
Functional Models of
Plasticity

Angus Chadwick

School of Informatics, University of Edinburgh, UK

Computational Neuroscience (Lecture 14, 2024/2025)

Outline of Lecture

• Hebb’s rule

• The covariance rule

• Oja’s Rule

• Synaptic normalisation

• Learning with multiple neurons

Functional Models of Plasticity

• What does Hebbian learning actually do?

• Can we use Hebbian learning to do something useful?

• What are the challenges/obstacles to implementing Hebb’s rule?

• Are there parallels between unsupervised learning algorithms and
learning rules in the brain?

• What are the underlying algorithms/computations that synaptic
plasticity implements, and how do they perform learning and memory?

Simplest Case: Linear Feedforward Model

• Given a set of input patterns x, what weights w will be learned?

• First need to specify the mathematical form of the learning rule

Hebb’s Rule

• How can we operationalise Hebbian learning?

• “Cells that fire together, wire together”, is not a mathematically precise statement -
there are many possibilities

• Simplest choice:

- Consider one neuron with firing rate y in response to multiple inputs with rates x

Linear model of neural activity

Hebb’s Rule

• How can we operationalise Hebbian learning?

• “Cells that fire together, wire together”, is not a mathematically precise statement -
there are many possibilities

• Simplest choice:

- Consider one neuron with firing rate y in response to multiple inputs with rates x

- Assume neuron is linear and weight update is multiplicative (pre x post)

Linear model of neural activity
Multiplicative model of Hebb’s rule

Hebb’s Rule

• How can we operationalise Hebbian learning?

• “Cells that fire together, wire together”, is not a mathematically precise statement -
there are many possibilities

• Simplest choice:

- Consider one neuron with firing rate y in response to multiple inputs with rates x

- Assume neuron is linear and weight update is multiplicative (pre x post)

Linear model of neural activity
Multiplicative model of Hebb’s rule

Consequences of Hebb’s Rule

• Assume we present M input patterns once each:

Consequences of Hebb’s Rule

• Assume we present M input patterns once each:

• Define , which is a kind of correlation between inputs:

Consequences of Hebb’s Rule

• Assume we present M input patterns once each:

• Define , which is a kind of correlation between inputs:

• Or we can write in continuous time:

Assumptions/Approximations of Hebb’s Rule

• We have made several unrealistic assumptions and approximations:

- Linearity of output neuron

- Weights can change sign with learning

- Weight updates are linear/multiplicative

- Can only produce LTP (not LTD) if firing rates are positive

- Weight updates are unbounded/can become arbitrarily large

• These give the plasticity rule undesirable properties, as we will see

Long-Term Behaviour of Hebb’s Rule

• Hebb’s rule follows the differential equation:

• This is a kind of linear dynamical system, which we studied previously. It
has solution:

• Where , are eigenvectors and eigenvalues of Q.

Long-Term Behaviour of Hebb’s Rule

• Hebb’s rule follows the differential equation:

• This is a kind of linear dynamical system, which we studied previously. It
has solution:

• Where , are eigenvectors and eigenvalues of Q.

• But Q is symmetric and therefore has positive real eigenvalues, so all terms
must grow exponentially

• Hebb’s rule is therefore unstable, and always leads to exponentially
growing weights

The Covariance Rule

• If firing rates are positive, Hebb’s rule can only generate LTP, not LTD…

• Perhaps synapses only update when activity is above a certain threshold:

The Covariance Rule

• If firing rates are positive, Hebb’s rule can only generate LTP, not LTD…

• Perhaps synapses only update when activity is above a certain threshold:

• Averaging over patterns, this gives the same rule as before but with Q now
the covariance matrix of input patterns:

What does Hebb’s/Covariance Rule Learn?

• In the long run limit, all terms in the sum grow to infinity, but the term with
largest eigenvalue dominates:

• In other words, this learning rule picks out the eigenvector of the matrix Q
with largest eigenvalue

• The interpretation depends on the matrix Q (different for Hebb vs
covariance rule)

What does Hebb’s/Covariance Rule Learn?

Hebb’s rule Hebb’s rule

• If data aren’t zero mean, Hebb’s rule is sensitive to the mean

What does Hebb’s/Covariance Rule Learn?

Hebb’s rule Hebb’s rule Covariance rule

• If data aren’t zero mean, Hebb’s rule is sensitive to the mean

• Covariance rule picks out largest eigenvector of input covariance matrix

• This is just principal component analysis (but with only one PC)

Hebbian Learning of Orientation Tuning

• Hebbian learning in a neuron receiving multiple LGN ON-OFF receptive field
inputs

• Requires some special constraints and assumptions, but can learn Gabor
receptive fields

Miller, 1994 (see Dayan and Abbott Ch. 8)

Receptive fields learned via Hebbian plasticity

Summary of Hebb/Covariance Rule

• Both Hebb’s rule and covariance rule are unstable, leading to exponentially
growing weights

• Hebb’s rule can only produce LTP, but covariance rule can produce both LTP
and LTD

• Both rules cause the neuron to learn the dominant eigenvector of Q (but Q
is slightly different for the two rules)

• A major limitation of both rules is the lack of stability/competition between
synapses (all synapses update independently and grow to infinity)

Normalisation

• We saw that Hebb/covariance rule leads to infinite weights

• In reality, weights must saturate/be regulated somehow

• Simplest choice: impose a hard limit

Normalisation

• We saw that Hebb/covariance rule leads to infinite weights

• In reality, weights must saturate/be regulated somehow

• Simplest choice: impose a hard limit

• For two inputs with anticorrelated Q,

 can produce 3 stable weight configurations

 depending on initial conditions

Normalisation

• We saw that Hebb/covariance rule leads to infinite weights

• In reality, weights must saturate/be regulated somehow

• Simplest choice: impose a hard limit

• For two inputs with anticorrelated Q,

 can produce 3 stable weight configurations

 depending on initial conditions

• For positively correlated input Q, both

 weights must saturate (not shown)

Multiplicative and Subtractive Normalisation

• Instead of a hard bound, add a term to the weight update to scale down
weights over time

Multiplicative and Subtractive Normalisation

• Instead of a hard bound, add a term to the weight update to scale down
weights over time

• Simplest options: multiplicative or subtractive scaling

Multiplicative and Subtractive Normalisation

• Instead of a hard bound, add a term to the weight update to scale down
weights over time

• Simplest options: multiplicative or subtractive scaling

Multiplicative and Subtractive Normalisation

• Instead of a hard bound, add a term to the weight update to scale down
weights over time

• Simplest options: multiplicative or subtractive scaling

Multiplicative and Subtractive Normalisation

• Instead of a hard bound, add a term to the weight update to scale down
weights over time

• Simplest options: multiplicative or subtractive scaling

Divisive and Subtractive Normalisation

• Both multiplicative and subtractive keep sum of weights constant in time
(easy to verify analytically)

• This implicitly sets competition between weights – one weight can only
increase if others decrease

• Such competition is called heterosynaptic plasticity. Heterosynaptic
plasticity requires weight changes even when pre-synaptic neuron is
inactive; homosynaptic plasticity requires coactivity of pre and post.

• In practice, subtractive normalisation is more strongly competitive than
multiplicative normalisation (and unrealistically so)

Oja’s Rule

• Normalisation and synaptic competition can also be implicitly incorporated
using other learning rules

• One example is Oja’s rule:

Oja’s Rule

• Normalisation and synaptic competition can also be implicitly incorporated
using other learning rules

• One example is Oja’s rule:

Oja’s Rule

• Normalisation and synaptic competition can also be implicitly incorporated
using other learning rules

• One example is Oja’s rule:

• The quadratic term normalises/stabilises the weights

• The final equation tells us that, at steady state, the weights w are an
eigenvector of Q

(at steady state)

Oja’s Rule

• Oja’s rule implements a kind of multiplicative normalisation

• Oja’s rule is not biologically motivated – what is the interpretation of
the quadratic dependence on y?

• Theoretical motivation: Oja’s rule does PCA (finding the first PC)
while maintaining stable weights

• This alone is ultimately not very powerful – if we have multiple such
neurons, they will all learn the same PC…

Learning with Multiple Neurons

• Oja’s rule for one neuron is:

• Now assume we have M neurons. To avoid all neurons learning the same PC,
we can add “interactions” between the neurons:

• We can interpret these interactions as lateral inhibition (sort of…)

• This rule can be shown to learn the first M principal components of the input
covariance matrix Q

Other Learning Rules: Generative Models

• Earlier in the course we looked at sparse coding, ICA, and predictive
coding

• Each of these has a learning rule for the weight updates

• However, in those models the learning rules are derived from an
underlying generative model of the input data

• There are two approaches to studying plasticity: 1) incorporate detail
from biology and study the consequences 2) start from a generative
model/objective function and derive a learning rule

Summary

• Hebbian learning picks out the dominant eigenvector of the input

• Hebbian learning is unstable without mechanisms to limit synaptic weights

• Competition between weights can help with stability and learning of
interesting patterns

• Competition between neurons can lead to different neurons learning
different input patterns

• Synaptic learning rules can be linked to unsupervised algorithms (e.g., PCA)

Bibliography

• Lecture notes Ch. 13

• Dayan and Abbott Ch. 8

	Slide 1: Functional Models of Plasticity
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

