Network elements

WUITIFITOLD YOU

LEARNING OUTCOMES

Get to know network terminology
Explore the different types of networks
See some network applications

FUNDAMENTAL TERMS

FUNDAMENTAL TERMS

NODE

(Or vertex)

FUNDAMENTAL TERMS

FUNDAMENTAL TERMS

FUNDAMENTAL NOTATION

A NETWORK G IS A SYSTEM COMPOSED OF TWO PARTS:
 A SET N OF ELEMENTS (NODES) CONNECTED BY L LINKS.

The link (\mathbf{i}, \mathbf{j}) connects the node i to the node \mathbf{j}
$|\mathrm{N}|=14$
\mid 니 $=15$
$4 \bigcirc \frac{A}{?}$

$(4, A)$

FUNDAMENTAL NOTATION

A network \mathbf{G} can be directed or undirected. A directed network has directed links.
$4 \bigcirc \frac{A}{?}$

$4 \bigcirc{ }^{A}$
 $(A, 4)$

FUNDAMENTAL NOTATION

Links can also be weighted or unweighted

FUNDAMENTAL NOTATION

Weighted links are associated with a weight \mathbf{w}, so they are described by (i,j,w)

FUNDAMENTAL NOTATION

CAN YOU MAKE EXAMPLES
OF EACH TYPE OF NETWORK?

MAXIMUM NUMBER OF LINKS

If we have 4 nodes in an undirected network, what is the maximum possible number of links between them?

MAXIMUM NUMBER OF LINKS

If we have 4 nodes in an undirected network, what is the maximum possible number of links between them?

How many links can this node have?

MAXIMUM NUMBER OF LINKS

If we have 4 nodes in an undirected network, what is the maximum possible number of links between them?

How many links can
this node have?

MAXIMUM NUMBER OF LINKS

Every node of the N nodes that we have can connect to any other except from itself
This means it can connect to $\mathbf{n} \mathbf{- 1}$ nodes

MAXIMUM NUMBER OF LINKS

Every node of the N nodes that we have can connect to any other except from itself
This means it can connect to $\mathbf{n} \mathbf{- 1}$ nodes

Then, the maximum number of links is $\mathbf{N}(\mathbf{N}-1)$ right?

MAXIMUM NUMBER OF LINKS

WRONG!! WE ARE COUNTING LINKS TWICE THIS WAY!
 If the network is undirected, then the link [i,j] is equivalent to the link [j,i]

THEN, THE Maximum number of link is $N(N-1)$ right?

MAXIMUM NUMBER OF LINKS

$$
L_{\max }=\binom{N}{2}=\frac{N(N-1)}{2}
$$

WHAT IS THE MAXIMUM NUMBER OF LINKS IN A DIRECTED NETWORK?

$$
L_{\max }=?
$$

WHAT IS THE MAXIMUM NUMBER OF LINKS IN A DIRECTED NETWORK?

$$
L_{\max }=N(N-1)
$$

DENSITY
 $d=\frac{L}{L_{\max }}$

	Type	Nodes (M)	Links (L)	Density (d)
Network		10,567	488,337	0.009
Facebook Northwestern Univ.		563,443	921,160	0.000006
IMDB movies and stars	W	252,999	$1,015,187$	0.00003
IMDB co-stars	DW	18,470	48,365	0.0001
Twitter US politics	DW	87,273	321,918	0.00004
Enron email	D	15,220	194,103	0.0008
Wikipedia math		190,914	607,610	0.00003
Internet routers	546	2,781	0.02	
US air transportation	3,179	18,617	0.004	
World air transportation		1,870	2,277	0.001
Yeast protein interactions	297	2,345	0.03	
C.elegans brain	DW	69	916	0.2
Everglades ecological food web	DW			

DEGREE

In an undirected network, the degree \mathbf{k} of a node is the number of links a node has

This is equivalent of saying that k is the number of neighbours a node has

The average degree of a network is $\langle k\rangle=\frac{\sum_{i} k_{i}}{N}$

DEGREE

In a directed network, there are three types of degree:

In-degree: $k_{i n}$
Out-degree: $\boldsymbol{k}_{\text {out }}$
Total-degree: $k_{t o t}$

DEGREE

In a weighted network, instead of a degree, a node has a strength:

$$
s_{i}=\sum_{j} w_{i j}
$$

DEGREE

In a weighted network, instead of a degree, a node has a strength:
$s_{i}=\sum_{j} w_{i j}$
In a directed weighted network, a node has an in-strength and an out-strength:

$$
\begin{aligned}
s_{i}^{i n} & =\sum_{j} w_{j i} \\
s_{i}^{o u t} & =\sum_{j} w_{i j}
\end{aligned}
$$

MATHEMATICAL REPRESENTATION

How do we represent networks mathematically and for computers?

MATHEMATICAL REPRESENTATION

How do we represent networks mathematically and for computers?

MATHEMATICAL REPRESENTATION

How do we represent networks mathematically and for computers?

OTHER NETWORK TYPES

STUDENTS COURSES

BIPARTITE NETWORK

Asset type
July-August, 2011

NON-EUROZONE:

Oever Repo

Financial Co. CP

GSt Repo
$A B C P$
Oever intrumas
Treasury Repo
Oence
VRON
insumace Co. Funding Act
Investmanco
SN Note EUROZONE:

Cerificate of Deposit

Financial Co. CP

Gse Repo
ABCP
Oeve intrumes
Oeserepo

- EXAMPLE: ASSET HOLDINGS

Image source : SEC N-MFP, OFR analysis

OTHER NETWORK TYPES

SUB-NETWORKS AND EGO-NETWORKS

OTHER NETWORK TYPES

SUB-NETWORKS AND EGO-NETWORKS

OTHER NETWORK TYPES

Debt

OTHER NETWORK TYPES

OTHER NETWORK TYPES

OTHER NETWORK TYPES

TEMPORAL NETWORKS

KNOWLEDGE GRAPHS

SUMMARY

We learned how to characterise network elements
We learned how to choose the most appropriate type of links
We have seen different types of networks

