Evaluating and Mitigating Biases in Machine Learning Zee Talat ztalat@ed.ac.uk ### Learning outcomes - Understand the current landscape of evaluating generative Al - Become familiar with some of the research gaps, and their types - Become familiar with some of the concerns with bias evaluation metrics - Which are really concerns with our infrastructures #### Al Policy for Application * While we encourage people to use AI systems during their role to help them work faster and more effectively, please do not use AI assistants during the application process. We want to understand your personal interest in Anthropic without mediation through an AI system, and we also want to evaluate your non-AI-assisted communication skills. Please indicate 'Yes' if you have read and agree. #### **Evaluating the Social Impact of Generative AI Systems** in Systems and Society Irene Solaiman* Hugging Face Zeerak Talat* Independent Researcher William Agnew University of Washington Lama Ahmad OpenAI **Dylan Baker** DAIR Su Lin Blodgett Microsoft Research Hal Daumé III University of Maryland Jesse Dodge Allen Institute for AI Ellie Evans Cohere Sara Hooker Cohere For AI Yacine Jernite Hugging Face Alexandra Sasha Luccioni Hugging Face Alberto Lusoli Simon Fraser University Margaret Mitchell Hugging Face Jessica Newman UC Berkeley Marie-Therese Png Oxford University Andrew Strait Ada Lovelace Institute Aposotol Vassilev NIST #### **Evaluating the Social Impact of Generative AI Systems** in Systems and Society | Irene Solaiman ¹ | * Zeerak Talat ² * | William Agnew ³ | ${f Lama~Ahmad}^4$ | | | |---|-------------------------------|----------------------------|--|--|--| | Dylan Baker 5 | Su Lin Blodgett ⁶ | Canyu Chen ⁷ | Hal Daumé III ⁸ | | | | Jesse Dodge ⁹ | Isabella Duan ¹⁰ | Ellie Evans ¹¹ | Felix Friedrich 12,13 | | | | $\textbf{Avijit Ghosh}^1$ | Usman Gohar 14 | ${f Sara\ Hooker}^{15}$ | $\mathbf{Yacine\ Jernite}^1$ | | | | Ria Kalluri 16 | Alberto Lusoli ¹⁷ | Alina Leidinger 18 | Michelle Lin ^{19,20} | | | | Xiuzhu Lin 11 | Sasha Luccioni ¹ | Jennifer Mickel 20 | $\mathbf{Margaret}\;\mathbf{Mitchell}^1$ | | | | $Jessica Newman^{21}$ | Anaelia Ovalle 22 | Marie-Therese Png | Shubham Singh ²⁴ | | | | Andrew Strait 25 Lukas Struppek 12,26 Arjun Subramonian 22 | | | | | | ¹Hugging Face, ²Mohamed Bin Zayed University of Artificial Intelligence, ³Carnegie Mellon University, ⁴OpenAI, ⁵DAIR, ⁶Microsoft Research, ⁷Illinois Institute of Technology, ⁸University of Maryland, ⁹Allen Institute for AI, ¹⁰University of Chicago, ¹¹Independent Researcher, ¹²TU Darmstadt, ¹³hessian.AI, ¹⁴Iowa State University, ¹⁵Cohere for AI, ¹⁶Stanford University, ¹⁷Simon Fraser University, ¹⁸University of Amsterdam, ¹⁹Mila - Quebec AI Institute, ²⁰University of Texas at Austin, ²¹University of California, Berkeley, ²²University of California, Los Angeles, ²³Oxford University, ²⁴University of Illinois Chicago, ²⁵Ada Lovelace Institute, ²⁶DFKI ## What is "Social Impact" - Social impact, broadly understood in the context of sociotechnical systems, is how such technologies alter and fortify existing norms - Harms and risks of harms of these systems often get overemphasised over the norms which are fortified and reified through the systems. ## What is a Generative AI System? # What is a Generative AI System? Generative AI systems are machine learning models trained to generate content, often across modalities. Generative AI has been widely adopted for different and varied downstream tasks by adapting and fine-tuning pretrained models. #### **Modalities in Focus** - Text - Image - Video - Audio - Multimodal - Other (future) modalities ### Social Impact Categories: Base System - Biases, Stereotypes, Representational Harms - Cultural Values and Sensitive Content - Disparate Performance - Privacy and Data Protection - Environmental Cost and Carbon Emissions - Labor Impact - Financial Costs ## Zoom in: Bias, Stereotypes, Representational Harm | Modality | Suggested Evaluation | What it's evaluating | Considerations | |----------|---|--|---| | Language | Word Embedding
Association Test (WEAT) | Associations and word embeddings based on | Although based in human | | | Word Embedding Factual
Association Test (WEFAT) | Implicit Associations Test
(IAT) | associations,
general societal
attitudes do not | | | Sentence Encoder
Association Test (SEAT)¹ | | always represent
subgroups of
people and
cultures. | | | Contextual Word
Representation
Association Tests for
social and intersectional
biases | | | | | StereoSet | Protected class
stereotypes | Automating
stereotype detection
makes
distinguishing | | | Crow-S Pairs | Protected class stereotypes | harmful stereotypes difficult. It also raises many false positives and can flag relatively neutral associations | | | HONEST: Measuring
Hurtful Sentence
Completion in Language
Models | Protected class
stereotypes and hurtful
language | based in fact (e.g. population x has a high proportion of lactose intolerant people). | | Image | Image Embedding
Association Test (iEAT) | Embedding associations | | | |-------|--|---|--|--| | | Dataset leakage and model leakage | Gender and label bias | | | | | Grounded-WEAT Grounded-SEAT | Joint vision and language embeddings | | | | | CLIP-based evaluation Human evaluation | Gender and race and class
associations with four
attribute categories
(profession, political,
object, and other.) | | | | Video | | |-------|--| | | | | | | | | | | | | ### Zoom in: Bias, Stereotypes, Representational Harm | Component | Suggested Eval | Qual or Quant | Year Published | Class(es) Highlighted | Attribute Highlighted | Language | Code or Dataset Link | Considerations | | |---|---|----------------------|----------------|--|-----------------------|--|---|---|--| | Associations and word embeddings based on Implicit Associations Test (IAT) | Word Embedding Association Test (WEAT) | Quant | 2017 | | | | AllenNLP Docs | | | | | Word Embedding Factual Association Test
(WEFAT) | | | | | | | | | | | Sentence Encoder Association Test (SEAT) | Quant | 2019 | Gender, Race,
Gender+Race
Intersectional, Age,
Disability | | | | Although based in human associations, general societal attitude do not always represent subgroups of people and cultures. | | | | Contextualized Embedding Association Test (CEAT | Quant | 2021 | Gender, Race | | English | | | | | | Contextual Word Representation Association Tests for social and intersectional biases | Quant | 2019 | | | | | | | | General stereotypes | Context Association Set / StereoSet | Quant | 2020 | Gender, Race, Religion | Occupation | English | https://github.
com/moinnadeem/Stereo
Set | Automating stereotype detection makes distinguishing harmful
stereotypes difficult. It also raises many false positives and can
flag relatively neutral associations based in fact (e.g. population
has a high proportion of lactose intolerant people). | | | | Crow-S Pairs | Quant | 2020 | Race, Color, Gender,
sexual orientation,
religion, age, nationality,
disability, physical
appearance,
socioeconomic status | | English | https://github.com/nyu-
mll/crows-pairs | | | | | Embedding Coherence Test | Quant | 2019 | Gender | Name | English | AllenNLP Docs | | | | | HONEST: Measuring Hurtful Sentence Completion in Language Models | Quant | 2021 | Gender | | English, Italian,
French, Portuguese,
Romanian, Spanish | https://github.
com/milanlproc/honest | | | | Correlations, sentiment, and co-occurrences across classes | HolisticBias | Quant | 2022 | Ability, Age, physical
appearance, Cultural,
Gender, Nationality,
Nonce, Political
ideologies, sexual
orientation,
socioeconomic status,
race, ethinicity, religion | | | | | | | | Log Probability Bias Score | Quant | 2019 | Gender | Occupation | | https://github.
com/keitakurita/contextua
_embedding_bias_measu
re | | | | | BOLD Dataset | Quant | 2021 | Gender, Race, Religion,
Political Ideology | Occupation | English | https://github.
com/amazon-
research/bold | | | | Attribute-centric measurements | Occupational associations | Quant | 2021 | Gender (intersectional with race) | Occupation | | | | | | | Bias Score | Quant | 2019 | Gender | Occupation | English | | Unclear whether esp quantitative metric transfer well to other | | | | WinoBias | Quant | 2018 | Gender | Occupation | English | http://winobias.org | | | | | Discovery of correlations (DisCo) | Quant | 2021 | Gender | | | | | | | Class-specific measurements | Frequency of gendered words | Quant | 2020 | Gender | | English | | (esp nonbinary) classes (see https://arxiv.org/abs/2112.07447). | | | Section - Production Control of the | WinoMT | Quant | 2019 | Gender | | English, Spanish,
French, Italian,
Russian, Ukrainian,
Hebrew, Arabic | | Severe accuracy issue across languages (https://arxiv.
org/abs/2106.06683) | | ### Zoom in: Environmental Impacts Figure 1: A framework for assessing the greenhouse gas (GHG) emissions impacts of machine learning. We distinguish between three categories (A, B, and C) with different kinds of potential emissions impacts, estimation uncertainties, and associated decarbonization levers. Green denotes effects relating to reductions in GHG emissions, and magenta to increases in emissions. ### Social Impact Categories: People + Society - Trustworthiness and Autonomy - Trust in Media and Information - Overreliance on Outputs - Personal Privacy and Sense of Self - Inequality, Marginalization, and Violence - Community Erasure - Long-term Amplifying Marginalization by Exclusion (and Inclusion) - Abusive or Violence Content ## Social Impact Categories: People + Society - Concentration of Authority - Militarization, Surveillance, and Weaponization - Imposing Norms and Values - Labor and Creativity - Intellectual Property and Ownership - Economy and Labor Market - Ecosystem and Environment - Widening Resource Gaps - Environmental Impacts #### **Social Impact Categories:** People + Society - Concentration of Author - Militarization, Surveilla - Imposing Norms and V - Labor and Creativity - Intellectual Property ar - Economy and Labor M - Ecosystem and Enviror - Widening Resource Ga - Environmental Impacts #### OpenAl quietly removes ban on military use of its Al tools # Quick questions break ### **Usability of Bias Evaluation Metrics** "Actionability refers to the degree to which a [bisa] measure's results enable decision-making or intervention; that is, results from actionable bias measures should facilitate informed actions with respect to the bias under measurement." – Delebolle et al. (2024) ### **Usability of Bias Evaluation Metrics** "Actionability refers to the degree to which a [bisa] measure's results enable decision-making or intervention; that is, results from actionable bias measures should facilitate informed actions with respect to the bias under measurement." – Delebolle et al. (2024) #### **Desiderata for Actionability** #### We want clarity(!) of - Motivation for the bias measure - The underlying bias construct - Intervals and ideal results - Intended uses - Reliability ### Actionability and Accountability - Accountability is for "establish[ing] informed and consequential judgments of... Al systems" - Birhane et al., 2024. "Al auditing: The Broken Bus on the Road to Al Accountability." - And for ensuring that "responsible or answerable for a system, its behavior and its potential impacts" - Raji et al., 2020. Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing. - However, "Al audit studies do not consistently translate into more concrete objectives to regulate system outcomes." - Birhane et al., 2024. "Al auditing: The Broken Bus on the Road to Al Accountability." ## Actionability and Transparancy - Transparency is about "what information about a model [or system] should be disclosed to enable appropriate understanding," - Liao and Wortman Vaughan. 2024. AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap. ## Actionability and Interpretability Interpretability as a field seeks to examine the process of arriving at a particular output ### Actionability and Measurement Validity - Consequential Validity: I.e., "identifying and evaluating the consequences of using the measurements obtained from a measurement model" - Jacobs and Wallach. 2021. Measurement and Fairness - Predictive Validity: "the extent to which measurements obtained from a measurement model are predictive of measurements of any relevant observable properties... thought to be related to the construct purported to be measured" - · Ibid. - Hypothesis validity: "the extent to which the measurements obtained from a measurement model support substantively interesting hypotheses about the construct purported to be measured" - Ibid. #### **Literature Review** - We search for papers that mention "fair," "bias," or "stereotyp*" and which co-occur with either "eval*" or "metric." - Remove irrelevant papers - Do a literature review of 146 papers from the ACL anthology | Motivation | \mathbf{R}_{Y} | \mathbf{R}_N | |---|------------------|----------------| | Lack of reliability of existing measures | 8 | 11 | | Measuring a missing or new bias | 8 | 6 | | Measuring in a new setting or modality | 14 | 16 | | Adjusting existing measures ¹¹ | 10 | 10 | | Measuring in a new language | 12 | 15 | | No or unclear motivation | 7 | 26 | | Total | 59 | 84 | Table 1: Motivations provided for new measures. Absolute counts in our collection (n=146) split into whether the authors discuss reliability (R_Y) or not (R_N) . #### **Question Time**