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LEARNING OUTCOMES

Learn about similarity, paths, and triangles

See how these concepts apply to real-world
networks

Learn fun-facts about networks to impress your
friends
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NETWORK OF RETWEETS FOR TWEETS ABOUT US POLITICS
REDS ARE CONSERVATIVES AND BLUES ARE DEMOCRATS



ASSORTATIVITY

HOMOPHILY is what causes assortativity:
WE TEND TO BECOME FRIENDS WITH
PEOPLE WHO ARE LIKE US

This, however, tends to cause ECHO-
CHAMBERS and segregation



ASSORTATIVITY

Not only social networks: in some networks,
nodes with high (low) degree connect to
other nodes with high (low) degree.

This effect takes the name of degree
correlation



ASSORTATIVITY

Network degree assortativity illustrated by (a) an assortative network and (b) a disassortative network.



ASSORTATIVITY

Some networks are not assortative. For
example:
World wide web
Ecological networks
Biological networks



ASSORTATIVITY

Two ways to compute assortativity:

correlation between degrees of pairs of nodes
(usually Pearson)

average degree of neighbours
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K-nearest neighbours
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K-nearest neighbours
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ASSORTATIVITY

K-nearest neighbours
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K-nearest neighbours
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ASSORTATIVITY

K-nearest neighbours

| 1
knn(l) - 7 Z aijkj

k.
Number of neighbours of i P l/ \

1if i and j are neighbours,

, Degree of node |
O otherwise < J



ASSORTATIVITY

K-nearest neighbours function

(Kn(K))

The average degree of the neighbours of nodes
of degree k



EXERCISE:
GIVEN THE FOLLOWING NETWORK COMPUTE
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EXERCISE:
GIVEN THE FOLLOWING NETWORK COMPUTE

K, (A) (k. (2))

1 7
knn(A)=§(1*2+1*3+1*2)=§



EXERCISE:
GIVEN THE FOLLOWING NETWORK COMPUTE

k. (A) (k,(2))

C
Which nodes have degree of 27



EXERCISE:
GIVEN THE FOLLOWING NETWORK COMPUTE
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EXERCISE:
GIVEN THE FOLLOWING NETWORK COMPUTE

k. (A) (k,(2))

C

Pro tip: network is symmetric for these nodes
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= SHORTEST PATH
CaB
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PATHS

AVERAGE PATH - UNDIRECTED NETWORK

<f> B zi,jbﬂlj _ 5 zi,jfij
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PATHS

AVERAGE PATH - UNDIRECTED NETWORK

<f> B zi,jbﬂlj _ 5 zi,jfij
B (zv) TN(N=1)
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DIAMETER - UNDIRECTED NETWORK

fmax — maxl,]fl]



SIX DEGREES OF SEPARATION




SIX DEGREES OF SEPARATION

An average path length is said to be short if:
(€) = log(N)



CONNECTEDNESS

A NETWORK |S CONNECTED |F THERE IS AT
LEAST A PATH BETWEEN ANY PAIR OF NODES
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A COMPONENT IS A CONNECTED SUB-
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CONNECTEDNESS

A NETWORK |S CONNECTED |F THERE IS AT
LEAST A PATH BETWEEN ANY PAIR OF NODES

A COMPONENT IS A CONNECTED SUB-
GRAPH

THE LARGEST COMPONENT IS CALLED GIANT
COMPONENT



CONNECTEDNESS

FOR DIRECTED NETWORKS COMPONENTS CAN
BE:

WEAKLY CONNECTED:
IF CONNECTED ONLY DISREGARDING THE DIRECTION OF LINKS



CONNECTEDNESS

FOR DIRECTED NETWORKS COMPONENTS CAN
BE:

WEAKLY CONNECTED:
IF CONNECTED ONLY DISREGARDING THE DIRECTION OF LINKS

STRONGLY CONNECTED:
IF CONNECTED ALSO WHEN CONSIDERING THE DIRECTION OF LINKS



CONNECTEDNESS

Undirected

O

O



CONNECTEDNESS

Undirected Directed

R
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TRIANGLES AND FRIENDS
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TRIANGLES AND FRIENDS

The clustering coefficient (i) of node i is the fraction of
pairs of the neighbours of i that are
connected to each other



TRIANGLES AND FRIENDS

a¥

C(i) = (@) 2700

Toax(D) Kk = 1)




WHAT IS THE C(A) IN THE FOLLOWING

NETWORKS?
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TRIANGLES AND FRIENDS

C(i) = (@) 2700

Toax(D) Kk = 1)
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TREES

Maximum (minimum) spanning tree:
For each node only keep the connection
with maximum (minimum) weight
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TREES




SUMMARY

We learned about clustering and distances
We learned the tree topology and seen its applications

We can now perform basic network analysis!



