SMALL WORLDS

Valerio Restocchi / DBBA / lecture 03

LEARNING OUTCOMES

Learn about similarity, paths, and triangles

See how these concepts apply to **real-world networks**

Learn fun-facts about networks to impress your friends

NETWORK OF RETWEETS FOR TWEETS ABOUT US POLITICS REDS ARE CONSERVATIVES AND BLUES ARE DEMOCRATS

HOMOPHILY is what causes assortativity: WE TEND TO BECOME FRIENDS WITH PEOPLE WHO ARE LIKE US

This, however, tends to cause **ECHO**-**CHAMBERS** and segregation

Not only social networks: in some networks, nodes with **high** (low) **degree connect to** other nodes with **high** (low) **degree.**

This effect takes the name of **degree** correlation

Network degree assortativity illustrated by (a) an assortative network and (b) a disassortative network.

Some networks are **not** assortative. For example: World wide web Ecological networks Biological networks

Two ways to **compute** assortativity:

correlation between degrees of pairs of nodes (usually Pearson)

average degree of neighbours

K-nearest neighbours

 $k_{nn}(i) = \frac{1}{k_i} \sum_{j} a_{ij} k_j$

K-nearest neighbours

Knn of node i $k_{nn}(i) = \frac{1}{k_i} \sum_j a_{ij} k_j$

K-nearest neighbours

 $k_{nn}(i) = \frac{1}{k_i} \sum_{j} a_{ij}k_j$ Number of neighbours of i

K-nearest neighbours

1 if i and j are neighbours, 0 otherwise

K-nearest neighbours

Degree of node j

K-nearest neighbours

 $k_{nn}(i) = \frac{1}{k_i} \sum_{j \neq i} a_{ij} k_j$ Number of neighbours of i

> 1 if i and j are neighbours, 0 otherwise

Degree of node j

K-nearest neighbours function

 $\langle k_{nn}(k) \rangle$

The average degree of the neighbours of nodes of degree k

 $k_{nn}(A)$ $\langle k_{nn}(2) \rangle$

$$k_{nn}(A) \qquad \langle k_{nn}(2) \rangle$$

$$k_{nn}(A) \qquad \langle k_{nn}(2) \rangle$$

EXERCISE: GIVEN THE FOLLOWING NETWORK COMPUTE $k_{nn}(A)$ $\langle k_{nn}(2) \rangle$ B

Which nodes have degree of 2?

EXERCISE: GIVEN THE FOLLOWING NETWORK COMPUTE $k_{nn}(A)$ $\langle k_{nn}(2) \rangle$ B $k_{nn}(B) = ?$

EXERCISE: GIVEN THE FOLLOWING NETWORK COMPUTE $k_{nn}(A)$ $\langle k_{nn}(2) \rangle$ B

Pro tip: network is symmetric for these nodes

Directed

Directed

Directed

AVERAGE PATH - UNDIRECTED NETWORK

AVERAGE PATH - UNDIRECTED NETWORK

$$\langle \ell \rangle = \frac{\sum_{i,j} \ell_{ij}}{\binom{N}{2}} = 2 \frac{\sum_{i,j} \ell_{ij}}{N(N-1)}$$

DIAMETER - UNDIRECTED NETWORK

$$\ell_{max} = max_{i,j}\ell_{ij}$$

SIX DEGREES OF SEPARATION

SIX DEGREES OF SEPARATION

An average path length is said to be **short** if: $\langle \ell \rangle \approx \log(N)$

A NETWORK IS CONNECTED IF THERE IS AT LEAST A PATH BETWEEN ANY PAIR OF NODES

A NETWORK IS CONNECTED IF THERE IS AT LEAST A PATH BETWEEN ANY PAIR OF NODES

A COMPONENT IS A CONNECTED SUB-GRAPH

A NETWORK IS CONNECTED IF THERE IS AT LEAST A PATH BETWEEN ANY PAIR OF NODES

A COMPONENT IS A CONNECTED SUB-GRAPH

THE LARGEST COMPONENT IS CALLED GIANT COMPONENT

FOR DIRECTED NETWORKS COMPONENTS CAN BE:

WEAKLY CONNECTED:

IF CONNECTED ONLY **DISREGARDING THE DIRECTION** OF LINKS

FOR DIRECTED NETWORKS COMPONENTS CAN BE:

WEAKLY CONNECTED:

IF CONNECTED ONLY **DISREGARDING THE DIRECTION** OF LINKS

STRONGLY CONNECTED:

IF CONNECTED ALSO WHEN CONSIDERING THE DIRECTION OF LINKS

Undirected

Undirected

Directed

Jim is my enemy. But it turns out that Jim is also his own worst enemy. And the enemy of my enemy is my friend. So Jim, is actually my friend.

TVT

But, because he is his own worst enemy, the enemy of my friend is my enemy so actually Jim is my enemy. But-

The **clustering coefficient** C(i) of node i is the fraction of pairs of the neighbours of i that are **connected to each other**

$$C(i) = \frac{\tau(i)}{\tau_{max}(i)} = \frac{2\tau(i)}{k_i(k_i - 1)}$$

WHAT IS THE C(A) IN THE FOLLOWING NETWORKS?

$$C(i) = \frac{\tau(i)}{\tau_{max}(i)} = \frac{2\tau(i)}{k_i(k_i - 1)}$$

ACYCLIC CONNECTED (PLANAR)

Maximum (minimum) spanning tree: For each node only keep the connection with maximum (minimum) weight

SUMMARY

- We learned about **clustering and distances**
- We learned the tree topology and seen its applications
- We can now perform basic **network analysis**!