OTHER PREFERENTIAL MODELS

There are **many versions** of preferential attachment models

Some are **generalisations**, some provide better models for **specific cases**

FIXED DEGREE **DISTRIBUTION SLOPE**

FIXED DEGREE **DISTRIBUTION SLOPE**

OLDEST NODES BECOME HUBS

FIXED DEGREE **DISTRIBUTION SLOPE**

OLDEST NODES BECOME HUBS

CLUSTERING LOWER THAN REAL-WORLD NETWORKS

FIXED DEGREE **DISTRIBUTION SLOPE**

OLDEST NODES BECOME HUBS

CLUSTERING LOWER THAN REAL-WORLD NETWORKS

NODES/LINKS CANNOT BE REMOVED

FIXED DEGREE **DISTRIBUTION SLOPE**

OLDEST NODES BECOME HUBS

CLUSTERING LOWER THAN REAL-WORLD NETWORKS

NODES/LINKS CANNOT BE REMOVED

SINGLE CONNECTED COMPONENT

FIXED DEGREE **DISTRIBUTION SLOPE**

OLDEST NODES BECOME HUBS

CLUSTERING LOWER THAN REAL-WORLD NETWORKS

NODES/LINKS CANNOT BE REMOVED

SINGLE CONNECTED COMPONENT

LIMITING INITIAL CONDITIONS

NON-LINEAR PREFERENTIAL ATTACHMENT

$$\Pi_{\alpha}(k_i) = \frac{k_i^{\alpha}}{\sum_j k_j^{\alpha}}$$

- $\alpha = 1$ Barabási-albert model
- $\alpha < 1$ No hubs
- $\alpha > 1$ Fewer, larger hubs

ATTRACTIVENESS MODEL

$$\Pi(k_i) = \frac{A + k_i}{\sum_j A + k_j} \qquad \forall A \ge 0$$

ATTRACTIVENESS MODEL

$$\Pi(k_i) = \frac{A + k_i}{\sum_j (A + k_j)} \quad \forall A \ge 0$$

Slope of degree distribution depends on A

FITNESS MODEL

$$\Pi(k_i) = \frac{\eta_i k_i}{\sum_j (\eta_j k_j)}$$

Fittest, not oldest nodes become hubs

FITNESS MODEL

$$\Pi(k_i) = \frac{\eta_i k_i}{\sum_j (\eta_j k_j)}$$

Fittest, not oldest nodes become hubs

We take η from a distribution $\rho(\eta)$

If $\rho(\eta)$ has a finite support (finite maximum value) there are hubs. Otherwise, there will likely be a single massive hub.

Takes a **degree sequence** as input

Links are rewired randomly, degree sequence preserved

Very important for **benchmarking**!

k 3 2 2 1

k 3 2 2 1

k 3 2 2 1

INTERBANK NETWORK

Soramäki, Bech, Arnold, Beyeler - The topology of interbank payment flows - Physics A (2007)

OUT-DEGREE DISTRIBUTION

K-NEAREST NEIGHBOURS

AVERAGE PATH LENGTH

AVERAGE PATH LENGTH

DENSITY

	Mean	Median	Min.	Max.	\mathbf{SD}		Mean	Median	Min	Max	SD
Payments						Distance Mea	asures				
Volume (,000)	436	411	371	644	60.3	$\langle \ell \rangle$	2.62	2.63	2.56	2.66	0.02
Value (\$tr)	1.30	1.27	1.13	1.64	0.11	$\langle \varepsilon \rangle$	4.67	4.63	4.18	5.74	0.33
Average (\$mn)	3.01	3.06	2.48	3.35	0.20	D	6.6	7	6	7	0.5
Components						M(2) (%)	41.6	41.3	38.9	47.3	2.0
GWCC	6,460	6,484	6,355	6,729	83	M(3) (%)	95.9	95.8	95.1	97.1	0.5
DC	2	2	0	8	2	M(4) (%)	99 .9	9 9.9	99.8	100	0.0
GSCC (n)	5,086	5,066	4,914	5,395	123	Clustering					
GIN	527	528	40 4	645	49	$\langle C \rangle$	0.53	0.53	0.51	0.55	0 .0 1
GOUT	774	782	59 5	916	67	Degree Distri	ibution				
Tendrils	103	103	88	116	7	$\langle k angle$	15.2	14.8	13.9	17.6	0.8
Connectivity and Reciprocity					Max k^{out}	1,922	1,913	1,772	2,269	121	
m	$76,\!614$	75,397	69,077	94,819	6,151	$\operatorname{Max} k^{in}$	2,097	2,070	1,939	2,394	115
p(%)	0.3	0.29	0.28	0.33	0.01	$\hat{\gamma}^{out}_{\scriptscriptstyle\mathrm{MLE}}$	2.11	2.11	2.09	2.14	0.01
r (%)	21.5	21.5	21	23	0.03	$\hat{\gamma}^{in}_{\scriptscriptstyle m MLE}$	2.15	2.15	2.15	2.18	0.01

TABLE II: Turnover, component and network statistics for the Fedwire interbank payment network, fourth quarter 2004. tr =\$trillion, \$mn = \$million, GWCC = giant weakly connected component, GSCC = giant strongly connected component, GIN = giant in component, GOUT = giant out component, DC = Disconnected component. All network statistics are calculated for GSCC. n = size, m = number of links, p = connectivity, r = reciprocity, $\langle \ell \rangle =$ average path length, $\langle \varepsilon \rangle =$ average eccentricity, D = diameter, M(x) = mass distance function, $\langle C \rangle =$ clustering coefficient, $\langle k \rangle =$ average degree, $k^{in} =$ in-degree, $k^{out} =$ out-degree, $\gamma =$ power law coefficient.

	Mean	Median	Min.	Max.	\mathbf{SD}		Mean	Median	Min	Max	SD
Payments						Distance Measures					
Volume (,000)	436	411	371	644	60.3	$\langle \ell \rangle$	2.62	2.63	2.56	2.66	0.02
Value (\$tr)	1.30	1.27	1.13	1.64	0.11	$\langle \varepsilon \rangle$	4.67	4.63	4.18	5.74	0.33
Average (\$mn)	3.01	3.06	2.48	3.35	0.20	D	6.6	7	6	7	0.5
Components						M(2) (%)	41.6	41.3	38.9	47.3	2.0
GWCC	6,460	6,484	6,355	6,729	83	M(3) (%)	95 .9	95.8	95.1	97.1	0.5
DC	2	2	0	8	2	M(4) (%)	99 .9	9 9.9	99.8	100	0.0
GSCC (n)	5,086	5,066	4,914	5,395	123	Clustering					
GIN	527	528	40 4	645	49	$\langle C \rangle$	0.53	0.53	0.51	0.55	0.01
GOUT	774	782	59 5	916	67	Degree Distri	ibution				
Tendrils	103	103	88	116	7	$\langle k angle$	15.2	14.8	13.9	17.6	0.8
Connectivity and	Reciproc	ity				Max k^{out}	1,922	1,913	1,772	2,269	121
m	$76,\!614$	75,397	69,077	94,819	6,151	$\operatorname{Max} k^{in}$	2,097	2,070	1,939	2,394	115
p(%)	0.3	0.29	0.28	0.33	0.01	$\hat{\gamma}^{out}_{\scriptscriptstyle\mathrm{MLE}}$	2.11	2.11	2.09	2.14	0.01
r (%)	21.5	21.5	21	23	0.03	$\hat{\gamma}^{in}_{\scriptscriptstyle m MLE}$	2.15	2.15	2.15	2.18	0.01

TABLE II: Turnover, component and network statistics for the Fedwire interbank payment network, fourth quarter 2004. tr =\$trillion, m =\$million, GWCC = giant weakly connected component, GSCC = giant strongly connected component, GIN = giant in component, GOUT = giant out component, DC = Disconnected component. All network statistics are calculated for GSCC. n = size, m = number of links, p = connectivity, r = reciprocity, $\langle \ell \rangle =$ average path length, $\langle \varepsilon \rangle =$ average eccentricity, D = diameter, M(x) = mass distance function, $\langle C \rangle =$ clustering coefficient, $\langle k \rangle =$ average degree, $k^{in} =$ in-degree, $k^{out} =$ out-degree, $\gamma =$ power law coefficient.

	Mean	Median	Min.	Max.	SD		Mean	Median	Min	Max	SD
Payments						Distance Measures					
Volume (,000)	436	411	371	644	60.3	$\langle \ell \rangle$	2.62	2.63	2.56	2.66	0.02
Value (\$tr)	1.30	1.27	1.13	1.64	0.11	$\langle \varepsilon \rangle$	4.67	4.63	4.18	5.74	0.33
Average (\$mn)	3.01	3.06	2.48	3.35	0.20	D	6.6	7	6	7	0.5
Components						M(2) (%)	41.6	41.3	38.9	47.3	2.0
GWCC	6,460	6,484	6,355	6,729	83	M(3) (%)	95.9	95.8	95.1	97.1	0.5
DC	2	2	0	8	2	M(4) (%)	99 .9	9 9.9	99.8	100	0.0
GSCC (n)	5,086	5,066	4,914	5,395	123	Clustering					
GIN	527	528	40 4	645	49	$\langle C \rangle$	0.53	0.53	0.51	0.55	0 .0 1
GOUT	774	782	59 5	916	67	Degree Distri	ibution				
Tendrils	103	103	88	116	7	$\langle k angle$	15.2	14.8	13.9	17.6	0.8
Connectivity and	Reciproc	ity				Max k^{out}	1,922	1,913	1,772	2,269	121
m	$76,\!614$	75,397	69,077	94,819	6,151	$\operatorname{Max} k^{in}$	2,097	2,070	1,939	2,394	115
p(%)	0.3	0.29	0.28	0.33	0.01	$\hat{\gamma}^{out}_{\scriptscriptstyle\mathrm{MLE}}$	2.11	2.11	2.09	2.14	0.01
r (%)	21.5	21.5	21	23	0.03	$\hat{\gamma}^{in}_{\scriptscriptstyle m MLE}$	2.15	2.15	2.15	2.18	0.01

TABLE II: Turnover, component and network statistics for the Fedwire interbank payment network, fourth quarter 2004. tr =\$trillion, m =\$million, GWCC = giant weakly connected component, GSCC = giant strongly connected component, GIN = giant in component, GOUT = giant out component, DC = Disconnected component. All network statistics are calculated for GSCC. n = size, m = number of links, p = connectivity, r = reciprocity, $\langle \ell \rangle =$ average path length, $\langle \varepsilon \rangle =$ average eccentricity, D = diameter, M(x) = mass distance function, $\langle C \rangle =$ clustering coefficient, $\langle k \rangle =$ average degree, $k^{in} =$ in-degree, $k^{out} =$ out-degree, $\gamma =$ power law coefficient.

	Mean	Median	Min.	Max.	SD		Mean	Median	Min	Max	SD	
Payments						Distance Measures						
Volume (,000)	436	411	371	644	60.3	$\langle \ell \rangle$	2.62	2.63	2.56	2.66	0.02	
Value (\$tr)	1.30	1.27	1.13	1.64	0.11	$\langle \varepsilon \rangle$	4.67	4.63	4.18	5.74	0.33	
Average (\$mn)	3.01	3.06	2.48	3.35	0.20	D	6.6	7	6	7	0.5	
Components						M(2) (%)	41.6	41.3	38.9	47.3	2.0	
GWCC	6,460	6,484	6,355	6,729	83	M(3) (%)	95 .9	95.8	95.1	97.1	0.5	
DC	2	2	0	8	2	M(4) (%)	99 .9	9 9.9	99.8	100	0.0	
GSCC (n)	5,086	5,066	4,914	5,395	123	Clustering						
GIN	527	528	40 4	645	49	$\langle C \rangle$	0.53	0.53	0.51	0.55	0.01	
GOUT	774	782	59 5	916	67	Degree Distri	ibution					
Tendrils	103	103	88	116	7	$\langle k \rangle$	15.2	14.8	13.9	17.6	0.8	
Connectivity and	Reciproc	ity				Max k^{out}	1,922	1,913	1,772	2,269	121	
m	$76,\!614$	75,397	69,077	94,819	6,151	${ m Max} \; k^{in}$	2,097	2,070	1,939	2,394	115	
p(%)	0.3	0.29	0.28	0.33	0.01	$\hat{\gamma}^{out}_{\scriptscriptstyle\mathrm{MLE}}$	2.11	2.11	2.09	2.14	0.01	
r (%)	21.5	21.5	21	23	0.03	$\hat{\gamma}^{in}_{\scriptscriptstyle m MLE}$	2.15	2.15	2.15	2.18	0.01	

TABLE II: Turnover, component and network statistics for the Fedwire interbank payment network, fourth quarter 2004. tr =trillion, m = million, GWCC = giant weakly connected component, GSCC = giant strongly connected component, GIN = giant in component, GOUT = giant out component, DC = Disconnected component. All network statistics are calculated for GSCC. n = size, m = number of links, p = connectivity, r = reciprocity, $\langle \ell \rangle =$ average path length, $\langle \varepsilon \rangle =$ average eccentricity, D = diameter, M(x) = mass distance function, $\langle C \rangle =$ clustering coefficient, $\langle k \rangle =$ average degree, $k^{in} =$ in-degree, $k^{out} =$ out-degree, $\gamma =$ power law coefficient.

	Mean	Median	Min.	Max.	SD		Mean	Median	Min	Max	SD	
Payments						Distance Measures						
Volume (,000)	436	411	371	644	60.3	$\langle \ell \rangle$	2.62	2.63	2.56	2.66	0.02	
Value (\$tr)	1.30	1.27	1.13	1.64	0.11	$\langle \varepsilon \rangle$	4.67	4.63	4.18	5.74	0.33	
Average (\$mn)	3.01	3.06	2.48	3.35	0.20	D	6.6	7	6	7	0.5	
Components						M(2) (%)	41.6	41.3	38.9	47.3	2.0	
GWCC	6,460	6,484	6,355	6,729	83	M(3) (%)	95.9	95.8	95.1	97.1	0.5	
DC	2	2	0	8	2	M(4) (%)	99 .9	9 9.9	99.8	100	0.0	
GSCC (n)	5,086	5,066	4,914	5,395	123	Clustering						
GIN	527	528	40 4	645	49	$\langle C \rangle$	0.53	0.53	0.51	0.55	0.01	
GOUT	774	782	59 5	916	67	Degree Distri	ibution					
Tendrils	103	103	88	116	7	$\langle k angle$	15.2	14.8	13.9	17.6	0.8	
Connectivity and	Reciproc	ity				Max k^{out}	1,922	1,913	1,772	2,269	121	
m	$76,\!614$	75,397	69,077	94,819	6,151	${ m Max} \; k^{in}$	2,097	2,070	1,939	2,394	115	
p(%)	0.3	0.29	0.28	0.33	0.01	$\hat{\gamma}^{out}_{\scriptscriptstyle\mathrm{MLE}}$	2.11	2.11	2.09	2.14	0.01	
r (%)	21.5	21.5	21	23	0.03	$\hat{\gamma}^{in}_{\scriptscriptstyle m MLE}$	2.15	2.15	2.15	2.18	0.01	

TABLE II: Turnover, component and network statistics for the Fedwire interbank payment network, fourth quarter 2004. tr =trillion, m = initial and the fedwire interbank payment network, fourth quarter 2004. tr =strillion, m = initial and m = initial and tr = initia

	Mean	Median	Min.	Max.	SD		Mean	Median	Min	Max	SD
Payments	Distance Measures										
Volume (,000)	436	411	371	644	60.3	$\langle \ell \rangle$	2.62	2.63	2.56	2.66	0.02
Value (\$tr)	1.30	1.27	1.13	1.64	0.11	$\langle \varepsilon \rangle$	4.67	4.63	4.18	5.74	0.33
Average (\$mn)	3.01	3.06	2.48	3.35	0.20	D	6.6	7	6	7	0.5
Components						M(2) (%)	41.6	41.3	38.9	47.3	2.0
GWCC	6,460	6,484	6,355	6,729	83	M(3) (%)	95.9	95.8	95.1	97.1	0.5
DC	2	2	0	8	2	M(4) (%)	99 .9	9 9.9	99.8	100	0.0
GSCC (n)	5,086	5,066	4,914	5,395	123	Clustering					
GIN	527	528	40 4	645	49	$\langle C \rangle$	0.53	0.53	0.51	0.55	0.01
GOUT	774	782	59 5	916	67	Degree Distri	ibution				
Tendrils	103	103	88	116	7	$\langle k \rangle$	15.2	14.8	13.9	17.6	0.8
Connectivity and	Reciproc	ity				Max k^{out}	1,922	1,913	1,772	2,269	121
m	76,614	75,397	69,077	94,819	6,151	${ m Max} \; k^{in}$	2,097	2,070	1,939	2,394	115
p(%)	0.3	0.29	0.28	0.33	0.01	$\hat{\gamma}^{out}_{\scriptscriptstyle\mathrm{MLE}}$	2.11	2.11	2.09	2.14	0.01
r (%)	21.5	21.5	21	23	0.03	$\hat{\gamma}^{in}_{\scriptscriptstyle m MLE}$	2.15	2.15	2.15	2.18	0.01

TABLE II: Turnover, component and network statistics for the Fedwire interbank payment network, fourth quarter 2004. tr =trillion, m = initial and the fedwire interbank payment network, fourth quarter 2004. tr =strillion, m = initial and m = initial and tr = initia

	Mean	Median	Min.	Max.	\mathbf{SD}		Mean	Median	Min	Max	SD
Payments	Distance Measures										
Volume (,000)	436	411	371	644	60.3	$\langle \ell \rangle$	2.62	2.63	2.56	2.66	0.02
Value (\$tr)	1.30	1.27	1.13	1.64	0.11	$\langle \varepsilon \rangle$	4.67	4.63	4.18	5.74	0.33
Average (\$mn)	3.01	3.06	2.48	3.35	0.20	D	6.6	7	6	7	0.5
Components						M(2) (%)	41.6	41.3	38.9	47.3	2.0
GWCC	6,460	6,484	6,355	6,729	83	M(3) (%)	95.9	95.8	95.1	97.1	0.5
DC	2	2	0	8	2	M(4) (%)	99 .9	9 9.9	99.8	100	0.0
GSCC (n)	5,086	5,066	4,914	5,395	123	Clustering					
GIN	527	528	40 4	645	49	$\langle C \rangle$	0.53	0.53	0.51	0.55	0 .0 1
GOUT	774	782	59 5	916	67	Degree Distri	ibution				
Tendrils	103	103	88	116	7	$\langle k angle$	15.2	14.8	13.9	17.6	0.8
Connectivity and	Reciproc	ity				Max k^{out}	1,922	1,913	1,772	2,269	121
m	$76,\!614$	75,397	69,077	94,819	6,151	$\operatorname{Max} k^{in}$	2,097	2,070	1,939	2,394	115
p(%)	0.3	0.29	0.28	0.33	0.01	$\hat{\gamma}^{out}_{\scriptscriptstyle\mathrm{MLE}}$	2.11	2.11	2.09	2.14	0.01
r (%)	21.5	21.5	21	23	0.03	$\hat{\gamma}^{in}_{\scriptscriptstyle m MLE}$	2.15	2.15	2.15	2.18	0.01

TABLE II: Turnover, component and network statistics for the Fedwire interbank payment network, fourth quarter 2004. tr =\$trillion, \$mn = \$million, GWCC = giant weakly connected component, GSCC = giant strongly connected component, GIN = giant in component, GOUT = giant out component, DC = Disconnected component. All network statistics are calculated for GSCC. n = size, m = number of links, p = connectivity, r = reciprocity, $\langle \ell \rangle =$ average path length, $\langle \varepsilon \rangle =$ average eccentricity, D = diameter, M(x) = mass distance function, $\langle C \rangle =$ clustering coefficient, $\langle k \rangle =$ average degree, $k^{in} =$ in-degree, $k^{out} =$ out-degree, $\gamma =$ power law coefficient.

SUMMARY

We can **generate networks** with algorithms *Most real-world networks* are compatible with one of these models

We can **compare the properties** of a real-world networ with that of a model to understand how they are formed