SMALL WORLDS

ITSASmm wonionsithane

4. quickmeme.com

Valerio Restocchi / DBBA / lecture 03

LEARNING OUTCOMES

Learn about similarity, paths, and triangles
See how these concepts apply to real-world networks

Learn fun-facts about networks to impress your friends

ASSORTATIVITY

ASSORTATIVITY

ASSORTATIVITY

NETWORK OF RETWEETS FỌR TWĖETS ABOUT US POLITICS REDS ARE CONSERVATIVES AND BLUES ARE DEMOCRATS

ASSORTATIVITY

HOMOPHILY is what causes assortativity: WE TEND TO BECOME FRIENDS WITH PEOPLE WHO ARE LIKE US

This, however, tends to cause ECHOCHAMBERS and segregation

ASSORTATIVITY

Not only social networks: in some networks, nodes with high (low) degree connect to other nodes with high (low) degree.

This effect takes the name of degree correlation

ASSORTATIVITY

Network degree assortativity illustrated by (a) an assortative network and (b) a disassortative network.

ASSORTATIVITY

Some networks are not assortative. For example:
World wide web Ecological networks Biological networks

ASSORTATIVITY

Two ways to compute assortativity:

correlation between degrees of pairs of nodes
(usually Pearson)
average degree of neighbours

ASSORTATIVITY

K-nearest neighbours

$$
k_{n n}(i)=\frac{1}{k_{i}} \sum_{j} a_{i j} k_{j}
$$

ASSORTATIVITY

K-nearest neighbours

Knn of node i

$$
k_{n n}(i)=\frac{1}{k_{i}} \sum_{j} a_{i j} k_{j}
$$

ASSORTATIVITY

K-nearest neighbours

Number of neighbours of $\mathrm{i} \longrightarrow k_{i} \sum_{j}$

ASSORTATIVITY

K-nearest neighbours

$$
k_{n n}(i)=\frac{1}{k_{i}} \sum_{j} a_{i j} k_{j}
$$

1 if i and j are neighbours,
0 otherwise

ASSORTATIVITY

K-nearest neighbours

$$
k_{n n}(i)=\frac{1}{k_{i}} \sum_{j} a_{i j} k_{j}
$$

Degree of node j

ASSORTATIVITY

K-nearest neighbours

Number of neighbours of $\mathrm{i} \xrightarrow{k_{n n}(i)=\frac{1}{k_{i}} \sum_{j} a_{i j} k_{j}}$

ASSORTATIVITY

K-nearest neighbours function

$$
\left\langle k_{n n}(k)\right\rangle
$$

The average degree of the neighbours of nodes of degree k

EXERCISE:

GIVEN THE FOLLOWING NETWORK COMPUTE

$$
k_{n n}(A) \quad\left\langle k_{n n}(2)\right\rangle
$$

EXERCISE:
 GIVEN THE FOLLOWING NETWORK COMPUTE

$$
k_{n n}(A) \quad\left\langle k_{n n}(2)\right\rangle
$$

EXERCISE:
 GIVEN THE FOLLOWING NETWORK COMPUTE

$$
k_{n n}(A) \quad\left\langle k_{n n}(2)\right\rangle
$$

EXERCISE:
 GIVEN THE FOLLOWING NETWORK COMPUTE

$$
k_{n n}(A) \quad\left\langle k_{n n}(2)\right\rangle
$$

$$
k_{n n}(A)=\frac{1}{3}(1 * 2+1 * 3+1 * 2)=\frac{7}{3}
$$

EXERCISE:
 GIVEN THE FOLLOWING NETWORK COMPUTE

$$
k_{n n}(A) \quad\left\langle k_{n n}(2)\right\rangle
$$

Which nodes have degree of 2?

EXERCISE:
 GIVEN THE FOLLOWING NETWORK COMPUTE

$$
k_{n n}(A) \quad\left\langle k_{n n}(2)\right\rangle
$$

$$
k_{n n}(B)=?
$$

EXERCISE:
 GIVEN THE FOLLOWING NETWORK COMPUTE

$$
k_{n n}(A) \quad\left\langle k_{n n}(2)\right\rangle
$$

Pro tip: network is symmetric for these nodes

PATHS

PATHS

PATHS

PATHS

SHORTEST PATH
 $\ell_{A B}$

PATHS

Undirected

PATHS

Undirected

PATHS

Undirected
Directed

PATHS

Undirected
Directed

PATHS

AVERAGE PATH - UNDIRECTED NETWORK

$$
\langle\ell\rangle=\frac{\sum_{i, j} \ell_{i j}}{\binom{N}{2}}=2 \frac{\sum_{i, j} \ell_{i j}}{N(N-1)}
$$

PATHS

AVERAGE PATH - UNDIRECTED NETWORK

$$
\langle\ell\rangle=\frac{\sum_{i, j} \ell_{i j}}{\binom{N}{2}}=2 \frac{\sum_{i, j} \ell_{i j}}{N(N-1)}
$$

DIAMETER - UNDIRECTED NETWORK

$$
\ell_{\max }=\max _{i, j} \ell_{i j}
$$

SIX DEGREES OF SEPARATION

SIX DEGREES OF SEPARATION

An average path length is said to be short if:
$\langle\ell\rangle \approx \log (N)$

CONNECTEDNESS

A NETWORK IS CONNECTED IF THERE IS AT LEAST A PATH BETWEEN ANY PAIR OF NODES

CONNECTEDNESS

A NETWORK IS CONNECTED IF THERE IS AT LEAST A PATH BETWEEN ANY PAIR OF NODES

A COMPONENT IS A CONNECTED SUBGRAPH

CONNECTEDNESS

A NETWORK IS CONNECTED IF THERE IS AT LEAST A PATH BETWEEN ANY PAIR OF NODES

A COMPONENT IS A CONNECTED SUBGRAPH

THE LARGEST COMPONENT IS CALLED GIANT

 COMPONENT
CONNECTEDNESS

FOR DIRECTED NETWORKS COMPONENTS CAN

 BE:WEAKLY CONNECTED:
IF CONNECTED ONLY DISREGARDING THE DIRECTION OF LINKS

CONNECTEDNESS

FOR DIRECTED NETWORKS COMPONENTS CAN

 BE:
WEAKLY CONNECTED:

IF CONNECTED ONLY DISREGARDING THE DIRECTION OF LINKS

STRONGLY CONNECTED:
IF CONNECTED ALSO WHEN CONSIDERING THE DIRECTION OF LINKS

CONNECTEDNESS

Undirected

CONNECTEDNESS

Iimismy enemy. But in ruris omrtifatim is also his own worst enemy. And the enemy of my enemy is my frienid. So Jim, is actually my
frienil.

Biti, hecause he is his own worst cnemy. the enemy of mus rieut is my enemity so actially Jim is my enemy. But-

TRIANGLES AND FRIENDS

TRIANGLES AND FRIENDS

The clustering coefficient $C(i)$ of node i is the fraction of pairs of the neighbours of i that are connected to each other

TRIANGLES AND FRIENDS

$$
C(i)=\frac{\tau(i)}{\tau_{\max }(i)}=\frac{2 \tau(i)}{k_{i}\left(k_{i}-1\right)}
$$

TRIANGLES AND FRIENDS

WHAT IS THE CCA IN THE FOLLOWING NETWORKS?

TRIANGLES AND FRIENDS

TRIANGLES AND FRIENDS

TRIANGLES AND FRIENDS

TRIANGLES AND FRIENDS

$$
C(i)=\frac{\tau(i)}{\tau_{\max }(i)}=\frac{2 \tau(i)}{k_{i}\left(k_{i}-1\right)}
$$

TREES

TREES

ACYCLIC
 CONNECTED
 [PLANAR]

TREES

Maximum (minimum) spanning tree:
 For each node only keep the connection with maximum (minimum) weight

TREES

TREES

SUMMARY

We learned about clustering and distances

We learned the tree topology and seen its applications

We can now perform basic network analysis!

