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Course Logistics:
Remit of Presentation and Report

Some clarifications following student questions:

- The specific focus of the presentation and report should be on
technical issues around evaluation and ensuring safe

deployment (e.qg. see ideas in today’s lecture and discussion)

- For completeness you need to describe your system
architecture, but the new content in this assignment
addresses tools and techniques for analysing properties

- It would be fine to have the same architecture as in your masterclass,
but the question of how you will evaluate/analyse is salient here

- The report expected for this part is much shorter (3 pages) and the
majority of it (e.g. 2 pages) should focus on above question —including
how this question is handled in the literature



AVs: Mobile Robots in the Wild

e .

BRICKWOODg
7045 )

23/04/2025 CDT-D2AIR Course




File Panels Help
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Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Zoom. Shift: More options.

23/04/2025 CDT-D2AIR Course




Route Guidance Sensing
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Effect of Perception Errors
on Action and Closed-Loop Behaviour

Object
detected

[Source: TfL CCTV] as bicycle

“Should | enter or not? When?”

... “"how do others respond to me?”
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Goal Recognition as Rational Inverse Planning

e N
T,: lane follow path

< T,: lane change path

T,: slowdown path ...

Best fit?

O: observed path

G1

-

G2

Where could car #2 be
going?
- Landmarks can be

extracted from
maps

- Observation can be
compared against,
e.g., lane follow,
lane change,
cautious slowdown

S.V. Albrecht, C. Brewitt, J. Wilhelm, F. Eiras, M. Dobre, S. Ramamoorthy, Interpretable goal-based prediction and
planning for autonomous driving, In Proc. IEEE International Conference on Robotics and Automation (ICRA), 2021.

23/04/2025

CDT-D2AIR Course



© Five Al Inc 2019




A Hierarchy of Errors

8
Planning must accommodate 10
imperfect perception 106

collision Human performance
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and context
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fusion
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2090: Best in class of how perception systems fail

perception today
© Five Al Inc 2020
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Planning with Imperfect Perception:
Quantifying Uncertainty and Risk
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Expected number of collisions

10°°

© Five Al Inc 2019

A. Blake, A. Bordallo, K. Brestnichki, M. Hawasly, S.V. Penkov, S. Ramamoorthy, A. Silva, FPR-Fast Path
Risk algorithm to evaluate collision probability, /[EEE Robotics & Automation Lett. 5(1): 1-7, 2020.
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An Approach to Safe Planning

1. Compute an approximate solution to the problem using a Mixed Integer Linear
Programming receding-horizon formulation (encodes variety of rules/constraints)

2. Use it as aninitialization to the non-linear trajectory optimization problem

Lz

L:me
X, Op: e B

MILP

I steps receding
hori
"‘ CHAEON —| X Ui v

F. Eiras, M. Hawasly, S.V. Albrecht, S. Ramamoorthy, A two-stage optimization-based motion planner for safe
urban driving, /EEE Transactions on Robotics (T-RO), 2021.
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Solve in a receding-horizon of length K
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u = argmin

Qpim s K

1

MILP formulation
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comfort, and risk reduction

Hard constraints (could come from
compositional logical specs):

» Linear Vehicle dynamics constraints

d + h}w(.l‘k ) < Yk
yr < 1;;“(.,-k.) —d

- Driveable surface constraints

Yk.max — Mpr < yr,t € {1,...,n}

, Collision avoidance up to certain

level of uncertainty
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Residential Driving
Static Overtaking with Oncoming Vehicle

© Five Al Inc 2019
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Junction
UNQLccted Right Turtv g & _
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What is the Probability the System Fails?

Telephoto Traflic Light
Camera Detection
il B
Wide angle Traffic Sign \
s igd < L

LIM\R Lane

o

rs

C. Innes, S. Ramamoorthy, Testing rare downstream safety violations via upstream adaptive
sampling of perception error models. In Proc. IEEE International Conference on Robotics and
Automation (ICRA), 2023.
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Many Sources of Difficulty

1. Specifying Safety

/\/

“The ego vehicle is not allowed to
cross a red traffic light. If the
traffic light is yellow and the
ego vehicle can come to a
standstill in front of the
intersection without falling below
an acceleration threshold as, the
ego vehicle is not allowed to
cross a yellow traffic light”

/\/
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Specifying Safety:
Signal Temporal Logic

The first thing must remain
true until the second thing

becomes true f \

\ “For the first T=100 seconds, the ego vehicle
should always stay at least 2 metres from the
e:=p| @ |1 A2 | Ne |Op | S | or1ldps other vehicle

|:||IZ‘]_T] (”Cf:_r;u-po'q - {-'"UHH‘.'F"I}OS” :3 2{”

Eventually, this will

This will always be
s Wi y be true

true
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Signal Temporal Logic:
Robustness Metrics

Definition 5 (Cimlative Robusiness):
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Fidelity Gap: Obstacle Detection Example
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Perception Error Model Insight

Vs €S, fo(s) :'fé(g(s))
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e.g., "A Step Towards Efficient Evaluation of Complex Perception Tasks in Simulation." Sadeghi et.al., (2021).
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Rarity: Sampling Detection Errors

Probability of Car Mis-
detection

1 N
ﬁ'MC — ﬁ Z ]I{T(Ti,t,o)ﬂ'}'}

=

-

True Crash Probability: 1 in 10,000
Expected Simulations to get within 1% of true
probability: 1,000,000,000,000

State-dependent Expectation:

E. [1 {r(r,¢) m}]-[;gﬂr,@wp

1
REyc (1) =
Simulatio NJUJ
Rollout Specification Safety
Threshold
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Importance Sampling

Original “target”
/distribution
N

New “proposa
distribution

IH

Ideal Proposal generates q* (T) _ (p(*r)) 1

lots of failures:
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Learning a Proposal Distribution:
e.g. Cross Entropy Method (CEM)

N
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Other Ideas: Adaptive Thresholding (AT)

What if Failures are still Rare?
0.82th Quantile

for k =1 to K do
{70...7n,_} + Sample N, rollouts with ¢
Sort {19...7n,} by r(7,¢)
Y maz (7,7 (¢, TN, | ))
@ < Min (18) with 7., g, f.gi! {TU ses TN,:}

2 A
a2
a
a%s L0 1% 20 XS5 X0 A5 40 45
Satety Threshold

N T
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Automated Braking: Experiment Results

23/04/2025

TABLE II: Sampling Strategies

Method it Failures NLL
MC1o0 0.0 0/ 100 -
MC1ooon 0.0 0/ 10000 -
NAIVE-50100 3.97 x 10722 77 /100 162.54
NAIVE-5010000 4.46 x 10720 7478 / 10000  162.53
ADAPTIVE-PEM100  3.36 x 10715 52/ 100 48.03

CDT-D2AIR Course
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Limitations: Is the Scenario Big Enough?

“The distance between the ego car and
other car must never drop below 2 metres”

23/04/2025 CDT-D2AIR Course
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Limitations: Is the Scenario Big Enough?

“The distance between the ego car and
other car must never drop below 2 metres”

“The ego vehicleis not allowed to enter an intersection
if there is another vehicle with the right of way that will be
endangered by the ego vehicle.

The left turning ego vehicle that has no priority (given

by traffic signs) over an oncoming vehicle may only drive
onto the oncoming lane if the ego vehicle does not endanger
the other vehicle. The same applies if another vehicle turns
right into the same road as the ego vehicle”

\_ /
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Risk-driven Design:
Where are Perception Errors Most Risky?

=
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Detection Probability
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A.L. Corso, S.M. Katz, C. Innes, X. Du, S. Ramamoorthy, M.J. Kochenderfer, Risk-driven
design of perception systems. In Proc. Conference on Neural Information Processing
Systems (NeurlPS), 2022.

23/04/2025 CDT-D2AIR Course
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Perceptual Error Risk as Policy Evaluation

Transition Function

: / /
Controller | control u Environment | : Tﬂc (3 | S, E) =T (5 | S, 9(5 + E))
u = g(8) T :
§=54¢€ State-Action Value
Error
Vot state s Q7 (s,€) = R(s,g(s+¢€)) + ZT}(H’r | 5,€)V7(s")
E Tl'.g(' | 3) 5"

- Evaluate risk of making perception in a particular state
- Evaluate long term consequence according to CVaR value
function (evaluating on upper quantile of worst case outcomes)
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Risk-aware Design

mment

Perception System ( f)

[ l" —~> Controller () —L>
.

Risk-Aware Perceptual Lr(s,38) = L(s,5) + Apis(s,5 —5)
Loss
Risk-Aware Data wa(s) = max po’(s,€) — pas(s,0)
Generation
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Case Study:
Aircraft Collision Avoidance

Environment

Perception System ( f)

o _ R

—

- ownship
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Case Study:
Aircraft Collision Avoidance
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Use of Simulation in Development

CARLA: An Open Urban Driving Simulator

Alexey Dosovitskiy', German Ros>’, Felipe Codevilla'-, Antonio Lépez’, and Vladlen Koltun'

Intel Labs 2Toyota Research Institute 3Computer Vision Center, Barcelona

Abstract: We introduce CARLA, an open-source simulator for autonomous driv-
ing research. CARLA has been developed from the ground up to support devel-
opment, training, and validation of autonomous urban driving systems. In ad-
dition to open-source code and protocols, CARLA provides open digital assets
(urban layouts, buildings, vehicles) that were created for this purpose and can
be used freely. The simulation platform supports flexible specification of sensor
suites and environmental conditions. We use CARLA to study the performance
of three approaches to autonomous driving: a classic modular pipeline, an end-
to-end model trained via imitation learning, and an end-to-end model trained via
reinforcement learning. The approaches are evaluated in controlled scenarios of
increasing difficulty, and their performance is examined via metrics provided by
CARLA, illustrating the platform’s utility for autonomous driving research.

Keywords: Autonomous driving, sensorimotor control, simulation
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Use of Simulation in Development

Browse examples of Applied Intuition toolchain:
https://www.appliedintuition.com/

CDT-D2AIR Course
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https://www.appliedintuition.com/

Public
Insurance

Companies
Users

Constraints

e\ I

Industrial
Associations

Accident Investigation
Agencies

Operators

Regulatory Manufacturers

Agencies Government

Legislation

Historical
Data Regulatory
Constraints
Formal

modelling

Engineers

Simulation and Testing

J\

Stakeholder

= World

~ Computational
Tool Chain

C. Innes, A. Ireland, Y. Lin, S. Ramamoorthy, Anticipating accidents through reasoned
simulation, Safety Critical Systems Symposium (SSS 2023).

23/04/2025
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Combining Reasoning and Simulation:
e.g. exploring Loss Scenarios

Exploring a loss scenario in simulation: —W7T A MV

Parameters

ego_init_loc Parameters and log data
ego_brake_loc .:'>

location_friction Unsafe scenarios

ego_init_loc Log data, e.g.
ego_brake_loc wheel_speed,
location_friction  speeq

L
Keep braking if 8 /
speed > 0, i.e. MV © x T
= I
Ego init £ A - L/ )
position %) B |
Move Brake speed =0, !
i.e.~ MV Bl ' j
wheel_speed >= threshold 1 a\ (
Door
Ego init opened, i -
status, i.e., . l}0:= DL:
Open door if e /
dot?r closed, wheel_speed <
i.e. DL

threshold, i.e. -“WT
Scenario plan

The inputs above on the left include, i) setup parameters for the simulation, and ii) template scenarios
that encode the abstract loss scenario identified by the formal modelling. Note that while a graphical
notation is shown, the developer uses a Python API to specify the inputs. The output from the
simulator takes the form of i) an animation of the loss scenario, and ii) a log of all the relevant
parameters. Note that a demo of the case study simulation is available via [17], which includes the
animations generated by CARLA.

Animation

C. Innes, A. Ireland, Y. Lin, S. Ramamoorthy, Anticipating accidents through reasoned

23/04/2025

simulation, Safety Critical Systems Symposium (SSS 2023).

CDT-D2AIR Course
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Summary

Establishing safety of learning enabled autonomous systems is a key
requirement for broader adoption

Layered optimization/decision making architectures represent one
promising path, appropriately interleaving a hierarchy of concerns

For this to work well, we need careful treatment of uncertainty
flows and how component errors lead to system errors

Towards this end, we discussed several technical methods including:
— Adaptive importance sampling with logical specifications
— Risk-driven design of perception systems

Current and future work along all of these directions aims at
expanding the scope and scale of such a methodology



Discussion Points: How Safe is Safe Enough?

' . Key findings

RAND

CORPORATION * Autonomous vehicles would have to be driven hundreds

D rivi n g i'o SG fety of millions of miles and sometimes hundreds of billions

of miles to demonstrate their reliability in terms of fatali-

ties and injuries.

How Many Miles of Driving Would It Take to Demonstrate

Under even aggressive testing assumptions, existing
Autonomous Vehicle Relia bilify? fleets would take tens and sometimes hundreds of years
to drive these miles—an impossible proposition if the
aim is to demonstrate their performance prior to releas-

Nidhi Kalra, Susan M. Paddock

ing them on the roads for consumer use.

Therefore, at least for fatalities and injuries, test-driving
alone cannot provide sufficient evidence for demonstrat-

ing autonomous vehicle safety.

Developers of this technology and third-party testers
will need to develop innovative methods of demonstrat-
ing safety and reliability.

Even with these methods, it may not be possible to
establish with cerfainty the safety of autonomous
vehicles. Uncertainty will persist.

In parallel to creating new testing methods, it is impera-
tive to develop adaptive regulations that are designed

https //WWW rand _org/co nte nt/da m/ra nd/p u bs/res from the outset to evolve with the technology so that

society can better harness the benefits and manage the

earc h_re p (@) rtS/R R 1 400/R R 1 478/RA N D_R R 1478 . p df risks of these rapidly evolving and potentially transfor-

mative technologies.
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Discussion Points: Realism in Simulations

Simulator Realism: The New Safety

Standard for th@AVAIRdustry

By Raquel Urtasun =

Blackbox Simulator Controllable Simulator

Simulated Sensor Data

Digital Twin e .
Digital Twin

Closed-loop Iteration

https://waabi.ai/simulator-realism-the-

23/04/2025 .
/04/ new-safety-standard-for-the-av-industry/
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Discussion Points: Ethics and Morality

How to Build a Moral Robot > |f robots are going to

drive our cars and play with our kids, we’ll need to teach
them right from wrong

LARK | 31 MAY 2016 | []

https://spectrum.ieee.org/how-to-build-a-moral-robot

NNNNNNNNNNNNN

The “Trolley Problem” Doesn’t Work for Self-
Driving Cars > The most famous thought experiment in

ethics needs a rethink

N READ | [

https://spectrum.ieee.org/av-trolley-problem
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