Al Auditing

Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal Algorithmic Auditing

Inioluwa Deborah Raji* Partnership on AI deb@partnershiponai.org

Margaret Mitchell Google

Jamila Smith-Loud Google Andrew Smart* Google andrewsmart@google.com

> Timnit Gebru _{Google}

Daniel Theron Google Rebecca N. White Google

Ben Hutchinson Google

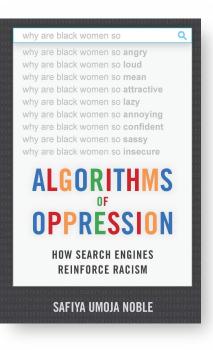
Parker Barnes Google

Inioluwa Deborah Raji, Andrew Smart, Rebecca N. White, Margaret Mitchell, Timnit Gebru, Ben Hutchinson, Jamila Smith-Loud, Daniel Theron, and Parker Barnes. 2020. Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* '20). Association for Computing Machinery, New York, NY, USA, 33–44.

What is an audit?

• Audits are tools for interrogating complex processes to determine whether they comply with company policy, industry standards or regulations.

Classifier	Metric	All	\mathbf{F}	\mathbf{M}	Darker	Lighter	DF	$\mathbf{D}\mathbf{M}$	\mathbf{LF}	$\mathbf{L}\mathbf{M}$
	PPV(%)	93.7	89.3	97.4	87.1	99.3	79.2	94.0	98.3	100
MCDT	Error Rate(%)	6.3	10.7	2.6	12.9	0.7	20.8	6.0	1.7	0.0
MSFT	TPR (%)	93.7	96.5	91.7	87.1	99.3	92.1	83.7	100	98.7
	FPR (%)	6.3	8.3	3.5	12.9	0.7	16.3	7.9	1.3	0.0
Face++	PPV(%)	90.0	78.7	99.3	83.5	95.3	65.5	99.3	94.0	99.2
	Error Rate(%)	10.0	21.3	0.7	16.5	4.7	34.5	0.7	6.0	0.8
	TPR (%)	90.0	98.9	85.1	83.5	95.3	98.8	76.6	98.9	92.9
	FPR (%)	10.0	14.9	1.1	16.5	4.7	23.4	1.2	7.1	1.1
IBM	PPV(%)	87.9	79.7	94.4	77.6	96.8	65.3	88.0	92.9	99.7
	Error Rate(%)	12.1	20.3	5.6	22.4	3.2	34.7	12.0	7.1	0.3
	TPR (%)	87.9	92.1	85.2	77.6	96.8	82.3	74.8	99.6	94.8
	FPR (%)	12.1	14.8	7.9	22.4	3.2	25.2	17.7	5.20	0.4



Why Internal Auditing?

- Deployed systems are audited for harm by investigators from outside the organizations.
- For data practitioners, it may be challenging to identify ethically significant consequences.
- The authors introduce a framework for algorithmic auditing that could be used throughout the development life-cycle.
- The goal is to close the accountability gap in the development and deployment of AI systems.

SMACTR: An Internal Audit Framework

Scoping	Mapping	Artifact Collection	Testing	Reflection	Post-Audit
Define Audit Scope	Stakeholder Buy-In	Audit Checklist	Review Documentation	Remediation Plan	Go / No-Go Decisions
Product Requirements Document (PRD)	Conduct Interviews	Model Cards	Adversarial Testing	Design History File (ADHF)	Design Mitigations
AI Principles	Stakeholder Map	Datasheets	Ethical Risk Analysis Chart		Track Implementation
Use Case Ethics Review	Interview Transcripts			Summary Report	
Social Impact Assessment	Failure modes and effects a	nalysis (FMEA)			

Figure 2: Overview of Internal Audit Framework. Gray indicates a process, and the colored sections represent documents. Documents in orange are produced by the auditors, blue documents are produced by the engineering and product teams and green outputs are jointly developed.

SMACTR: Scoping Stage

- Clarifying the objective of the audit,
- Reviewing the motivations and intended impact of the investigated system,
- Confirming the principles and values meant to guide product development.

	Scop	ing
Defin	e Audit S	соре
	ct Require nent (PRD	
Al Pri	nciples	
Use C	ase Ethic	s Review
Social	Impact As	sessment

SMACTR: Mapping Stage

- Checking the perspectives involved in the audited system.
- Failure modes and effects analysis (FMEA) starts in this stage.
- Semi-structured interviews should be conducted with people close to the development process.
- Risks should be prioritized for later testing.

	Mapping
Sta	akeholder Buy-In
Со	nduct Interviews
Sta	akeholder Map
Int	erview Transcripts
Fai	lure modes and effects an

"To treat fairness and justice as terms that have meaningful application to technology separate from a social context is therefore to make a category error, or as we posit here, an abstraction error."

Selbst, Andrew D. and Boyd, Danah and Friedler, Sorelle and Venkatasubramanian, Suresh and Vertesi, Janet, <u>Fairness and Abstraction in Sociotechnical</u> <u>Systems</u> (August 23, 2018). 2019 ACM Conference on Fairness, Accountability, and Transparency (FAT*), 59-68

SMACTR: Artifact Collection Stage

- Identifying and collecting all the required documentation from the product development process.
- Documentation can be distributed across different teams and stakeholders.
- The audit checklist is the main artifact in this stage.

Audit Checklist	
Model Cards	
Datasheets	

SMACTR: Testing Stage

- The active testing activity starts here.
- Testing is based on a risk prioritization from the FMEA.
- Adversarial testing focuses in finding vulnerabilities.
- Adversarial testing also informs ethical risk analysis to identify the severity of a failure.

Adversarial Testing
Ethical Risk Analysis Char

SMACTR: Reflection Stage

- Testing results are analyzed considering ethical expectations clarified in the audit scoping.
- The main artifact is a mitigation plan jointly developed by the audit and engineering teams.
- The summary (audit) report should be compared qualitatively and quantitatively to the ethical expectations.

Reme	diation Plan
Desig	n History File (ADHF)
Sumn	nary Report

SMACTR: An Internal Audit Framework

Scoping	Mapping	Artifact Collection	Testing	Reflection	Post-Audit
Define Audit Scope	Stakeholder Buy-In	Audit Checklist	Review Documentation	Remediation Plan	Go / No-Go Decisions
Product Requirements Document (PRD)	Conduct Interviews	Model Cards	Adversarial Testing	Design History File (ADHF)	Design Mitigations
AI Principles	Stakeholder Map	Datasheets	Ethical Risk Analysis Chart		Track Implementation
Use Case Ethics Review	Interview Transcripts			Summary Report	
Social Impact Assessment	Failure modes and effects a	nalysis (FMEA)			

Figure 2: Overview of Internal Audit Framework. Gray indicates a process, and the colored sections represent documents. Documents in orange are produced by the auditors, blue documents are produced by the engineering and product teams and green outputs are jointly developed.

ICO - Guidance on the Al Auditing Framework

A Risk-based Perspective

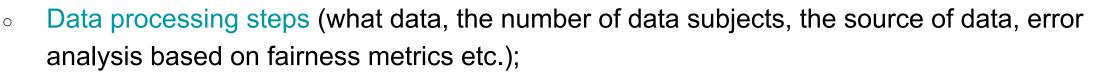
Version 1: https://ico.org.uk/media/2617219/guidance-on-the-ai-auditing-framework-draft-for-consultation.pdf

Φ utli da

- ICO is focusing on a risk-based approach to AI
 - Assessing the risks to the rights and freedoms of individuals that may arise
- Guidance prepared for:
 - an audience with a compliance focus (e.g., data protection officers (DPOs), ICO's own auditors)
 - technology specialists (e.g., developers)
- Four main topics are covered:
 - Accountability and governance of Al
 - Fair, lawful, transparent processing
 - Data minimisation and security
 - Rights in AI systems
- Controls: Preventative, Detective, Corrective

Part I: Accountability and Governance of AI

- Data protection impact assessments (DPIAs)
 - How you will collect, store and use data;
 - The volume, variety, and sensitivity of the data;
 - The nature of your relationship with individuals;
 - The intended outcomes for individuals/society;



- What could the potential risks be?
- Senior management, including DPOs, are accountable for understanding and addressing technical complexities of AI systems.

Part I: Accountability and Governance of AI

- Controller/joint controller/processor responsibilities
 - Controller decides on the purposes and means of processing
 - Processor works with personal data under the instruction of another organisation
 - Joint controllers determine the purposes and means of processing with another organisation
- Personal data is processed at several different phases, you may have different roles for some of the phases.

Part I: AI-related trade-offs based on social context

- Privacy vs statistical accuracy
 - Collecting more data points about each person -> greater risks
 - Improving statistical accuracy -> compliance with the fairness principle
- Statistical accuracy and discrimination
 - Preventing discriminatory outcomes -> increasing statistical errors (e.g., statistical parity)

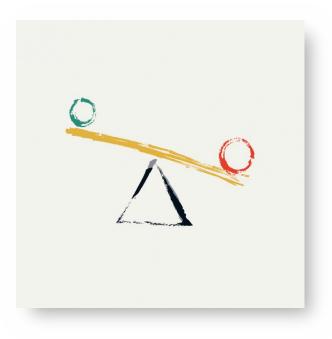
0	0

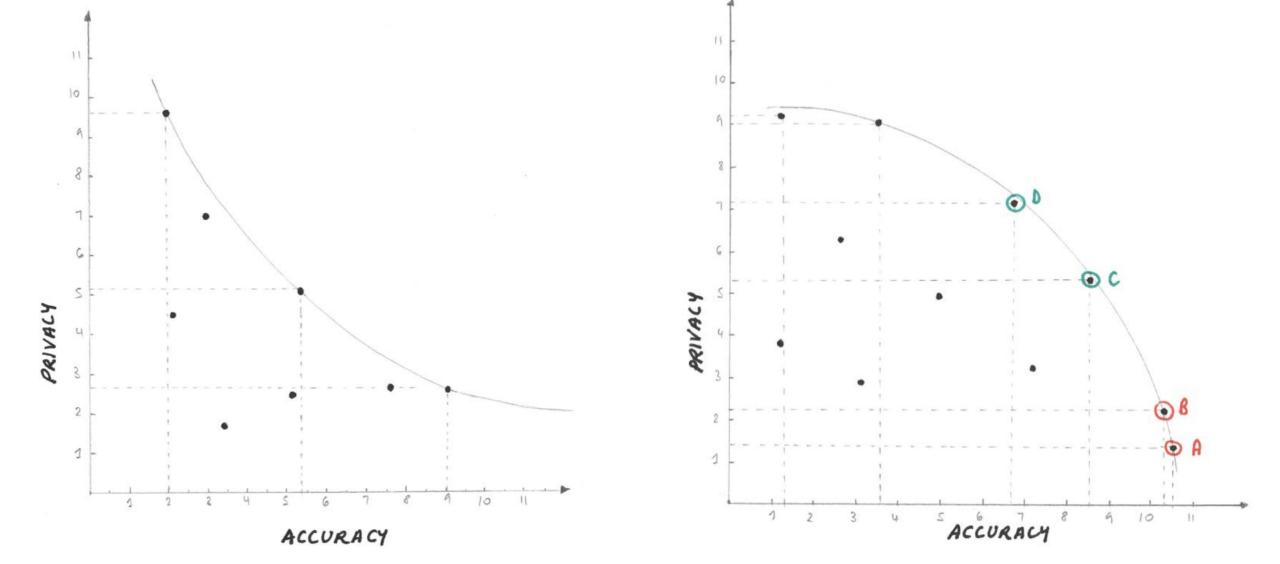
Part I: AI-related trade-offs based on social context

- Explainability and statistical accuracy
 - Black box models, accurate but non-explainable models (e.g., image recognition)
 - ExplAIn project guidance (use black box models if you are aware of the risks, and you have tools to interpret the results with some level of explainability)
- Explainability, exposure of personal data, and

commercial security

- Disclosing personal information while providing explanations (e.g., attacks on trained models)
- Disclosing proprietary information about how AI works

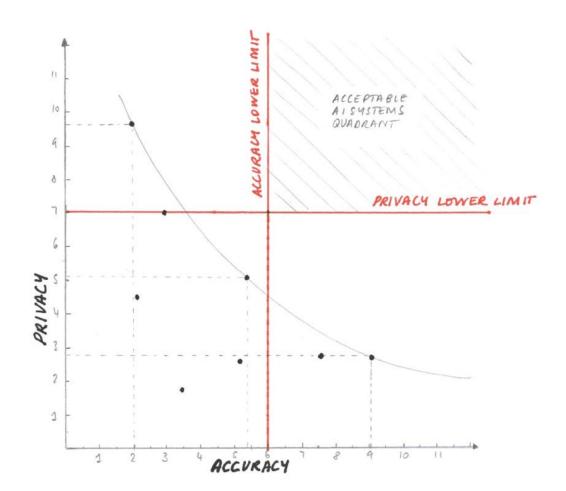




Privacy vs Accuracy

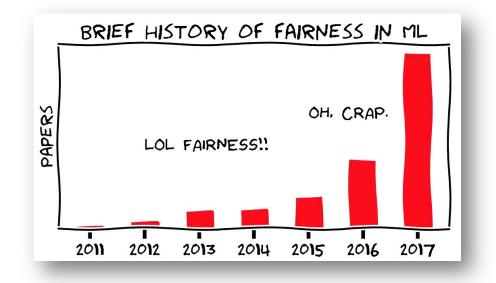
Privacy vs Accuracy

- There is no AI system satisfying lower limits.
- This system should not be deployed.
- What to do?
 - Use other methods/data sources
 - Reformulate the problem
 - Don't attempt to use AI to solve this!



- Lawful bases defined in Article 6 of the GDPR:
 - Consent, contract, legal obligation, vital interests, public task, legitimate interests

- Lawful bases for processing personal data
 - should be decided at the beginning
 - should be included in the privacy notice
 - different for development/deployment phases



Assessing and improving AI system performance

- Statistically informed guesses should be recorded separately
- The provenance of data and AI used to generate the inference should be recorded
- Recording inferences based on inaccurate data is important
- Checking statistical accuracy over time is needed (danger: concept/model drift)

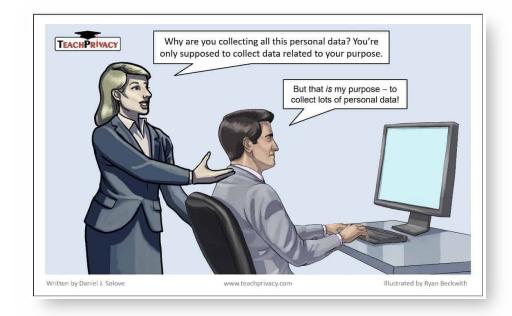
- Mitigating potential discrimination
 - imbalanced training data problem
 - training data reflecting past discrimination (danger: proxy variables)
- Fairness measures (not compatible with each other)
 - Anti-classification (excluding protected characteristics)
 - Outcome / error parity

(equal numbers of positive/negative outcomes; equal numbers of errors to different groups)

Mitigating the risks

- Working with representative data
- Senior management is responsible for signing-off the chosen approach to manage discrimination risk; and be accountable for its compliance with data protection law.
- Robust testing, monitoring, risk management policies/organisational policies should be in place

- Two security risks:
 - loss or misuse of the large amounts of personal data
 - software vulnerabilities to be introduced
- Data sharing risks (with internal/external entities)
- Security risks introduced by externally maintained software



Mitigating the risks

- Internal/external code security measures
- Separating the ML development environment from the rest

of IT infrastructure

- VMs/containers
- Changing programming languages before deployment

- Privacy attacks on ML models
 - model inversion attacks¹
 - membership inference attacks
 - whitebox/blackbox attacks

Figure 1: An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

- Mitigating the risks
 - assessing the training data if it contains identifiable personal data
 - avoiding overfitting in ML models
 - preventing blackbox attacks: monitoring API calls
 - preventing whitebox attacks: less control on the deployed model on the client-side

Data minimisation – Article 5(1)(c) of the GDPR

Personal data shall be adequate, relevant and limited to what is necessary in relation to the purposes for which they are processed.

Ensuring data minimisation:

- <u>Training stage</u>: Using feature selection techniques to select features which will be useful
- <u>Training stage</u>: Using privacy-enhancing methods (perturbation/adding noise and federated learning)
- <u>Inference stage</u>: less human-readable inputs, local inferences, privacy-preserving query approaches

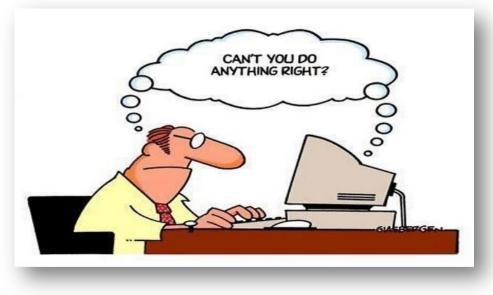
Part IV: Rights in AI Systems

- individual rights requests for training data
 - right of access / rectification / erasure ('right to be forgotten') / data portability / being informed about the collection and use of their personal data
- individual rights requests for AI outputs
 - any model outputs that constitute personal data is subject to the rights of access, rectification, erasure
 - inferred personal data is out of scope of the right to portability

HUMAN RIGHTS	_
ROBOT RIGHTS	

Part IV: Rights in AI Systems

- ensuring meaningful human input in non/partly automated decisions
 - requires training of staff
- ensuring meaningful human review of solely automated decisions
 - requires training of staff



R D

- ICO is focusing on a risk-based approach to Al
 - Assessing the risks to the rights and freedoms of individuals that may arise
- Guidance prepared for:

0

 \bullet

- an audience with a compliance focus (e.g., data
 - More information in the guideline!
- Four main topics are covered:
 - Accountability and governance of Al
 - Fair, lawful, transparent processing
 - Data minimisation and security
 - Rights in AI systems
- Controls: Preventative, Detective, Corrective

Summary

- Al Auditing frameworks are becoming important.
- Internal auditing: SMACTR Framework
- External auditing: ICO Guidance
- Others: Non-profit organizations such as Algorithmic Justice League