Compiling Techniques
Lecture 2: The view from 35000 feet

High-level view of a compiler

Source Code —»[Compiler]—» Machine Code

—5» Errors

Must recognise legal (and illegal) programs

Must generate correct code

Must manage storage of all variables (and code)

Must agree with OS & linker on format for object code

Big step up from assembly language; use higher level notations

Traditional two-pass compiler

IR
Source Code —{ FrontEnd H BackEnd }—» Machine Code

» Errors

Use an intermediate representation (IR)

Front end maps legal source code into IR

Back end maps IR into target machine code

Admits multiple front ends & multiple passes

Typically, front end is O(n) or O(n log n), while back end is NPC
(NP-complete)

A common fallacy two-pass compiler

Fortran —— FrontEnd |

BackEnd —» X86

Rust ~ —— FrontEnd |

BackEnd —» RISC-V

Python

: FrontEnd

Can we build n x m compilers with n+m components?

Must encode all language specific knowledge in each front end
Must encode all features in a single IR

Must encode all target specific knowledge in each back end
Limited success in systems with very low-level IRs (e.g. LLVM)
Active research area (e.g. Graal, Truffle)

The Frontend

Source —>[Scanner H Tokenizer H Parser H

char

token

Semantic
Analyzer

Generator IR

» Errors

Recognise legal (& illegal) programs

Report errors in a useful way

Produce IR & preliminary storage map

Shape the code for the back end

Much of front end construction can be automated

The Lexer

Source Scanner Tokenizer Parser Semantic 15 IR
Analyzer Generator

» Errors

Lexical analysis

Recognises words in a character stream

Produces tokens (words) from lexeme

Collect identifier information

Typical tokens include number, identifier, +, —, new, while, if

Example: x=y+2; becomes IDENTIFIER(x) EQUAL IDENTIFIER(y) PLUS CST(2)
Lexer eliminates white space (including comments)

The Parser

Source —>[Scanner H Tokenizer H Parser H

char

‘token

Semantic
Analyzer

Generator IR

Recognises context-free syntax & reports errors
Hand-coded parsers are fairly easy to build
Most books advocate using automatic parser generators

» Errors

Semantic Analyzer

Source —P[Scanner H Tokenizer H Parser H

char

token

Semantic
Analyzer

Generator IR

» Errors

Guides context-sensitive (“semantic”) analysis

Checks variable and function declared before use

Type checking

IR Generator

Source —P[Scanner H Tokenizer H Parser H

char

token

Semantic
Analyzer

Generator IR

» Errors

Generates the IR used by the rest of the compiler
Sometimes the AST is the IR

Simple Expression Grammar

goal
expr
term
op

— expr S = goal

— expr op term | term T = { number, id , +, - }

— number | id N ={ goal , expr , term , op }
— + | - P=4{1, 2, 3, 4, 5,6, 7}

This grammar defines simple expressions with addition & subtraction over “number” and “id”
This grammar, like many, falls in a class called “context-free grammars”, abbreviated CFG

10

Derivations

Given a CFG, we can derive sentence by repeated substitution
Production Result

goal

expr
expr op term To recognise a valid
sentence in a CFG, we
expr op y reverse this process and
expr -y build up a parse tree
expr op term -y

expr op 2 -y
expr + 2 -y
term + 2 -y

0 N o o WOWDN -~ O

X+ 2 -y

11

Parse Tree

X+2-y
oal This contains a lot of
S unnecessary information.

|

term

id(y)

12

Abstract Syntax Tree (AST)

X+2-y The AST summarises grammatical
structure, without including detail
about the derivation.

id (x) num(2)

e Compilers often use an abstract syntax tree
e This is much more concise
e ASTs are one kind of intermediate representation (IR)

13

The Backend

IR IR
IR Instruction Register Instruction
Selection Allocation Scheduling

}___,

Machine
Code

Translate IR into target machine code

Choose instructions to implement each IR operation
Decide which value to keep in registers

Ensure conformance with system interfaces
Automation has been less successful in the back end

» Errors

14

Instruction Selection

IR IR
IR Instruction Register Instruction Machine
Selection Allocation Scheduling Code

» Errors

e Produce fast, compact code
Take advantage of target features such as addressing modes

e Usually viewed as a pattern matching problem ad hoc methods, pattern
matching, dynamic programming

e Example: madd instruction

15

Register Allocation

IR IR
IR Instruction Register
Selection Allocation

Instruction
Scheduling

}___,

Machine
Code

» Errors

Have each value in a register when it is used

Manage a limited set of resources

Can change instruction choices & insert LOADs & STOREs
(spilling)

Optimal allocation is NP-Complete (1 or k registers)

Graph colouring problem

Compilers approximate solutions to NP-Complete problems

16

Instruction Scheduling

IR IR
IR Instruction Register Instruction Machine
Selection Allocation Scheduling Code

» Errors

e Produce fast, compact code
Take advantage of target features such as addressing modes

e Usually viewed as a pattern matching problem ad hoc methods, pattern
matching, dynamic programming

e Example: madd instruction

17

Three Pass Compiler

IR IR
IR —>[FrontEnd]—»{ MiddleEnd }—»{ BackEnd 1———’

Machine
Code

» Errors

e Code Improvement (or Optimisation)
Analyses IR and rewrites (or transforms) IR

e Primary goal is to reduce running time of the compiled code
o May also improve space, power consumption, . . .

e Must preserve meaning of the code
o Measured by values of named variables

18

The Optimizer

IR

o

IR IR IR
——{ Opt 1 H Opt 2 }—» —»[Opt 3

Discover & propagate some constant value

Move a computation to a less frequently executed place
Specialise some computation based on context
Discover a redundant computation & remove it

Remove useless or unreachable code

Encode an idiom in some particularly efficient form

» Errors

—» |R

19

Modern Restructuring Compiler

HL-AST LL-AST

Source FrontEnd Restructurer
Generator

Middle
End

IR
]—P[BackEnd }—>

Translate from high-level (HL) IR to low-level (LL) IR
Blocking for memory hierarchy and register reuse
Vectorisation

Parallelisation

All based on dependence

Also full and partial inlining

Optimizations Not covered in this course

» Errors

20

Role of the Runtime System

e Memory management services

o Allocate, in the heap or in an activation record (stack frame)
o Deallocate
o Collect garbage

Run-time type checking

Error processing

Interface to the operating system (input and output)

Support for parallelism (communication and synchronization)

21

Programs related to compilers

e Pre-processor:
o Produces input to the compiler
o Processes Macro/Directives (e.g. #define, #include)
e Assembler:
o Translate assembly language to actual machine code (binary)
o Performs actual allocation of variables
e Linker:

o Links together various compiled files and/or libraries
o Generate a full program that can be loaded and executed

e Debugger:

o Tight integration with compiler

o Uses meta-information from compiler (e.g. variable names)
e Virtual Machines:

o Executes virtual assembly
o typically embedded a just-in-time (jit) compiler

22

Next Lecture

e Introduction to Lexical Analysis (real start of compiler course)

o Decomposition of the input into a stream of tokens
o Construction of scanners from regular expressions

23

