Network elements

WHATFITTOLDYOU THAT IF PEOPLE HAVE SIX DEGREES OF SEPARATION, SO MEMES. ALL OF THE MEMES HAVE SIX DEGREES OF SEPARATION. Valerio Restocchi / DBBA / Lecture 02

LEARNING OUTCOMES

Get to know network **terminology** Explore the different **types of networks** See some network **applications**

NODE (Or vertex)

A NETWORK **G** IS A SYSTEM COMPOSED OF TWO PARTS: A SET **N** OF ELEMENTS (NODES) CONNECTED BY **L** LINKS.

The link (i,j) connects the node i to the node j

A network **G** can be directed or undirected. A directed network has directed links.

Links can also be **weighted** or **unweighted**

Weighted links are associated with a weight w, so they are described by (i,j,w)

Undirected

Directed

FUNDAMENTAL NOTATION Undirected Directed

CAN YOU MAKE EXAMPLES OF EACH TYPE OF NETWORK?

Jnweighted

Weighted

If we have 4 nodes in an undirected network, what is the **maximum possible number** of links between them?

If we have 4 nodes in an undirected network, what is the **maximum possible number** of links between them?

If we have 4 nodes in an undirected network, what is the **maximum possible number** of links between them?

How many links can this node have?

- Every node of the N nodes that we have **can connect to any other except from itself**
- This means it can connect to **n-1 nodes**

- Every node of the N nodes that we have **can connect to any other except from itself**
- This means it can connect to **n-1 nodes**

Then, the maximum number of links is N(N-1) right?

WRONG!!! WE ARE COUNTING LINKS TWICE THIS WAY!

If the network is undirected, then the link (i,j) is equivalent to the link (j,i)

THEN, THE Maximum number of link is N(N-1) right?

$$L_{max} = \binom{N}{2} = \frac{N(N-1)}{2}$$

WHAT IS THE MAXIMUM NUMBER OF LINKS IN A DIRECTED NETWORK?

$$L_{max} = ?$$

WHAT IS THE MAXIMUM NUMBER OF LINKS IN A DIRECTED NETWORK?

 $L_{max} = N(N-1)$

DENSITY

$$d = \frac{L}{L_{max}}$$

		Nodes	Links	Density
Network	Туре	(<i>N</i>)	(L)	(<i>d</i>)
Facebook Northwestern Univ.		10,567	488,337	0.009
IMDB movies and stars		563,443	921,160	0.000006
IMDB co-stars	W	252,999	1,015,187	0.00003
Twitter US politics	DW	18,470	48,365	0.0001
Enron email	DW	87,273	321,918	0.00004
Wikipedia math	D	15,220	194,103	0.0008
Internet routers		190,914	607,610	0.00003
US air transportation		546	2,781	0.02
World air transportation		3,179	18,617	0.004
Yeast protein interactions		1,870	2,277	0.001
C. elegans brain	DW	297	2,345	0.03
Everglades ecological food web	DW	69	916	0.2

In an undirected network, the degree **k** of a node is the number of links a node has

This is equivalent of saying that k is the number of **neighbours** a node has

In a directed network, there are three types of degree:

In-degree: k_{in} Out-degree: k_{out} Total-degree: k_{tot}

In a weighted network, instead of a degree, a node has a **strength**:

$$s_i = \sum_j w_{ij}$$

In a weighted network, instead of a degree, a node has a **strength**: $s_i = \sum_j w_{ij}$ In a directed weighted network, a node has an **in-strength**

and an **out-strength**:

$$s_{i}^{in} = \sum_{j} w_{ji}$$
$$s_{i}^{out} = \sum_{j} w_{ij}$$

MATHEMATICAL REPRESENTATION

How do we represent networks mathematically and for computers?

MATHEMATICAL REPRESENTATION

How do we represent networks mathematically and for computers?

MATHEMATICAL REPRESENTATION

How do we represent networks mathematically and for computers?

STUDENTS COURSES

BIPARTITE NETWORK

July-August, 2011

Fund complex

SUB-NETWORKS AND EGO-NETWORKS

SUB-NETWORKS AND EGO-NETWORKS

TEMPORAL NETWORKS

OTHER NETWORK TYPES

KNOWLEDGE GRAPHS

SUMMARY

We learned how to **characterise network elements** We learned how to **choose** the most appropriate **type of links**

We have seen different types of networks