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Outline of Lecture

• Hebb’s rule

• The covariance rule

• Oja’s Rule

• Synaptic normalisation

• Learning with multiple neurons



Functional Models of Plasticity

• What does Hebbian learning actually do?

• Can we use Hebbian learning to do something useful?

• What are the challenges/obstacles to implementing Hebb’s rule?

• Are there parallels between unsupervised learning algorithms and 
learning rules in the brain?

• What are the underlying algorithms/computations that synaptic 
plasticity implements, and how do they perform learning and memory?



Simplest Case: Linear Feedforward Model

• Given a set of input patterns x, what weights w will be learned?

• First need to specify the mathematical form of the learning rule



Hebb’s Rule

• How can we operationalise Hebbian learning?

• “Cells that fire together, wire together”, is not a mathematically precise statement - 
there are many possibilities

• Simplest choice:

- Consider one neuron with firing rate y in response to multiple inputs with rates x

Linear model of neural activity
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Consequences of Hebb’s Rule

• Assume we present M input patterns     once each:

• Define                                            , which is a kind of correlation between inputs:

• Or we can write in continuous time: 



Assumptions/Approximations of Hebb’s Rule

• We have made several unrealistic assumptions and approximations:

- Linearity of output neuron

- Weights can change sign with learning

- Weight updates are linear/multiplicative 

- Can only produce LTP (not LTD) if firing rates are positive

- Weight updates are unbounded/can become arbitrarily large

• These give the plasticity rule undesirable properties, as we will see



Long-Term Behaviour of Hebb’s Rule

• Hebb’s rule follows the differential equation:

• This is a kind of linear dynamical system, which we studied previously. It 
has solution:

• Where          ,          are eigenvectors and eigenvalues of Q. 



Long-Term Behaviour of Hebb’s Rule

• Hebb’s rule follows the differential equation:

• This is a kind of linear dynamical system, which we studied previously. It 
has solution:

• Where          ,          are eigenvectors and eigenvalues of Q. 

• But Q is symmetric and therefore has positive real eigenvalues, so all terms 
must grow exponentially

• Hebb’s rule is therefore unstable, and always leads to exponentially 
growing weights
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• Perhaps synapses only update when activity is above a certain threshold:



The Covariance Rule

• If firing rates are positive, Hebb’s rule can only generate LTP, not LTD…

• Perhaps synapses only update when activity is above a certain threshold:

• Averaging over patterns, this gives the same rule as before but with Q now 
the covariance matrix of input patterns:



What does Hebb’s/Covariance Rule Learn?

• In the long run limit, all terms in the sum grow to infinity, but the term with 
largest eigenvalue dominates:

• In other words, this learning rule picks out the eigenvector of the matrix Q 
with largest eigenvalue

• The interpretation depends on the matrix Q (different for Hebb vs 
covariance rule)
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What does Hebb’s/Covariance Rule Learn?

Hebb’s rule Hebb’s rule Covariance rule

• If data aren’t zero mean, Hebb’s rule is sensitive to the mean

• Covariance rule picks out largest eigenvector of input covariance matrix

• This is just principal component analysis (but with only one PC)



Hebbian Learning of Orientation Tuning

• Hebbian learning in a neuron receiving multiple LGN ON-OFF receptive field 
inputs

• Requires some special constraints and assumptions, but can learn Gabor 
receptive fields 

Miller, 1994 (see Dayan and Abbott Ch. 8)

Receptive fields learned via Hebbian plasticity



Summary of Hebb/Covariance Rule

• Both Hebb’s rule and covariance rule are unstable, leading to exponentially 
growing weights

• Hebb’s rule can only produce LTP, but covariance rule can produce both LTP 
and LTD

• Both rules cause the neuron to learn the dominant eigenvector of Q (but Q 
is slightly different for the two rules)

• A major limitation of both rules is the lack of stability/competition between 
synapses (all synapses update independently and grow to infinity)



Normalisation

• We saw that Hebb/covariance rule leads to infinite weights 

• In reality, weights must saturate/be regulated somehow

• Simplest choice: impose a hard limit
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Normalisation

• We saw that Hebb/covariance rule leads to infinite weights 

• In reality, weights must saturate/be regulated somehow

• Simplest choice: impose a hard limit

• For two inputs with anticorrelated Q, 

   can produce 3 stable weight configurations

   depending on initial conditions

• For positively correlated input Q, both 

   weights must saturate (not shown)
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Divisive and Subtractive Normalisation

• Both multiplicative and subtractive keep sum of weights constant in time 
(easy to verify analytically)

• This implicitly sets competition between weights – one weight can only 
increase if others decrease

• Such competition is called heterosynaptic plasticity. Heterosynaptic 
plasticity requires weight changes even when pre-synaptic neuron is 
inactive; homosynaptic plasticity requires coactivity of pre and post.

• In practice, subtractive normalisation is more strongly competitive than 
multiplicative normalisation (and unrealistically so)
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using other learning rules

• One example is Oja’s rule:
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Oja’s Rule

• Normalisation and synaptic competition can also be implicitly incorporated 
using other learning rules

• One example is Oja’s rule:

• The quadratic term normalises/stabilises the weights 

• The final equation tells us that, at steady state, the weights w are an 
eigenvector of Q

(at steady state)



Oja’s Rule

• Oja’s rule implements a kind of multiplicative normalisation 

• Oja’s rule is not biologically motivated – what is the interpretation of 
the quadratic dependence on y?

• Theoretical motivation: Oja’s rule does PCA (finding the first PC) 
while maintaining stable weights

• This alone is ultimately not very powerful – if we have multiple such 
neurons, they will all learn the same PC…



Learning with Multiple Neurons

• Oja’s rule for one neuron is:

• Now assume we have M neurons. To avoid all neurons learning the same PC, 
we can add “interactions” between the neurons:

• We can interpret these interactions as lateral inhibition (sort of…)

• This rule can be shown to learn the first M principal components of the input 
covariance matrix Q



Other Learning Rules: Generative Models 

• Earlier in the course we looked at sparse coding, ICA, and predictive 
coding

• Each of these has a learning rule for the weight updates

• However, in those models the learning rules are derived from an 
underlying generative model of the input data

• There are two approaches to studying plasticity: 1) incorporate detail 
from biology and study the consequences 2) start from a generative 
model/objective function and derive a learning rule



Summary

• Hebbian learning picks out the dominant eigenvector of the input

• Hebbian learning is unstable without mechanisms to limit synaptic weights

• Competition between weights can help with stability and learning of 
interesting patterns

• Competition between neurons can lead to different neurons learning 
different input patterns

• Synaptic learning rules can be linked to unsupervised algorithms (e.g., PCA)



Bibliography
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