
Justice, Fairness, Bias (Part 2)
The Big Three
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De-biasing Algorithms

• Increasing awareness about different types of bias is essential.

• We will now have a closer look at how to design an AI system that would 
not discriminate.
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Algorithmic Fairness

• We can talk about fairness when people are not discriminated against 
based on their membership to a specific group.

• Fairness definition? The most famous discussion about fairness 
definitions come from Arvind Narayanan.

• There are two main categories: group fairness (statistical fairness) and 
individual fairness.

621 Definitions of Fairness -- https://www.youtube.com/watch?v=jIXIuYdnyyk

https://www.youtube.com/watch?v=jIXIuYdnyyk


Fairness through Blindness

• We can ignore all irrelevant or protected attributes in our dataset.
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Some Statistical Measures

• Predicted outcomes

• Predicted and actual outcomes

• Predicted probabilities and actual outcomes
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Predicted Outcomes  -- Statistical Parity

• We aim to equalize two groups S (e.g., protected set) and T (e.g., 
complement of S) at the level of predicted outcomes.

• Conditional statistical parity extends this one by allowing conditioning 
on a set of factors.
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P[O=1|S] = P[O=1|T]

P[O=1|X, S] = P[O=1|X, T]



Statistical Parity  -- Problems

• Self-fulfilling Prophecy

'A self-fulfilling prophecy is the psychological phenomenon of someone 
"predicting" or expecting something, and this "prediction" or expectation 
coming true simply because the person believes or anticipates it will and 
the person's resulting behaviors align to fulfill the belief. This suggests that 
people's beliefs influence their actions.'

Example: Give loans to people in S who are least credit-worth
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Statistical Parity  -- Problems

• Reverse Tokenism

Example: Pick a token from T, who is more qualified than any member of 
S, and deny their loan. Then, you have an excuse to deny a loan for a 
member of S. 
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Predicted and Actual Outcomes

• COMPAS, Gender Shades examples fall within this category.

• Error rate balance suggests that FNR and FPR should be equal across 
different groups.
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FP Error Rate (Predictive Equality)

FN Error Rate (Equal Opportunity)

P[O=1|Y=0, S] = P[O=1|Y=0, T]

P[O=0|Y=1, S] = P[O=0|Y=1, T]

P[O=1|Y=i, S] = P[O=1|Y=i, T]

Equalized Odds



Predicted and Actual Outcomes

• COMPAS, Gender Shades examples fall within this category.

• Predictive Parity (PPV) : The probability of a subject with positive 
predictive value to truly belong to the positive class.

13

P[Y=1|O=1, S] = P[Y=1|O=1, T] Outcome Test



Gender Shades
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Predicted Probabilities and Actual Outcomes

• Calibration is one of the well-known definitions in this category.

• Calibration focuses on the fraction of correct positive predictions.

• For any given predicted probability score r in [0,1], the probability of 
having actually a good outcome should be equal for S, T:
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P[Y=1|R=r, S] = P[Y=1|R=r, T]



Calibration Example
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Individual Fairness

• Treat similar individuals similarly.

• Fairness is task-specific, similarity measure should be defined for the 
purpose of the task.

• We should aim for a similar distribution over outcomes.

• Problem: Which factors to consider to represent individuals? How to 
define a distance metric?
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Data Justice
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Data Justice
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Data Justice: Power Asymmetries
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Watchdogs

For Data Justice
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Algorithmic Justice League – AJL (USA)

• The Algorithmic Justice League is an organization that combines art, 
research, policy guidance and media advocacy to illuminate the social 
implications and harms of AI.

• AJL is a cultural movement towards
• Equitable AI (agency and control, affirmative consent, centering justice) 

• Accountable AI (transparency, continuous oversight, redress harms)

• AJL recognizes the limitations of Ethical AI, which does not create any 
mandatory requirements or ban certain uses of AI. They focus on 
creating action.
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https://www.ajl.org/ 
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Algorithmic Justice League – AJL

• They lead projects, workshops. 

• They provide algorithmic audits.

• You can join AJL to act now, donate, 
expose AI harms and biases, spread 
the word and so on.
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Ada Lovelace Institute (UK)

• An independent research institute

• They have a mission to ensure data and AI work for people and 
society

• They represent people to fight against power asymmetries

• Core values: research, policy and practice

24https://www.adalovelaceinstitute.org/ 
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Algorithm Watch (Germany)

• Algorithm Watch is a non-profit research and advocacy organization.

• They analyze automated decision-making systems to measure their 
impact on society.

• Algorithm Watch maintains AI Ethics Guidelines Global Inventory that 
includes 173 guidelines (April 2020).

• They have many projects to investigate how algorithms work in practice.
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https://inventory.algorithmwatch.org/ 
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Algorithm Watch

• An initial evaluation done in 2019 shows that AI ethics guidelines lack 
enforcement mechanisms (10 out of 160 mention this).

• Policies mostly include voluntary commitments/general recommendations.

• Other Issues: Guidelines come from wealthy countries.

• "The question arises whether guidelines that can neither be applied nor 
enforced are not more harmful than having no ethical guidelines at all. 
Ethics guidelines should be more than a PR tool for companies and 
governments."
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https://algorithmwatch.org/en/ai-ethics-guidelines-inventory-upgrade-2020/
https://algorithmwatch.org/en/ethical-ai-guidelines-binding-commitment-or-simply-window-dressing/
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Algorithm Watch – Example Case

• A professional association (the Institute of Electrical and Electronics 
Engineers – IEEE) publishes "Ethically Aligned Design" in 2016.

• The report includes general principles about transparency, human rights, 
accountability and many others.

• Algorithm Watch approaches Facebook, Google and Twitter to challenge 
them about how they implement the IEEE principles.
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Summary

• Algorithmic Fairness
• Group Fairness

• Individual Fairness

• Data Justice

• Watchdogs
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