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Outline of Lecture

• Introduction to neural coding

• Information theory (surprise, entropy, and mutual information)

• The data processing inequality

• The efficient coding hypothesis

• Applications: filtering in the retina, histogram equalisation in the blowfly visual system



Neural Coding



Neural Coding: Encoding vs Decoding

Encoding: P(Brain|World)  
Decoding: P(World|Brain)



Neural Coding: Decoding vs Information Theory



Neural Coding: Spike Timing vs Rate

How is information represented by neurons? Number of spikes? Spike times? 
Relationships between spikes of different neurons?



Coding vs Computation

• Coding: How is information “represented” in the brain? 

(relationship between world and neural activity)

• Computation: How is information transformed, manipulated, and combined in the      
brain to achieve a particular goal?



Information Theory

Claude Shannon

Developed by Shannon for his masters 
thesis (!)

Answers question such as: 

- What is the optimal code for sending 
messages down a noisy channel?

- How can signals be compressed to 
transmit them more efficiently?

- What are the fundamental limits at 
which signals can be encoded, 
transmitted, and decoded?



Surprise

You observe draws x from a probability distribution p(x). How surprised are you at a given outcome? 
To quantify this, we define a measure h(p(x)), called surprise, that satisfies two properties.

Property 1: The surprise of an observation is a decreasing function of the probability of that 
observation (i.e., unlikely observations are more surprising).

Property 2: The surprise of two independent observations is the sum of the surprises of the 
individual observations:



Surprise

You observe draws x from a probability distribution p(x). How surprised are you at a given outcome? 
To quantify this, we define a measure h(p(x)), called surprise, that satisfies two properties.

Property 1: The surprise of an observation is a decreasing function of the probability of that 
observation (i.e., unlikely observations are more surprising).

Property 2: The surprise of two independent observations is the sum of the surprises of the 
individual observations:

The unique* function satisfying these two properties turns out to be:

*unique up to a constant factor, i.e. a change of base of the logarithm



Entropy

• The entropy of the distribution p(x) is the expected surprise:

• In other words, entropy quantifies how surprising observations are on average. 

• Note 1: Surprise pertains to individual observations, entropy to the whole distribution.

• Note 2: The sum implies a discrete distribution – it can be replaced with an integral for 
continuous distributions, but there are some subtleties involved



Entropy: Example

Consider the binomial distribution. It has two outcomes, x+ and x-, with

The entropy is:



Entropy: Example

Consider the binomial distribution. It has two outcomes, x+ and x-, with

The entropy is:

e.g., a biased coin flip - entropy is low when the 
coin lands heads every time, and high 
when heads/tails are 50/50.

Remember, entropy is average surprise – 
in the biased case, one outcome may be 
very surprising, but the average surprise is lower



Mutual Information

How much information does one variable convey about another? For example, how much 
information does a neural response convey about a stimulus?

Mutual information quantifies how much of the variation in the response distribution is explained 
by variation in the stimulus distribution.



Mutual Information

How much information does one variable convey about another? For example, how much 
information does a neural response convey about a stimulus?

Mutual information quantifies how much of the variation in the response distribution is explained 
by variation in the stimulus distribution.

Definition: given two random variables x and y the mutual information I(x;y) is:

The total entropy quantifies the variation in y, the conditional entropy quantifies the variation in y 
for fixed x. The difference is the variation in y that is coupled to variation in x.



Mutual Information

Mutual information can be rewritten multiple ways:



Mutual Information

Mutual information can be rewritten multiple ways:

The last line shows that I(y;x) = I(x;y) – mutual information is symmetric.



Mutual Information: Limiting Cases

• If x and y are independent, mutual information is zero:



Mutual Information: Limiting Cases

• If x and y are independent, mutual information is zero:

• If y is perfectly predictable given x, i.e. there is deterministic one-to-one mapping, then the 
mutual information is equal to the entropy of the stimulus distribution:

• These examples align with intuition – independent variables do not convey information about one 
another, whereas perfectly correlated events convey complete information about one another.



Mutual Information: Example

• Let x and y each follow a binomial distribution, with a noisy
     mapping from x to y:



Mutual Information: Example

• Let x and y each follow a binomial distribution, with a noisy
     mapping from x to y:

• Assume p(x+) = p(x-) = 0.5. Then the mutual information is:



Mutual Information: Properties

• Mutual information is symmetric: I(x;y) = I(y;x)
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Mutual Information: Properties

• Mutual information is symmetric: I(x;y) = I(y;x)

• KL-divergence between two distributions p(x), q(x) is:  

Mutual information is equal to the KL-divergence between the joint and factorised     
distributions:

      

• Corollaries based on properties of KL: mutual information is 1) non-negative 2) zero 
only when x and y are independent 3) a measure of distance from independence.
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or deterministic) mappings represented by arrows. Then 
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or deterministic) mappings represented by arrows. Then 

For example, consider that x is a visual stimulus, y is the response of the retina, and z is the joint 
response of all neurons in the brain. Then this theorem proves that there is more information about 
the visual stimulus in the retina than there is in the brain.



The Data Processing Inequality

Statement of theorem: Let                                be a set of 3 random variables, with arbitrary (random 
or deterministic) mappings represented by arrows. Then 

For example, consider that x is a visual stimulus, y is the response of the retina, and z is the joint 
response of all neurons in the brain. Then this theorem proves that there is more information about 
the visual stimulus in the retina than there is in the brain.

Neural processing can reformat representations, combine different streams of information, filter out 
noise, etc., but information can never increase!  

Important assumption: x influences y, y influences z, but no feedback loops (Markov chain)



Summary of Information Theory

• Information theory quantifies communication of signals through a noisy channel

• Three important quantities: surprise, entropy, and mutual information 

• Mutual information quantifies how accurately a stimulus can be reconstructed from a 
neural response (or reduction of uncertainty about stimulus open observing the response)

• The data processing inequality tells us what the brain can’t do (i.e., increase information)

• What can the brain do? Communicate efficiently under capacity/resource constraints!



The Efficient Coding Hypothesis

Information theory provides a normative framework for 
understanding sensory systems.

Why do retinal ganglion cells have ON-OFF receptive fields? 
Why do they adapt in the way they do to light vs dark? 
Evolution must have chosen something useful.

The efficient coding theory postulates that these properties 
are optimal, given the natural statistics of sensory input and 
the constraints the brain works under (e.g., physiological 
noise, energetic costs).

It turns out we can derive, from first principles, something 
that looks roughly like what we find in the nervous system 
(works best near sensory periphery).



Maximisation of Mutual Information

Suppose we wish to maximise the mutual information between a set of stimuli s and neural 
responses r:

This involves a trade-off between two terms - minimising noise entropy and maximising 
response entropy. 

This could be solved trivially – e.g. why not simply set r=s?

Answer: there are resource constraints, bottlenecks, etc. 



Histogram Equalisation

Consider encoding of a stimulus s by a single neuron with firing rate r. To make life simple, we assume 
that noise entropy is small, so that we need only maximise response entropy:
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that noise entropy is small, so that we need only maximise response entropy:

But we assume that the neuron can only respond with rates above 0 and below rmax. This gives the 
constraint:



Histogram Equalisation

Consider encoding of a stimulus s by a single neuron with firing rate r. To make life simple, we assume 
that noise entropy is small, so that we need only maximise response entropy:

But we assume that the neuron can only respond with rates above 0 and below rmax. This gives the 
constraint:

This is a constrained optimisation problem, and can be solved using Lagrange multipliers (see Dayan 
and Abbott, Ch 4). The solution is:  



Histogram Equalisation

This solution sets all firing rates as equally likely - this is a well-known signal processing technique 
called histogram equalisation.

What does that tell us about the stimulus encoding? How does r relate to s?



Histogram Equalisation

This solution sets all firing rates as equally likely - this is a well-known signal processing technique 
called histogram equalisation.

What does that tell us about the stimulus encoding? How does r relate to s?

Suppose we have a stimulus distribution p(s) encoded as r=f(s) (remember: we have assumed noise-
free encoding). Given that p(r)=1/rmax, we have (using the rule for change of random variables):

Note: we write subscript r and s to clarify that these are different distributions. We assume that f is monotonic increasing. 



Histogram Equalisation

This solution sets all firing rates as equally likely - this is a well-known signal processing technique 
called histogram equalisation.

What does that tell us about the stimulus encoding? How does r relate to s?

Suppose we have a stimulus distribution p(s) encoded as r=f(s) (remember: we have assumed noise-
free encoding). Given that p(r)=1/rmax, we have (using the rule for change of random variables):

The tuning curve of the neuron is the integral of the stimulus distribution!

Note: we write subscript r and s to clarify that these are different distributions. We assume that f is monotonic increasing. 



Histogram Equalisation in the Fly Visual System

Laughlin 1981

One can test for histogram equalisation by:

1. Measuring the natural sensory statistics in an 
organisms environment

2. Computing the cumulative probability 
distribution of the stimulus s

3. Comparing this cumulative distribution to the 
tuning curves measured in the organism

The figures shown such a comparison in the fly 
visual system (error bars are neural data, solid curve 
is cumulative distribution of stimulus contrast).



Summary: Histogram Equalisation

• We have considered a simple version of efficient coding: noise-free, single neuron, 
constraint on range of firing rates

• The solution is to set all firing rates in range equally likely

• This predicts that the firing rate is the cumulative distribution of the stimulus

• We found evidence for such an encoding in the fly visual system

• But we’re missing: noise, multiple neurons, various other constraints 



Extension to Populations of Neurons: Independent Coding

What if we have multiple neurons? Response entropy for a population of neurons is:
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Extension to Populations of Neurons: Independent Coding

What if we have multiple neurons? Response entropy for a population of neurons is:

The total response entropy is always less than that of a statistically independent population:

Thus, we can maximise entropy by finding a code where neurons are statistically 
independent. This is not easy in general (e.g., for natural images).



Application: Decorrelation by Retinal Ganglion Cells

• Why do retinal ganglion cells have centre-surround receptive fields?

• Pixels in a natural image are correlated. Thus, one pixel can be predicted from others. 
This is a redundant, and therefore an inefficient code.

• What if we try to find a code where the image is represented by independent features?

• For example, can we find a filter that decorrelates natural images? If so, does that filter 
resemble retinal ganglion cell receptive fields?

• Note: maximising entropy directly is too hard here, but decorrelation maximises entropy 
for Gaussian distributions, and typically increases entropy for non-Gaussian ones…



Decorrelation by Retinal Ganglion Cells

The response of a bank of translationally-invariant linear filters R is to an image I is:
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The spatial correlation of the filter output r is:

Note: we have assumed that I and r have zero mean (can relax this)
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Decorrelation by Retinal Ganglion Cells

The response of a bank of translationally-invariant linear filters R is to an image I is:

The spatial correlation of the filter output r is:

Note: we have assumed that I and r have zero mean (can relax this)



Decorrelation by Retinal Ganglion Cells

Having r uncorrelated means that we want to find a filter R such that:



Decorrelation by Retinal Ganglion Cells

Having r uncorrelated means that we want to find a filter R such that:

It is convenient to work in the Fourier domain:

Note: we have replaced pairs x,y with differences x-y, which means 
we assume the images and filters are spatially homogeneous.



Decorrelation by Retinal Ganglion Cells

Putting all these equations together and using a few tricks shows us that the whitening 
filter must satisfy (see Dayan and Abbott Chapter 4):

In other words, the frequency spectrum of the filter should cancel out the frequency 
spectrum of the image statistics.



Decorrelation by Retinal Ganglion Cells

A rough approximation for the frequency spectrum of images that fall on the retina is:

Where the exponential represents a low pass filtering through the eye and the 
denominator reflects the power spectrum of natural images. 

This gives the following optimal filter:



Decorrelation by Retinal Ganglion Cells

The whitening filter grows exponentially 
at high frequencies.

But we have assumed a noise-free 
encoding – in fact there is also noise at 
high frequencies.

The optimal filter trades off whitening 
against noise removal, and falls off at 
high frequencies.



Decorrelation by Retinal Ganglion Cells

A: The optimal filter is bandpass at low noise (solid) and low pass at high noise (dashed). 

B: The optimal filter looks like a difference of Gaussians at low noise and a Gaussian at high noise.



Decorrelation by Retinal Ganglion Cells

RGC receptive fields adapt to different 
lighting conditions. 

Optimal filters at different noise levels 
can explain this adaptation 
(low light = high noise)



Summary: Whitening by Retinal Ganglion Cells

• Retinal ganglion cells have difference of Gaussian receptive fields that act as 
bandpass filters.

• We asked whether these filters can be derived from natural image statistics, 
assuming that they remove correlations in order to encode more efficiently.

• A mathematical calculation yielded the filter that whitens a set of images drawn 
from a given distribution

• This alone wasn’t sufficient to explain RGC receptive fields, but when high-
frequency noise was added, the optimal filter resembled those of RGC, including 
adaptation to lighting conditions.



Limitations of Information-Theoretic Approaches

Requires lots of data, not possible in practice due to experimental limitations, therefore 
have to use approximations and strong assumptions.

Does not address the meaning/purpose/computation. Only quantifies correspondences 
between stimuli and neural responses. E.g., what about object recognition?

Does not tell us whether/how/for what information is actually used by the brain.

Views the brain as encoding and then decoding a stimulus – why would the brain do 
that? Might be reasonable in e.g., the retina, but less clear in later stages of processing.



Summary of Lecture

Neural coding is the relationship between states in the world and in the brain

Information theory can be used to quantify the amount of information in a neural code, 
and to find optimal codes under constraints

The efficient coding hypothesis postulates that the nervous system employs an optimal 
code, given the natural stimulus statistics and resource constraints

Success stories include: Histogram equalisation in fly visual system, decorrelation in retina
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