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• Types of model in neuroscience (abstract vs detailed)

• The leaky integrate and fire (LIF) model 

• Models for synapses: conductances and currents

Overview of Lecture



Types of Neuron Model

• Neuron models may be biophysically detailed or simple and abstract

• Detailed models often have many free parameters, cannot be solved mathematically and are 
difficult to draw general conclusions from when simulated

• Abstract models may overlook important phenomena in real biological neurons

• The level of detail included in a model is typically chosen based on the phenomena we would 
like to understand



Abstraction in Modelling

• “Everything should be made as simple as possible, but no simpler.” (Einstein)

• “All models are wrong; some models are useful” (George Box)



Simple/Abstract

Transfer Function
(Lacks spiking or dynamics, 
but easily analysed.)

Leaky Integrate and Fire
(Abstracts away biophysics of action 
potentials. Can be analysed in some cases.)

Intermediate Complexity

Hodgkin-Huxley
(Explains action potential biophysically. 
Computationally expensive and largely 
unamenable to formal analysis.)

Complex/Biophysically Detailed 

Types of Neuron Model: Simplified vs Biologically Detailed

Leaky Integrate and Fire

Hodgkin-Huxley
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The Leaky Integrate and Fire Model

• The Hodgkin-Huxley model is computationally expensive and analytically intractable

• Often we don’t care about the specific ionic currents or the biophysics of action potential 
generation

• Can we build a simpler model for the spiking activity of a neuron?

• What details can we throw away? What are the essential properties of the Hodgkin-
Huxley model that we want to keep/abstract away?



The Leaky Integrate and Fire Model

Answer: the Leaky Integrate and Fire model. We consider only the passive membrane potential dynamics, and 
approximate the action potential with a threshold-reset rule

Response to Constant Current Input
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The Leaky Integrate and Fire Model

Answer: the Leaky Integrate and Fire model. We consider only the passive membrane potential dynamics, and 
approximate the action potential with a threshold-reset rule

Response to Constant Current Input Response to Time-Varying Current
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The Leaky Integrate and Fire Model

Answer: the Leaky Integrate and Fire model. We consider only the passive membrane potential dynamics, and 
approximate the action potential with a threshold-reset rule

Response to Constant Current Input Response to Time-Varying Current
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Response to Sinusoidal Current
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The Leaky Integrate and Fire Model
• The LIF neuron obeys the following passive dynamics and threshold-reset rule:

(while V < Vthreshold)Passive Dynamics:
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The Leaky Integrate and Fire Model
• The LIF neuron obeys the following passive dynamics and threshold-reset rule:

• It has a hand-chosen resting potential, spike threshold, and spike reset voltage

• The dynamics are passive/linear everywhere except at spike times

(while V < Vthreshold)Passive Dynamics:

Reset Rule (mathematical):

Reset Rule (numerical):



The Leaky Integrate and Fire Model
• The LIF neuron obeys the following passive dynamics and threshold-reset rule:

• It has a hand-chosen resting potential, spike threshold, and spike reset voltage

• The dynamics are passive/linear everywhere except at spike times

• Every time the neuron resets, we say the neuron has fired a spike:

(while V < Vthreshold)Passive Dynamics:

Reset Rule (mathematical):

Reset Rule (numerical):



The Leaky Integrate and Fire Model – Current Threshold

• How much current does it take to make an LIF neuron spike? 

• For time-independent Iext: 

• Thus, the neuron will therefore never spike if the current is below a current threshold:
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The Leaky Integrate and Fire Model – Current Threshold

• How much current does it take to make an LIF neuron spike? 

• For purely passive dynamics (i.e., ignoring voltage threshold):

• For time-independent Iext (already derived in previous lecture): 

• Thus, the neuron will never spike if the current is below a current threshold:



The Leaky Integrate and Fire Model – f-I Curve

• Given a constant current input, we have the following solution (while under threshold):

• Assume that the current input is strong enough to cause spikes. If the neuron has just spiked at time t=0, when 
will it spike next?

• The f-I curve describes the spike frequency as a function of current input. Using our expression for T and that 
f=1/T, we have:

 



The Leaky Integrate and Fire Model – f-I Curve

• Given a constant current input, we have the following solution (while under threshold):

• Assume that the current input is strong enough to cause spikes. If the neuron has just spiked at time t=0, when 
will it spike next? To answer this, we need to insert the following boundary conditions in the above equation:

T



The Leaky Integrate and Fire Model – f-I Curve

• Given a constant current input, we have the following solution (while under threshold):

• Assume that the current input is strong enough to cause spikes. If the neuron has just spiked at time t=0, when 
will it spike next? To answer this, we need to insert the following boundary conditions in the above equation:

• T is the interspike interval, the firing rate is f=1/T – note that the neuron will fire at T, 2T, 3T, etc.

T



The f-I Curve

For currents above the 
spiking threshold the 
interspike interval T is:



The f-I Curve

For currents above the 
spiking threshold the 
interspike interval T is:

Or equivalently:



The f-I Curve

For currents above the 
spiking threshold the 
interspike interval T is:

So the f-I curve must be:

Or equivalently:

For currents below threshold the neuron never spikes….



The f-I Curve – LIF vs Hodgkin-Huxley

Leaky Integrate and Fire (Analytical Solution)
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The f-I Curve – LIF vs Hodgkin-Huxley

Leaky Integrate and Fire (Analytical Solution) Hodgkin-Huxley (Numerical Calculation)
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The f-I Curve – LIF vs Hodgkin-Huxley

• For strong input currents, using log(1+1/x) = 1/x (for large x):

Leaky Integrate and Fire (Analytical Solution) Hodgkin-Huxley (Numerical Calculation)
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The Leaky Integrate and Fire Model - Summary

• The LIF model combines a mechanistic approach to modelling passive membrane dynamics with a 
phenomenological approach to modelling action potentials

• This makes it more computationally efficient and analytically tractable compared to the HH model

• The HH model doesn’t have a well-defined voltage threshold - the LIF model is unrealistic in that sense. 
However, both HH and LIF have a well-defined current threshold…

• The basic LIF model is too simple to capture various features of biological neurons, however it can be 
augmented in order to model relevant features of biological neurons (refractory period, spike rate 
adaptation, etc.)

• For most large-scale simulations of spiking networks, variants on the LIF model are the standard choice



Synapses

• Neurons communicate via synapses

• Up until now, we have considered current that flows from an electrode into a neuron, or 
through voltage-gated ion channels

• Do synapses behave like electrodes, or do they behave in a different manner? How can 
we model them?

• Understanding this is crucial for making sense of how neurons communicate with one 
another, and how networks of neurons behave



Synapses

• Synapses “connect” one neuron’s axon to another’s dendrite 
(usually!) They are the means by which neurons communicate

• They don’t physically connect, but instead release 
neurotransmitter across a small gap called the synaptic cleft. 

• The neurotransmitter then binds to the postsynaptic cell 
membrane, causing currents to flow into the cell



Dale’s Principle

• Each neuron only releases one kind of neurotransmitter across all of its synapses 
(Dale’s Principle; there are occasional exceptions)

“It is to be noted, further, that in the cases for which direct evidence is already 
available, the phenomena of regeneration appear to indicate that the nature of the 
chemical function, whether cholinergic or adrenergic, is characteristic for each 
particular neurone, and unchangeable” (Henry Dale, 1934)

"I proposed that Dale’s Principle be defined as stating that at all the axonal branches 
of a neurone, there was liberation of the same transmitter substance or substances.“  
(John Eccles, 1974)

For our purposes, each neuron is either excitatory or inhibitory!



Modelling Synapses
• Synapses function in a fundamentally different manner to injected currents:

• When an action potential arrives at the pre-synaptic side, molecules called neurotransmitter are released into 
the synaptic cleft

• The neurotransmitters diffuse across and bind to the post-synaptic cell membrane, which causes ion channels 
to open and current to flow into the post-synaptic cell



Synaptic Currents – Conductance-Based Models
• A simple model for the synaptic current is:

• gsyn(t) is the post-synaptic membrane conductance, V is the post-synaptic membrane potential, Esyn is the 
postsynaptic reversal potential
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Synaptic Currents – Conductance-Based Models
• A simple model for the synaptic current is:

• gsyn(t) is the post-synaptic membrane conductance, V is the post-synaptic membrane potential, Esyn is the 
postsynaptic reversal potential

• gsyn(t) captures the opening and closing of the ion channels due to neurotransmitter binding, which changes 
the conductance of the post-synaptic membrane temporarily

• Esyn is the post-synaptic voltage at which no net current will flow through these ion channels. 

• For example, excitatory synapses have a reversal potential of 0 mV, because they let both potassium (-80 mV) 
and sodium (+50 mV) flow through. Inhibitory synapses have a reversal potential of around -80 mV, because 
they let chloride (-75 mV) or potassium (-80 mV) flow through.



The Main Synaptic Currents/Receptors



Synaptic Currents – Conductance-Based Models

• We modelled the synaptic current as:

• A neuron with passive membrane potential dynamics will respond to this synaptic current as:

• But we haven’t specified gsyn(t) yet. As usual there are many possible models, ranging from biologically 
detailed to heavily simplified approximations.

• Note also that we could use a Hodgkin Huxley model for the membrane dynamics.



Synaptic Conductance – Delta Model

• One way to model synaptic conductances is to model all of the complicated biophysics of ion channels, 
vesicles, diffusion across the synaptic cleft, etc. Usually we opt for much simpler models.

• One of the simplest models for the synaptic conductance is the Dirac delta function (an instantaneous pulse):

   

  

where          are presynaptic spike times and            is the magnitude of post-synaptic conductances

This model is useful for analytical calculations, but is too simple to capture many interesting phenomena (such 
as the slow timecourse of NMDA or GABAb conductances)



Synaptic Conductance – Exponential Model

• An alternative model treats the conductance as:

   

     



Synaptic Conductance – Exponential Model

• An alternative model treats the conductance as:

   

     

Heaviside 
step function:



Synaptic Conductance – Exponential Model

• An alternative model treats the conductance as:

   

     

• This models synaptic conductance as an instantaneous rise followed by an exponential decay for each spike

• This makes some sense – neurotransmitter will be quickly released and bind to the postsynaptic cell 
membrane, causing ions to transiently flow through, with a roughly exponential time course

• It’s a reasonable approximation for AMPA or GABAa (which are fast)

Heaviside 
step function:



Synaptic Currents – Rise and Decay Times
• Not all synaptic currents can be fit to a simple exponential. Some have slow rise times and/or multiple decay 

times

voltage-clamped 
postsynaptic currents
      



Synaptic Currents – Rise and Decay Times
• Not all synaptic currents can be fit to a simple exponential. Some have slow rise times and/or multiple decay 

times

voltage-clamped 
postsynaptic currents
      

Exponential Dual Exponential



Accounting for Multiple Rise and Decay Times
• A yet more flexible model assumes three separate time constants (1 rise + 2 decay):

• This model can replicate the time courses of the main excitatory (AMPA, NMDA) and inhibitory (GABAa, 
GABAb) synaptic currents

• Note: the models we have considered are phenomenological – they fit a curve to the observed time courses 
without positing a biological/physical mechanism

• More complex mechanistic models consider voltage-dependence of synaptic conductances, vesicle release, 
diffusion of neurotransmitter, and many other details (we won’t cover these in this course!)

rise of conductance fast decay slow decay



Example - Delta Synapse (Excitatory) 

presynaptic spike time
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Example - Delta Synapse (Excitatory) 

presynaptic spike time

excitatory reversal potential 



Example - Delta Synapse (Inhibitory) 

inhibitory reversal potential 
presynaptic spike time



Example - Delta Synapse (Inhibitory) 

What happens if you hold the membrane potential at the excitatory reversal potential (e.g., 
via voltage clamp)?



Example - Delta Synapse (Inhibitory) 

inhibitory reversal potential 

presynaptic spike time

What happens if you hold the membrane potential at the excitatory reversal potential (e.g., 
via voltage clamp)?

This voltage clamp technique is used experimentally to infer excitatory and 
inhibitory synaptic currents entering a neuron!

excitatory reversal potential 



Summary - Synapses

• Neurons communicate via synapses

• When an action potential arrives at the pre-synaptic side, a cascade of biochemical events 
causes molecules called neurotransmitters to be released into the synaptic cleft

• These molecules bind to the post-synaptic cell membrane, causing ion channels to open

• There are two main types of synapse, excitatory and inhibitory, that release different 
kinds of neurotransmitter that elicit positive or negative currents 

• There are a wide range of models for synapses, ranging from complex biophysical models 
to extremely simple phenomenological models



Summary – Combining Neuron and Synapse Models

• We have so far considered two neuron models: Hodgkin-Huxley and leaky integrate and fire

• We have also considered multiple synapse models at varying levels of abstraction

• How do we choose an appropriate set of models for a given application?

• Answer: use the simplest possible models that can capture the phenomena in question

• It is rare to see a large-scale network models using Hodgkin-Huxley neurons and/or biophysically-
detailed synapses (but see e.g. the Human Brain Project for a counterexample)

• The notion of biological plausibility is subjective – to an AI researcher deep networks are 
biologically plausible, but to a molecular biologist the Hodgkin-Huxley model is overly simplified…



• Neuronal Dynamics Ch. 1&2 (Gerstner) 
https://neuronaldynamics.epfl.ch/online/index.html

• Theoretical Neuroscience Ch. 5-6 (Dayan and Abbott)

http://www.gatsby.ucl.ac.uk/~lmate/biblio/dayanabbott.pdf

• Mathematical Foundations of Neuroscience Ch. 1 (Ermentrout and Terman)

http://www.math.pitt.edu/~bdoiron/assets/ermentrout-and-terman-ch-1.pdf

• Dynamical Systems in Neuroscience Ch. 1-2 (Izhikevich) 
https://www.izhikevich.org/publications/dsn.pdf
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