Compiling
Techniques

Lecture 1: Introduction “‘
)

|||||||||||||||||||| tl ’

GRACE
HOPPER
IS THE
QUEEN OF
COMPUTERS

LETTERMAN

http://www.youtube.com/watch?v=oE2uls6iIEU&t=30

1943

Harvard Mark |

PRI (T r,ﬁ,
|

TARARRRTI]
Wil HERE %%.a |

STEVATL At Soatata

R

]
[REEERRRRRARE] m
v e .z
SYERES RO "4
R !
ERREEE .
.".“«.W.. q
FeaseRes N
QST ERD |
PROYRRERRS |
D aale
.”a»“u AR
B AR RRRS
RETRIRER
BERARERES
FRR0AE
..w«ﬁ.x
"\ .;v.o.".

wikipedia.org

Program Tape of The Mark |

A Patch!

First Bug!

9/4

0 o
/000

1Say

On Ao >w é/-l/ua ?.037 §¥7 0%
g sh = ong 7 agg
o y&.‘} m}am v 4 s 9.037 5/‘/4", 73

13w (034 MP ~-me t:ﬁvﬁ—r&#/ ;‘é-E) Y6/5 7250

033 Pro » - l}oy‘)("/l,s

Cons b % /50674%;
f:uo\f G- | 033 /a..,u ;,r,w/ ST#J Jeod
{im v, on

3 odhas;
Olarted C /Px

oSN & lc\Pc (Slhe s_"\e\\)

Qe\o\,\\ 70 (P\«f\g‘ 2

\MDT\) [\u\v\

i'\r,T J\\‘\"'\&\ c_4>; -f Buc' I)zm1 {oqv\i

fﬁ;/“ M;a«Y/} _(,w{‘\}

yo

oﬁ’i e

wikipedia.org

Grace Murray Hopper

e 1906 Born ,1905, first practical plane

e 1934 PhD in Mathematics @ Yale
(very unusual for women at this time)

e 1943 US Navy to work on Mark |

e 1946 Wrote Mark | Manual
https://chsi.harvard.edu/harvard-ibm-mark-1-manual

e 1952 Developed the first compiler (for the A-O system)
e 1959 Defined COBOL (as part of a larger committee)

e ... o https://www.youtube.com/watch?v=wEC30ghXPp0

Grace Murray Hopper Collection, 1944-1965, Archives Center, National Museum of American History

https://chsi.harvard.edu/harvard-ibm-mark-1-manual
https://www.youtube.com/watch?v=wEC30qhXPp0

L ecturers

Amir Shaikhha

Reader in Compilers and Databases
https://amirsh.github.io

Jackson Woodruff

Lecturer in Compiling Techniques
https://jacksonwoodruff.com/

https://amirsh.github.io
https://jacksonwoodruff.com/

Essentials

Website Learn: Compiling Techniques (2024-2025) [Sem 2]
Discussions Follow link “Discussions (Piazza)” on Learn
Textbook Keith Cooper & Linda Torczon: Engineering a

Compiler Elsevier (not strictly required)

https://www.learn.ed.ac.uk/ultra/courses/_120868_1/outline

Essentials

e Course is 20 credits

e FEvaluation
o No exam = Coursework only

e Alot of programming
o Alot of hours on coursework
o Python is the primary language we use
e Each week
o 3hlectures
m Monday 15:10 - 16:30, Robson Building, G.04
m Thursday 15:10 - 16:00, Usha Kasera Lecture Theatre - Old College

o 2hlabs
m Wednesday 16:10 - 17:30, Appleton Tower, 5.05 West lab
OR

m Thursday 16:10 - 17:30, Appleton Tower, 6.06

Coursework: A Python to RISC-V Compiler

CW1 (0%) CW2 (40%) CW3 (60%)
Parsing Semantic Analysis Code Generation
[ChocoPy } [AST } [IR } [RISC-V }

®

Coursework Schedule

Week 1 (Jan 12)

Week 2 (Jan 19)

Week 3 (Jan 26)
Week 4 (Feb 2)
Week 5 (Feb 9)

Learning Week

Deadlines: Friday noon

cwi1

Week 6 (Feb 23)

Week 7 (Mar 2)

Week 8 (Mar 9)
Week 9 (Mar 16)
Week 10 (Mar 23)
Week 11 (Mar 30)

Week 11+1 (Apr 6)

Ccw2
Release: 20/02
Submit: 06/03

Feedback: 27/03

Ccw3
Release: 13/03
Submit: 10/04

Feedback: 01/05

10

Marking and Autograding

Lt

j> OGitHUb j> Auto

Marking

11

Labs

Will help you with coursework

1 session of 2 hours (two options)

Start: Week 3
End: Week 11
Time: Wednesday/Thursday 16:10 - 17:30

Location Appleton Tower, 5.05/6.06

12

Coursework is Rewarding

You will understand what happens when you type:

$ python program.py

But also:

e Will deepened your understanding of computing systems
(from language to hardware)

e Will improve your programming sKkills

e Will learn about using revision control system (git)

13

Class-taking Technique

e Extensive use of projected material

o Attendance and interaction encouraged
o Feedback also welcome

e Reading book is optional
(course is self-contain, book is more theoretical)
e Not a programming course!
e Start the practical early
e Help should be sought on Piazza in the first instance

14

Syllabus

Overview

Scanning

Parsing

Abstract Syntax Tree
Semantic analysis

Code generation

Real machines assembly

Advanced topics
o Instruction selection
o Register allocation
o Modern Compiler Construction

15

Compilers

N O N

i iler?
What is a Compiler: What is an Interpreter?

Qrggr;g:r?ri?] tgr?; l}f: ;ﬁtgs Ierl]? oe;(ﬁc;lﬂ:gljetable A program that directly execuies an executable
orogram in another language. The compiler program, producing the results of executing that
@ight improve the program, in some way. / Q)rogram /

Examples:

e C and C++ are typically compiled
e Ristypically interpreted
e Java and Python are compiled to a bytecode and then either

interpreted or compiled.

16

A Broader View

Compiler technology = Off-line processing

e Goals: improved performance and language usability
e Making it practical to use the full power of the language
e Trade-off: preprocessing time versus execution time (or space)
e Rule: performance of both compiler and application must be acceptable to the
end user
Examples:
o Macro expansion / Preprocessing
o Database query optimisation
o Javascript just-in-time compilation
o Emulation: e.g. Apple’s Intel transition from PowerPC (2006)

17

System Stac

K

Problem

Algorithm

Program (Language)

Runtime System (OS)

ISA (Architecture)

Micro-Architecture

Logic

Circuits

Electrons

Compilation

18

Why Study Compilation?

Compilers are important system software components:

they are intimately interconnected with architecture, systems, programming
methodology, and language design

Compilers include many applications of theory to practice:

scanning, parsing, static analysis, instruction selection

Many practical applications have embedded languages:

commands, macros, formatting tags

Many applications have input formats that look like languages:
Matlab, Mathematica

Writing a compiler exposes practical algorithmic & engineering issues:
approximating hard problems; efficiency & scalability

19

Intrinsic Interest

Artificial Intelligence

Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms
Dynamic programming
Theory DFA & PDA, pattern matching,
Fixed-point algorithms
Systems Allocation & naming,

Synchronization, locality

Architecture

Pipeline & memory hierarchy management
Instruction set

Software Engineering

Design pattern (visitor)
Code organisation

20

Intrinsic Merit

Compiler construction poses challenging and interesting problems:

Compilers must do a lot but also run fast

Compilers have primary responsibility for run-time performance

Compilers are responsible for making it acceptable to use the full power of the
programming language

Computer architects perpetually create new challenges for the compiler by
building more complex machines

Compilers must hide that complexity from the programmer

Success requires mastery of complex interactions

21

Making Languages Available

a N
It was our belief that if FORTRAN, during its first months, were to translate any reasonable "scientific”
source program into an object program only half as fast as its hand coded counterpart, then acceptance
of our system would be in serious danger. . . . | believe that had we failed to produce efficient programs,
the widespread use of languages like FORTRAN would have been seriously delayed.

John Backus (1978)

\ /

22

Next Lecture

The View from 35000 Feet

e How a compiler works
e What | think is important
e Whatis hard and what is easy

23

