Compiling Techniques
Lecture 14: Building SSA Form



Reminder: Static Single-Assignment (SSA) Form

“A program is defined to be in Static Single-Assignment (SSA)
form if each variable is a target of exactly one
assignment statement in the program text.”

e Each assignment statement defines a unique name.

e Each use refers to a single name.



Representing Control Flow

X =0
if (a == 42)
X =X+ 1
else
X =3



Representing Control Flow

X =0 X, = 0
if (a == 42) if (a == 42)
X =X+ 1 X, = X, +
else —— else
X = 3 Xy = 3



Representing Control Flow

Control Flow
Graph (CFG)

X =0 X, = 0 \\\

if (a == 42) if (a == 42)
X =X +1 X2=X1+1 X, =
else —— else
X = 3 Xy = 3
basic
block




Representing Control Flow

X =0
if (a == 42)
X =X+ 1
else
X =3

X, = 0
if (a == 42)
X, = X, + 1
else
X. = 3

X, = 9(X;5%;)

y =X, +5




¢-function placement

Naive approach:

1. At each join point insert a ¢-function
for every variable name

2. Rename adding unique subscripts

Computes maximal SSA form

X, = @(X15%,)

Xy = 9(X,5X,)

redundant
¢-function



Dominators

p dominates q (p >> q, p dom q) iff
every path from the entry node b, to q
also visits p.

Dom(q) — set of nodes that dominate q.
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Dominators

p dominates q (p > q, p dom q) iff

every path from the entry node b, to q

also visits p.

Dom(q) — set of nodes that dominate q.

B B B

pomB) | B, |B,

B, B, B,
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dom Relation

reflexive

a dom a
antisymmetric

adomb ANbdoma = a=b
transitive

adomb A bdomc = adomc

l.e. it's a partial order

Dominator Tree

BO
,/\v\A
IDom B 1 B 5 B 6
/R
BZ B3 B4 ]
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Dominance frontier

p strictly dominates q iff
p dominates g and p # q.

q is in dominance frontier of p iff
e p domitates a predecessor of g.

e p does not strictly dominate q.

DF(p) — dominance frontier of p.

DF(B)
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Dominance frontier

p strictly dominates q iff
p dominates g and p # q.
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B,: x =0
Minimal SSA y=1
N —  —
B, B,: x
Idea
an assignment to x in the
node B introduces a ¢-function in T~
every node from DF(B) B B:y =y * 2
2 3
1. ¢-function placement \/
2. renaming B -
4
B B, B, B, B, B, B, B, B

DFB) ¢ |B,B, B, B, B,B, B, ¢
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Minimal SSA

Idea
an assignment to x in the
node B introduces a ¢-function in
every node from DF(B)

1. ¢-function placement
2. renaming

DFB) ¢ |B,B, B, B, B,B, B, ¢
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Minimal SSA

Idea
an assignment to x in the
node B introduces a ¢-function in
every node from DF(B)

1. ¢-function placement
2. renaming

DFB) ¢ B,B, B, B, B,B

BO: X = 0
y =1
/\
P (X, X) B,: x
X +1
B3:y =y * 2
¢y, Y)
B, | B, BG:X = ¢(X, X)
B6 1z
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Minimal SSA

Idea
an assignment to x in the
node B introduces a ¢-function in
every node from DF(B)

1. ¢-function placement
2. renaming

X = (X, X)
y oy, y)
X = X + 1

/\

DFB) ¢ B,B. B, B, B,B

)

B,:y = ¢(y, ¥y)
B,:x = ¢(x, Xx)
y = ¢y, y)
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Minimal SSA

Idea
an assignment to x in the
node B introduces a ¢-function in
every node from DF(B)

1. ¢-function placement
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X = @(X, X)
y oy, Y)
X =X +1
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Minimal SSA

Idea
an assignment to x in the
node B introduces a ¢-function in
every node from DF(B)

1.  ¢-function placement
2. renaming

DFB) ¢ B,B, B, B, B,B
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SSA forms

S

Maximal SSA
Introduce a ¢-function at every join node for every variable

Minimal SSA
Introduce a ¢-function at every join node for every variable where two distinct
definitions of the same name meet

Pruned SSA
Same as minimal SSA, but don'’t insert ¢-functions if its result is not live.

Semipruned SSA
Same as minimal SSA, but don'’t insert ¢-functions for names that are not
live across a block boundary 08



Block Arguments

Instead of using ¢-nodes (like
LLVM), xDSL and MLIR use
block arguments to represent
control flow — dependent
values.

https://mlir.llvm.orag/docs/L angRef/#blocks

func.func @simple(i64, il1l) -> 164 {
AbbO(%a: 164, %cond: il1): // Code dominated by Abb@ may refer to %a

cf.cond_br %cond, ~bbi, Abb2

Abb1:
cf.br 7"bb3(%a: 1i64) // Branch passes %a as the argument

Abb2:
%b = arith.addi %a, %a : i64
cf.br "bb3(%b: 1i64) // Branch passes %b as the argument

// Abb3 receives an argument, named %c, from predecessors
// and passes it on to bb4 along with %a. %a is referenced
// directly from its defining operation and is not passed through
// an argument of Abb3.
Abb3(%c: 164):
cf.br ~bba(%c, %a : 164, 1i64)

Abb4(%d : 164, %e : 1i64):

%0 = arith.addi %d, %e : i64

return %0 : i64 // Return is also a terminator.
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