Compiling Techniques

Lecture 14: Building SSA Form

Reminder: Static Single-Assignment (SSA) Form

"A program is defined to be in **Static Single-Assignment (SSA)** form if each variable is a target of exactly one assignment statement in the program text."

- Each assignment statement defines a unique name.
- Each use refers to a single name.

```
x = 0
if (a == 42)
   x = x + 1
else
   x = 3
```

y = x + 5

$$x = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x = x + 1$$

$$x_2 = x_1 + 1$$

$$x_3 = 3$$

$$y = x + 5$$

$$y = x_2 + 5$$

$$y = x_3 + 5$$

$$x = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x = 42$$

$$x = x + 1$$

$$x_2 = x_1 + 1$$

$$x_3 = 3$$

$$y = x + 5$$

$$y = x_2 + 5$$

$$y = x_3 + 5$$

$$x = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_2 = x_1 + 1$$

$$x_2 = x_1 + 1$$

$$x_3 = 3$$

$$x_4 = \phi(x_2, x_3)$$

$$y = x_4 + 5$$

ϕ -function placement

Naive approach:

- 1. At each join point insert a ϕ -function for every variable name
- 2. Rename adding unique subscripts

Computes maximal SSA form

p dominates q (p >> q, p dom q) iff every path from the entry node b_0 to q also visits p.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B ₆
DOM(B)	B_0						

p dominates q (p >> q, p dom q) iff every path from the entry node b_0 to qalso visits p.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DOM(B)	B_0	B ₀ , B ₁					

p dominates q (p >> q, p dom q) iff every path from the entry node b_0 to qalso visits p.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B ₆	
DOM(B)	B_0	B ₀ , B ₁	B ₀ , B ₁ , B ₂	B ₀ , B ₁ , B ₃				

p dominates q (p >> q, p dom q) iff every path from the entry node b_0 to qalso visits p.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DOM(B)	B_0	B_0, B_1	B ₀ , B ₁ , B ₂	B ₀ , B ₁ , B ₃	B ₀ , B ₁ , B ₄		

p dominates q (p >> q, p dom q) iff every path from the entry node b_0 to q also visits p.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DOM(B)	B_0	B ₀ , B ₁	B ₀ , B ₁ , B ₂	B ₀ , B ₁ , B ₃	B ₀ , B ₁ , B ₄	B_0, B_5	

p dominates q ($p \gg q$, p dom q) iff every path from the entry node b_0 to q also visits p.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DOM(B)	B_0	B ₀ , B ₁	B ₀ , B ₁ , B ₂	B ₀ , B ₁ , B ₃	B ₀ , B ₁ , B ₄	B_{0}, B_{5}	B ₀ , B ₆

dom Relation

- reflexive
 - a dom a
- antisymmetric
 - $a dom b \wedge b dom a \Rightarrow a = b$
- transitive
 - $a \ dom \ b \land b \ dom \ c \Rightarrow a \ dom \ c$

i.e. it's a partial order

Dominator Tree

p strictly dominates q iff p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- p domitates a predecessor of q.
- p does not strictly dominate q.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)							

p strictly dominates q iff p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- p domitates a predecessor of q.
- p does not strictly dominate q.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø						

p strictly dominates *q* iff p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- p domitates a predecessor of q.
- p does not strictly dominate q.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆					

p strictly dominates q iff p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- p domitates a predecessor of q.
- p does not strictly dominate q.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4			

p strictly dominates q iff p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- p domitates a predecessor of q.
- p does not strictly dominate q.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆		

p strictly dominates *q* iff p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- p domitates a predecessor of q.
- p does not strictly dominate q.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆	B_6	

p strictly dominates *q* iff p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- p domitates a predecessor of q.
- p does not strictly dominate q.

В	B_0	B ₁	B_2	B_3	B_4	B_5	B ₆
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆	B_6	Ø

Idea

- 1. ϕ -function placement
- 2. renaming

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆	B_6	Ø

Idea

- 1. ϕ -function placement
- 2. renaming

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆	B_6	Ø

$$B_6: x = \phi(x, x)$$

Idea

- 1. ϕ -function placement
- 2. renaming

В	B_0	B ₁	B ₂	B ₃	B ₄	B ₅	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆	B_6	Ø

$$B_3: y = y * 2$$

$$\boldsymbol{B_4}: \mathbf{y} = \phi(\mathbf{y}, \mathbf{y})$$

$$B_6: x = \phi(x, x)$$

$B_0: x = 0$ y = 1

Idea

- 1. ϕ -function placement
- 2. renaming

/		y	
	$B_1: x = \phi(x)$		B ₅ : ×
	$y = \phi(y),$ $x = x +$		
			1 /
	B_2 B_3 :	y = y * 2	
	$B_4: y = \phi(y)$, y)	

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆	B_6	Ø

$$B_6: x = \phi(x, x)$$

$$y = \phi(y, y)$$

$B_0: x = 0$ y = 1

Idea

- 1. ϕ -function placement
- 2. renaming

$B_1: x = \phi(x, x)$ $y = \phi(y, y)$ $x = x + 1$	
B_{2} B_{3} : y = y * 2 B_{4} : y = $\phi(y, y)$	

В	B_0	B ₁	B ₂	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆	B_6	Ø

$$B_6: x = \phi(x, x)$$

$$y = \phi(y, y)$$

$B_0: x_0 = 0$ $y_0 = 1$

Idea

- 1. ϕ -function placement
- 2. renaming

$B_1: X_1 = \phi(X_2, X_0)$ $B_5: X_3$
$y_1 = \phi(y_3, y_0)$ $x_2 = x_1 + 1$
B_2 $B_3: y_2 = y_1 * 2$
$B_4: y_3 = \phi(y_1, y_2)$

В	B_0	B ₁	B_2	B_3	B_4	B_5	B_6
DF(B)	Ø	B ₁ , B ₆	B_4	B_4	B ₁ , B ₆	B_6	Ø

$$B_6: x_4 = \phi(x_2, x_3)$$

 $y_4 = \phi(y_3, y_0)$

SSA forms

Maximal SSA

Introduce a ϕ -function at every join node for every variable

Minimal SSA

Introduce a ϕ -function at every join node for every variable where two distinct definitions of the same name meet

Pruned SSA

Same as minimal SSA, but don't insert ϕ -functions if its result is not *live*.

Semipruned SSA

Same as minimal SSA, but don't insert ϕ -functions for names that are not live across a block boundary

Block Arguments

Instead of using ϕ -nodes (like LLVM), xDSL and MLIR use block arguments to represent control flow – dependent values.

```
func.func @simple(i64, i1) -> i64 {
^bb0(%a: i64, %cond: i1): // Code dominated by ^bb0 may refer to %a
 cf.cond_br %cond, ^bb1, ^bb2
^bb1:
 cf.br \(^bb3(%a: i64)\) // Branch passes %a as the argument
^bb2:
 %b = arith.addi %a, %a : i64
 cf.br \(^bb3(%b: i64)\) // Branch passes %b as the argument
// ^bb3 receives an argument, named %c, from predecessors
// and passes it on to bb4 along with %a. %a is referenced
// directly from its defining operation and is not passed through
// an argument of ^bb3.
^bb3(%c: i64):
 cf.br ^bb4(%c, %a : i64, i64)
^bb4(%d : i64, %e : i64):
 %0 = arith.addi %d, %e : i64
 return %0: i64 // Return is also a terminator.
```