then the
mutual information is equal to the entropy of the stimulus distribution:

;

pol) =10 VO = 1wy = Hp) = Hp(w)
Y7 Ya

\

 These examples align with intuition —independent variables do not convey information about one
another, whereas perfectly correlated events convey complete information about one another.



Mutual Information: Example

* Let xand y each follow a binomial distribution, with a noisy

mapping from x to y:

P(Y—|T+) = Perror
p(y+|.’17+) =1 — Perror

1.0 =
0.8 —

L06-
o)

0.4 —
n

0.2 —

0.0 I i i I |
00 02 04 0B 0.8 1.0

p(z4)




Mutual Information: Example

* Let xand y each follow a binomial distribution, with a noisy
mapping from x to y:

1.0 — 1.0 —

0.8 - 0.8 —

_ 2064 @ 06—

p(y— |$+) — Perror =} 8
0.4 — E0_.4_
m 0.2 — 0.2

(Y+|r4) =1 = perr N °”
PXY+1+ Perror 0.0 i i i I | 0.0 I i I |
00 02 04 06 0.8 1.0 0.0 0.1 02 03 04

p(:E_|_) pe*r"r*ﬂ*r'

 Assume p(x+) = p(x-) =0.5. Then the mutual information is:

I('/L‘; y) — ]‘ + (]' _pGTTOT) ]'Og(]' _pGTTOT) +p(3?’?‘0?’ ]'ngGTT‘OT



Mutual Information: Properties

* Mutual information is symmetric: I(x;y) = I(y;x)
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* Mutual information is symmetric: I(x;y) = I(y;x)

(7)
()

 KL-divergence between two distributions p(x), g(x) is: DKL p.}. Zp log



Mutual Information: Properties

* Mutual information is symmetric: I(x;y) = I(y;x)

(7)
()

 KL-divergence between two distributions p(x), g(x) is: DKL p.}. Zp log

Mutual information is equal to the KL-divergence between the joint and factorised
distributions:

riv) = 3 plavn)log Bt — Diew(pla, ) pa)ply)



Mutual Information: Properties

* Mutual information is symmetric: I(x;y) = I(y;x)

 KL-divergence between two distributions p(x), g(x) is: DKL p.}. Zp log

Mutual information is equal to the KL-divergence between the joint and factorised
distributions:

p(z)p(y)

e Corollaries based on properties of KL: mutual information is 1) non-negative 2) zero
only when x and y are independent 3) a measure of distance from independence.

) = 3 (e, ) log LY D (pla, ) p(@)p())

(7)
()



The Data Processing Inequality

Statement of theorem: Let X — Y — Z be a set of 3 random variables, with arbitrary (random
or deterministic) mappings represented by arrows. Then [(x; 2) < I(z;y)



The Data Processing Inequality

Statement of theorem: Let X — Y — Z be a set of 3 random variables, with arbitrary (random
or deterministic) mappings represented by arrows. Then [(x; 2) < I(z;y)

For example, consider that x is a visual stimulus, y is the response of the retina, and z is the joint
response of all neurons in the brain. Then this theorem proves that there is more information about
the visual stimulus in the retina than there is in the brain.



The Data Processing Inequality

Statement of theorem: Let X — Y — Z be a set of 3 random variables, with arbitrary (random
or deterministic) mappings represented by arrows. Then [(x; 2) < I(z;y)

For example, consider that x is a visual stimulus, y is the response of the retina, and z is the joint
response of all neurons in the brain. Then this theorem proves that there is more information about
the visual stimulus in the retina than there is in the brain.

Neural processing can reformat representations, combine different streams of information, filter out
noise, etc., but information can never increase!

Important assumption: x influences y, y influences z, but no feedback loops (Markov chain)



Summary of Information Theory

Information theory quantifies communication of signals through a noisy channel

Three important quantities: surprise, entropy, and mutual information

Mutual information quantifies how accurately a stimulus can be reconstructed from a
neural response (or reduction of uncertainty about stimulus open observing the response)

The data processing inequality tells us what the brain can’t do (i.e., increase information)

What can the brain do? Communicate efficiently under capacity/resource constraints!



The Efficient Coding Hypothesis

Information theory provides a normative framework for
understanding sensory systems.

Why do retinal ganglion cells have ON-OFF receptive fields?

Why do they adapt in the way they do to light vs dark?
Evolution must have chosen something useful.

The efficient coding theory postulates that these properties
are optimal, given the natural statistics of sensory input and
the constraints the brain works under (e.g., physiological
noise, energetic costs).

It turns out we can derive, from first principles, something
that looks roughly like what we find in the nervous system
(works best near sensory periphery).

.I 3 H. B. BARLOW

Physiological Laboratory, Cambridge Univarsity

Possible Principles
Underlying the Transformations
of Sensory Messages

A wing would be a most mystifying structure if one did not know
that birds flew. One might observe that it could be extended a con-
siderable distance, that it had a smooth covering of feathers with
conspicuous markings, that it was operated by powerful muscles, and
that strength and lightness were prominent features of its construc-
tion. These are important facts, but by themselves they do not tell
us that birds fly. Yet without knowing this, and without understand-
ing something of the principles of flight, a more detailed examination
of the wing itself would probably be unrewarding. I think that we
may be at an analogous point in our understanding of the sensory
side of the central nervous system. We have got our first batch of
facts from the anatomical, neurophysiological, and psychophysical
study of sensation and perception, and now we need ideas about what
operations are performed by the various structures we have examined.
For the bird’s wing we can say that it accelerates downwards the air
flowing past it and so derives an upward force which supports the
weight of the bird; what would be a similar summary of the most
important operation performed at a sensory relay?



Maximisation of Mutual Information

Suppose we wish to maximise the mutual information between a set of stimuli s and neural
responses r:

I(s;r) = H(p(r)) —(H(p(r|s)))
response entropy noise entropy

This involves a trade-off between two terms - minimising noise entropy and maximising
response entropy.

This could be solved trivially — e.g. why not simply set r=s?

Answer: there are resource constraints, bottlenecks, etc.



Histogram Equalisation

Consider encoding of a stimulus s by a single neuron with firing rate r. To make life simple, we assume
that noise entropy is small, so that we need only maximise response entropy:

I(siv) ~ H(p(r)) == [ p(r) logp(r)dr



Histogram Equalisation

Consider encoding of a stimulus s by a single neuron with firing rate r. To make life simple, we assume
that noise entropy is small, so that we need only maximise response entropy:

I(siv) ~ H(p(r)) == [ p(r) logp(r)dr

But we assume that the neuron can only respond with rates above 0 and below rmax. This gives the

constraint: IO
/ p(r)dr =1
0



Histogram Equalisation

Consider encoding of a stimulus s by a single neuron with firing rate r. To make life simple, we assume
that noise entropy is small, so that we need only maximise response entropy:

I(siv) ~ H(p(r)) == [ p(r) logp(r)dr

But we assume that the neuron can only respond with rates above 0 and below rmax. This gives the

constraint: IO
/ p(r)dr =1
0

This is a constrained optimisation problem, and can be solved using Lagrange multipliers (see Dayan
and Abbott, Ch 4). The solution is:

p(r) = ——  H(p(r)) = 10g "maa

Tma:c




Histogram Equalisation

This solution sets all firing rates as equally likely - this is a well-known signal processing technique
called histogram equalisation.

What does that tell us about the stimulus encoding? How does r relate to s?



Histogram Equalisation

This solution sets all firing rates as equally likely - this is a well-known signal processing technique
called histogram equalisation.

What does that tell us about the stimulus encoding? How does r relate to s?

Suppose we have a stimulus distribution p(s) encoded as r=f(s) (remember: we have assumed noise-
free encoding). Given that p(r)=1/rmax, we have (using the rule for change of random variables):

f'(s)

maa

ps(s) = pr(f(s))|f (s)| =

Note: we write subscript r and s to clarify that these are different distributions. We assume that f is monotonic increasing.



Histogram Equalisation

This solution sets all firing rates as equally likely - this is a well-known signal processing technique
called histogram equalisation.

What does that tell us about the stimulus encoding? How does r relate to s?

Suppose we have a stimulus distribution p(s) encoded as r=f(s) (remember: we have assumed noise-
free encoding). Given that p(r)=1/rmax, we have (using the rule for change of random variables):

f'(s)

maa

ps(s) = pr(f(s))|f (s)| =

= f(S) = Tmaz [ p(s)ds

The tuning curve of the neuron is the integral of the stimulus distribution!

Note: we write subscript r and s to clarify that these are different distributions. We assume that f is monotonic increasing.



Histogram Equalisation in the Fly Visual System

One can test for histogram equalisation by:

1. Measuring the natural sensory statistics in an
organisms environment

2. Computing the cumulative probability
distribution of the stimulus s

3. Comparing this cumulative distribution to the
tuning curves measured in the organism

relative response

The figures shown such a comparison in the fly
visual system (error bars are neural data, solid curve
is cumulative distribution of stimulus contrast).

contrast

Laughlin 1981



Summary: Histogram Equalisation

We have considered a simple version of efficient coding: noise-free, single neuron,
constraint on range of firing rates

The solution is to set all firing rates in range equally likely

This predicts that the firing rate is the cumulative distribution of the stimulus

We found evidence for such an encoding in the fly visual system

But we’re missing: noise, multiple neurons, various other constraints



Extension to Populations of Neurons: Independent Coding

What if we have multiple neurons? Response entropy for a population of neurons is:

H(p(r)) = — / p(r) log p(r)dr
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The total response entropy is always less than that of a statistically independent population:

H(p(r)) < Z H(p(r;))



Extension to Populations of Neurons: Independent Coding

What if we have multiple neurons? Response entropy for a population of neurons is:

H(p(r)) = — / p(r) log p(r)dr

The total response entropy is always less than that of a statistically independent population:

H(p(r)) < Z H(p(r;))

H(p(r)) = ZH (p(r:)) <= p(r) = Hp(?“i)

Thus, we can maximise entropy by finding a code where neurons are statistically
independent. This is not easy in general (e.g., for natural images).



Application: Decorrelation by Retinal Ganglion Cells

Why do retinal ganglion cells have centre-surround receptive fields?

Pixels in a natural image are correlated. Thus, one pixel can be predicted from others.
This is a redundant, and therefore an inefficient code.

What if we try to find a code where the image is represented by independent features?

For example, can we find a filter that decorrelates natural images? If so, does that filter
resemble retinal ganglion cell receptive fields?

Note: maximising entropy directly is too hard here, but decorrelation maximises entropy
for Gaussian distributions, and typically increases entropy for non-Gaussian ones...



Decorrelation by Retinal Ganglion Cells

The response of a bank of translationally-invariant linear filters R is to an image / is:

r(x) = /R(X' — x)I(x")dx’



Decorrelation by Retinal Ganglion Cells

The response of a bank of translationally-invariant linear filters R is to an image / is:

r(x) = /R(X' — x)I(x")dx’

The spatial correlation of the filter output ris:

Qr(x,y) = {(r(x) = (r(x)))(r(y) = (r(¥))))
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Decorrelation by Retinal Ganglion Cells

The response of a bank of translationally-invariant linear filters R is to an image / is:

r(x) = /R(X' — x)I(x")dx’

The spatial correlation of the filter output ris:
Qr(x,y) = ((r(x) = (r(x)))(r(y) — (r(y))))
= < / / R(x' —x)I(x)R(y" — y)I (y’)dX’dy’>

/ / R(x' — x)R(y’ — y) (I(x')(y"))dx'dy’
Qr(x',y’)

Note: we have assumed that / and r have zero mean (can relax this)



Decorrelation by Retinal Ganglion Cells

Having r uncorrelated means that we want to find a filter R such that:

Qr(x,y) =0.0(x —y)



Decorrelation by Retinal Ganglion Cells

Having r uncorrelated means that we want to find a filter R such that:

Qr(x,y) =0.0(x —y)

It is convenient to work in the Fourier domain:

Qr(x—y) = /m Qf(k)e—%m'k-(x—y)dk

R(x' — x) = / R(k)e_%ik'(x!_x)dk

— 00

Note: we have replaced pairs x,y with differences x-y, which means
we assume the images and filters are spatially homogeneous.



Decorrelation by Retinal Ganglion Cells

Putting all these equations together and using a few tricks shows us that the whitening
filter must satisfy (see Dayan and Abbott Chapter 4):

RK)?Q;1(k) = 0? = |R(k)| = \/g“(k)

In other words, the frequency spectrum of the filter should cancel out the frequency
spectrum of the image statistics.



Decorrelation by Retinal Ganglion Cells

A rough approximation for the frequency spectrum of images that fall on the retinais:

exp(—alk])
k|? + kg

@[(k) X

Where the exponential represents a low pass filtering through the eye and the
denominator reflects the power spectrum of natural images.

This gives the following optimal filter:

R(k)| o exp(alk]/2)y/ k|2 + k3



Decorrelation by Retinal Ganglion Cells

The whitening filter grows exponentially
at high frequencies.

But we have assumed a noise-free
encoding — in fact there is also noise at
high frequencies.

The optimal filter trades off whitening
against noise removal, and falls off at
high frequencies.

1000

300

100

Sensitivity
&
o

10

.r|1TT'|

whitening

- noise filter filter

predicted retinal
filter

| l{llllll ] 1IIIllll 1 lll Illl

N .3 1 3 10 30 100

Spatial frequency, c/deg



Decorrelation by Retinal Ganglion Cells

x>

1.0 1.5 2.0 25 3.0
K (cycles/degree) 7| (degrees)

A: The optimal filter is bandpass at low noise (solid) and low pass at high noise (dashed).

B: The optimal filter looks like a difference of Gaussians at low noise and a Gaussian at high noise.



Decorrelation by Retinal Ganglion Cells

1000 —
-

RGC receptive fields adapt to different 300 |- -3 g‘!i |
lighting conditions. b / %

oy

5 100
Optimal filters at different noise levels é
can explain this adaptation 2 =
(low light = high noise) £

g 10

O

3

100

Spatial frequency, c/deg



Summary: Whitening by Retinal Ganglion Cells

Retinal ganglion cells have difference of Gaussian receptive fields that act as
bandpass filters.

We asked whether these filters can be derived from natural image statistics,
assuming that they remove correlations in order to encode more efficiently.

A mathematical calculation yielded the filter that whitens a set of images drawn
from a given distribution

This alone wasn’t sufficient to explain RGC receptive fields, but when high-
frequency noise was added, the optimal filter resembled those of RGC, including

adaptation to lighting conditions.



Limitations of Information-Theoretic Approaches

Requires lots of data, not possible in practice due to experimental limitations, therefore
have to use approximations and strong assumptions.

Does not address the meaning/purpose/computation. Only quantifies correspondences
between stimuli and neural responses. E.g., what about object recognition?

Does not tell us whether/how/for what information is actually used by the brain.

Views the brain as encoding and then decoding a stimulus — why would the brain do
that? Might be reasonable in e.g., the retina, but less clear in later stages of processing.



Summary of Lecture

Neural coding is the relationship between states in the world and in the brain

Information theory can be used to quantify the amount of information in a neural code,
and to find optimal codes under constraints

The efficient coding hypothesis postulates that the nervous system employs an optimal
code, given the natural stimulus statistics and resource constraints

Success stories include: Histogram equalisation in fly visual system, decorrelation in retina
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