Network models - I

"I work with models"

Others:

Me:

LEARNING OUTCOMES

Learn about different generative network models

Compare these models' theoretical outputs with realworld networks

Step-up your network analysis game

HOW WOULD YOU BUILD A NETWORK?

Two slightly different versions proposed independently, one by **Gilbert** and the other one by **Erdos and Rényi**

For reasons, both are called Erdos-Rényi networks (ER networks)

The most common formulation, however, is the one by **Gilbert**

Gilbert model

Parameters: n number of nodes and a probability p Algorithm:

For each pair of nodes i,j:

Generate a random number r between **0** and **1** (uniformly distributed)

If r<p make a link between i,j

Gilbert model

Gilbert model

i,j r 1,2 0.12 1,3 2,3

Gilbert model

i,j r 1,2 0.12 1,3 2,3

Gilbert model

i,j r 1,2 0.12 1,3 0.29 2,3

Gilbert model

i,j r 1,2 0.12 1,3 0.29 2,3 0.72

Erdos-Renyi model

Parameters: n number of nodes and L number of links

Algorithm:

Build all possible networks with n nodes and L links Pick one randomly

Remarks:

For large values of **L**, these two formulations are (almost) equivalent

PHASE TRANSITION

 $\langle L \rangle = p \binom{N}{2} = p \frac{N(N-1)}{2}$

$$\langle L \rangle = p \binom{N}{2} = p \frac{N(N-1)}{2}$$

 $\langle k \rangle = ?$

$$\langle L \rangle = p \binom{N}{2} = p \frac{N(N-1)}{2}$$

$$\langle k \rangle = \frac{2 \langle L \rangle}{N} = p(N-1)$$

$$\langle L \rangle = p \binom{N}{2} = p \frac{N(N-1)}{2}$$

$$\langle k \rangle = \frac{2 \langle L \rangle}{N} = p(N-1)$$

 $\langle d \rangle = ?$

$$\langle L \rangle = p \binom{N}{2} = p \frac{N(N-1)}{2}$$

$$\langle k \rangle = \frac{2\langle L \rangle}{N} = p(N-1)$$

 $\langle d \rangle = \frac{L}{L_{max}}$

$$\langle L \rangle = p \binom{N}{2} = p \frac{N(N-1)}{2}$$

$$\langle k \rangle = \frac{2\langle L \rangle}{N} = p(N-1)$$

$$\langle d \rangle = \frac{\langle L \rangle}{L_{max}} = \frac{p \frac{N(N-1)}{2}}{L_{max}}$$

$$\langle L \rangle = p \binom{N}{2} = p \frac{N(N-1)}{2}$$

$$\langle k \rangle = \frac{2\langle L \rangle}{N} = p(N-1)$$

$$\langle d \rangle = \frac{\langle L \rangle}{L_{max}} = \frac{p \frac{N(N-1)}{2}}{L_{max}} = \frac{p \frac{N(N-1)}{2}}{\frac{N(N-1)}{2}} = p$$

DEGREE DISTRIBUTION

Binomial distribution

$$P(k) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$$

DEGREE DISTRIBUTION

assumption:

all nodes have degree k

Path length Nodes reached $\ell = 1 \ k$

assumption:

all nodes have degree k

Path length Nodes reached $\ell = 1$ k $\ell = 2$ k(k - 1)

assumption:

all nodes have degree k

Path length Nodes reached $\ell = 1 \quad k$ $\ell = 2 \quad k(k-1)$ $\ell = 3 \quad k(k-1)^2$

assumption:

all nodes have degree k

Path length Nodes reached $\ell = 1$ k $\ell = 2$ k(k-1) $\ell = 3$ $k(k-1)^2$

$$k^{\ell_{max}} = N$$

$$\ell_{max} = \log_k N = \frac{\log N}{\log k}$$

Diameter grows with logarithm of nodes, so distances are fairly small despite the network size

CLUSTERING COEFFICIENT

C(i) = ?

CLUSTERING COEFFICIENT

C(i) = p

Real-world networks are **sparse**, so p is small, so **clustering is small**

However, real-world networks have actually higher clustering coefficients

CONCLUSIONS

DO YOU THINK ERDOS-RENYI NETWORKS ARE GOOD APPROXIMATIONS OF REAL-WORLD NETWORKS? IF SO, WHICH TYPE OF NETWORK?

- Proposed by **WATTS AND STROGATZ** (sometimes called WS networks)
- Solves the problem of low clustering coefficients

Start with n nodes

Connect a node to its Do the same for all k nearest neighbours the nodes in the network

we rewire every link in the network with probability p

- Desirable properties such as clustering and short paths
- What is missing?

SCALE-FREE NETWORKS

PROPOSED BY REKA **ALBERT** AND LASZLO **BARABASI** (ALSO KNOWN AS BA NETWORK)

BASED ON THE IDEA OF PREFERENTIAL ATTACHMENT

INTRODUCES **DYNAMIC** GENERATION OF NETWORK, AND **EXPLAINS HUBS**

PREFERENTIAL ATTACHMENT

NEW NODES MAKES SOME CONNECTIONS

CONNECTIONS ARE MADE BASED ON A GIVEN RULE (OR SET OF RULES)

BARABASI-ALBERT MODEL

$$\Pi(k_i) = \frac{k_i}{\sum_j k_j}$$

Probability a new node makes a connection to node i

BARABASI-ALBERT MODEL

BARABASI-ALBERT MODEL

Parameters:

number of initial nodes m_o Number of links of new nodes $m \le m_0$ Number of total nodes at the end of the process N

Algorithm:

For each new node i, with i from m_o to: NCompute the probability of every node to get attached to i based on degree Choose m nodes randomly based on this probability form link between the new node and the chosen nodes

METRICS

Parameters:Degree distribution $P(k) \approx k^{-3}$ Clustering coefficient $C(k) \approx k^{-1}$ Diameter $\ell(k) \approx \frac{ln(N)}{lnln(N)}$

SUMMARY

We can generate networks with algorithms

Most real-world networks are compatible with one of these models

We can **compare the properties** of a real-world networ with that of a model to understand how they are formed