Community detection

THEY CALLED ME A NERD

I CALLED THEM AN AMBULANCE
LEARNING OUTCOMES

UNDERSTAND WHAT COMMUNITIES ARE

BE ABLE TO DESCRIBE A NETWORK IN TERMS OF COMMUNITIES

LEARN DIFFERENT TYPES OF COMMUNITY CLASSIFICATIONS
Granovetter's Strength of Weak Ties

Even though B has more ties than A, all those ties likely have the same information because they all know each other well.

For example, A can share information with C that C wouldn't get from anyone else in their group, and vice versa.

It's valuable to have a combination of strong and weak ties.
DEFINITIONS

INTERNAL AND EXTERNAL DEGREE:
THE NUMBER OF NEIGHBOURS INSIDE AND
OUTSIDE THE COMMUNITY
DEFINITIONS

INTERNAL AND EXTERNAL DEGREE:
THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

\[k_i = k_i^{\text{int}} + k_i^{\text{ext}} \]

i is called internal node of community c if

\[k_i^{\text{ext}} = 0 \quad \text{And} \quad k_i^{\text{int}} > 0 \]

i is called boundary node of community c if

\[k_i^{\text{ext}} > 0 \quad \text{And} \quad k_i^{\text{int}} > 0 \]
DEFINITIONS

INTERNAL AND EXTERNAL DEGREE:
THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY
DEFINITIONS

INTERNAL AND EXTERNAL DEGREE:
The number of neighbours inside and outside the community

NUMBER OF INTERNAL LINKS:
The number of links between nodes within the community
DEFINITIONS

INTERNAL AND EXTERNAL DEGREE:
THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

NUMBER OF INTERNAL LINKS:
The number of links between nodes within the community

COMMUNITY DEGREE:
The sum of degree of all the nodes in the community
COMMUNITY DEGREE:
THE SUM OF DEGREE OF ALL THE NODES IN THE COMMUNITY

\[k_C = \sum_{i \in C} k_i \]
DEFINITIONS

INTERNAL AND EXTERNAL DEGREE:
THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

NUMBER OF INTERNAL LINKS:
THE NUMBER OF LINKS BETWEEN NODES WITHIN THE COMMUNITY

COMMUNITY DEGREE:
THE SUM OF DEGREE OF ALL THE NODES IN THE COMMUNITY

INTERNAL LINK DENSITY:
DENSITY THAT CONSIDERS ONLY LINKS BETWEEN MEMBERS OF THE COMMUNITY
DEFINITIONS

INTERNAL LINK DENSITY:
DENSITY THAT CONSIDERS ONLY LINKS BETWEEN MEMBERS OF THE COMMUNITY

$$\delta_C^{int} = \frac{L_C}{L_{max}} = \frac{2L_C}{N_C(N_C - 1)}$$
DEFINITIONS

\(? k_1^{ext}, k_1^{int}, \delta_{int}^{red}, k_{blue}\)
Which are the boundary nodes?
DEFINITIONS

high cohesion, high separation
DEFINITIONS

high cohesion, high separation
DEFINITIONS

clique (a fully connected subgraph)
DEFINITIONS

Strong community: \(\forall i \in C : k_i^{int} > k_i^{ext} \)

Weak community: \(\sum_{i \in C} k_i^{int} > \sum_{i \in C} k_i^{ext} \)
DEFINITIONS

Strong community: $\forall i \in C : k_i^{\text{int}} > k_i^{\text{ext}}$

Weak community: $\sum_{i \in C} k_i^{\text{int}} > \sum_{i \in C} k_i^{\text{ext}}$
Strong and weak communities. The four subnetworks enclosed in the dashed contours are weak communities according to both definitions we have given. They are also strong communities according to the less stringent definition, as the internal degree of each node exceeds the number of links joining the node with those of every other community. However, three of the subnetworks are not strong communities in the more stringent sense, because some nodes (in blue) have external degree larger than their internal degree (the internal and external links of these nodes are colored in yellow and magenta, respectively). Adapted from Fortunato and Hric (2016).
PARTITIONS

A PARTITION IS A DIVISION OF THE NETWORK IN COMMUNITIES
PARTITIONS

SUPPOSE YOU HAVE A NETWORK G WITH 10 NODES $1,2,\ldots,10$

$\{1,2,\ldots,10\}$

$\{1\} \quad \{2\} \quad \{3\} \quad \ldots \quad \{10\}$

$\{1,2\} \quad \{3,6,9\} \quad \{5,8,10\} \quad \{7,4\}$

THESE ARE ALL VALID PARTITIONS

The number of possible partitions grows super-exponentially
PARTITIONS

COMMUNITIES CAN OVERLAP
(You are part of different communities, think about it)
PARTITIONS

COMMUNITIES CAN BE HIERARCHICAL
(There might be communities within communities)
PARTITIONS

COMMUNITIES CAN BE HIERARCHICAL
(There might be communities within communities)
PARTITIONS

COMMUNITIES CAN BE HIERARCHICAL
(There might be communities within communities)
PARTITIONS

Dendrogram

Dendrogram
EXERCISE

MAKE SOME EXAMPLES OF SOCIAL AND FINANCIAL NETWORKS WITH COMMUNITIES
We saw what communities are and how they are defined. We explored some examples. We now have all the tools to learn about community detection.
COMMUNITY DETECTION

The task of **finding communities** in a network
We now have all the tools to learn about **community detection**
COMMUNITY DETECTION

FOUR APPROACHES

Bridge removal
Modularity maximisation
Label propagation
Stochastic block modelling
A bridge is a link whose removal breaks the network into two parts.
The most famous algorithm based on this approach is the **Girvan-Newman algorithm**
The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

How do we find a bridge?
BRIDGE REMOVAL

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

1. compute link **betweenness** for all the links
BRIDGE REMOVAL

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

1 - compute link *betweenness* for all the links

2 - remove the link with highest *betweenness*

*in case of a tie, pick a random one among those with highest *betweenness*
BRIDGE REMOVAL

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

1 - compute link **betweenness** for all the links

2 - **remove** the link with highest betweenness*

3 - **repeat** 1 and 1 until you have no links left

*in case of a tie, pick a random one among those with highest betweenness
Circles went with John a
Squares went with mr. Hi
FINAL VERDICT

GREAT FIRST ATTEMPT, BUT COMPUTING LINK BETWEENNESS FOR LARGE NETWORKS THAT MANY TIMES IS IMPOSSIBLE.
MODULARITY MAXIMISATION

MAIN IDEA: WE CALCULATE HOW GOOD A COMMUNITY IS VS RANDOM BASELINE
MODULARITY MAXIMISATION

MAIN IDEA: WE CALCULATE HOW GOOD A COMMUNITY IS VS RANDOM BASELINE

Originally introduced to know where to cut the dendrogram in Girvan-Newman
MODULARITY MAXIMISATION

MAIN IDEA: WE COUNT HOW MANY LINKS INSIDE COMMUNITY VS RANDOM NETWORK

\[Q = \frac{1}{L} \sum_{C} \left(L_{C} - \frac{k_{C}^2}{4L} \right) \]
MODULARITY MAXIMISATION

Difference between links in c and expected links in c with configuration model

\[Q = \frac{1}{L} \sum_C \left(L_C - \frac{k_C^2}{4L} \right) \]
MODULARITY MAXIMISATION

\[Q = \frac{1}{L} \sum_{C} \left(L_C - \frac{k_C^2}{4L} \right) \]

\(k_C\) Is the probability of randomly choosing one stub in the community
MODULARITY MAXIMISATION

\[Q = \frac{1}{L} \sum_C \left(L_C - \frac{k_C^2}{4L} \right) \]

\(\left(\frac{k_C}{2L} \right)^2 \) is the probability of randomly choosing two stubs in the community
MODULARITY MAXIMISATION

There are L links in the network
There are L links in the network

Each link joins two stubs from community c with probability

$$\left(\frac{k_C}{2L} \right)^2$$
Then, the expected number of links in the community is

$$L \left(\frac{k_C}{2L} \right)^2 = \frac{k_C^2}{4L}$$

There are L links in the network.

Each link joins two stubs from community c with probability

$$\left(\frac{k_C}{2L} \right)^2$$

Then, the expected number of links in the community is
MODULARITY MAXIMISATION

\[Q = \frac{1}{L} \sum_{C} \left(L_C - \frac{k_C^2}{4L} \right) \]

Average

Difference between actual links in c and expected links in c
MODULARITY MAXIMISATION

Directed $Q_d = \frac{1}{L} \sum C \left(L_C - \frac{k_{in}^C k_{out}^C}{L} \right)$

Weighted $Q_w = \frac{1}{W} \sum C \left(W_C - \frac{s_{in}^2}{4W} \right)$

Weighted and directed $Q_{dw} = \frac{1}{W} \sum C \left(W_C - \frac{s_{in}^C s_{out}^C}{W} \right)$
MODULARITY MAXIMISATION

Most famous algorithms: Louvain, Leiden
MODULARITY MAXIMISATION

Most famous algorithms: Louvain, Leiden

1) start with no communities. Every node is moved to a community so that Q is maximised. Repeat until no modularity gain is possible
MODULARITY MAXIMISATION

Most famous algorithms: **Louvain, Leiden**

1) start with no communities. Every nodes is moved to a community so that Q is maximised. Repeat until no modularity gain is possible

2) the network becomes a weighted super-network, in which nodes are the communities of the original network, and weights are the number of links between communities (this includes self-loops)
Move nodes
Comparison: On average larger networks have larger modularity.

Uncertainty: This approach can find positive modularity for random networks.

Resolution: Cannot find communities whose degree is smaller than $\sqrt{2L}$.
MODULARITY MAXIMISATION
LABEL PROPAGATION

1) WE START WITH SINGLETONS

2) ONE BY ONE, WITH RANDOM ORDER, NODES TAKE THE “LABEL” (IE COMMUNITY MEMBERSHIP) OF THE MAJORITY OF THEIR NEIGHBOURS

3) WE REPEAT THIS UNTIL THE PARTITION IS STABLE (IE THERE ARE NO POSSIBLE CHANGES)
LABEL PROPAGATION
LABEL PROPAGATION
LABEL PROPAGATION

*Actually 1/3!!!
LABEL PROPAGATION
LABEL PROPAGATION
LABEL PROPAGATION

ISSUES
DIFFERENT RUNS FIND DIFFERENT COMMUNITIES
NEEDS TO BE RUN MULTIPLE TIMES

STRENGTHS
VERY FAST
IF SOME MEMBERSHIPS ARE KNOWN, THEY CAN BE USED TO INITIALISE THE NETWORK
Generative algorithm generates communities with given probabilities, chooses the most likely
STOCHASTIC BLOCK MODEL
STOCHASTIC BLOCK MODEL

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES

FOR EXAMPLE: IF $\forall r, p_{rr} = 0$ THIS REPRESENTS MULTIPARTITE NETWORKS
STOCHASTIC BLOCK MODEL

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES
And can discover more than just communities

\[\forall r, s \quad p_{rr} > p_{rs} \quad \text{Classic communities} \]
\[p_{rr} < p_{rs} \quad \text{Disassortative structure} \]
\[\forall r \quad p_{rr} = 0 \quad \text{Multipartite network} \]
STOCHASTIC BLOCK MODEL

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES
And can discover more than just communities

\[\forall r, s \quad p_{rr} > p_{rs} \] Classic communities

\[p_{rr} < p_{rs} \] Disassortative structure

\[\forall r \quad p_{rr} = 0 \] Multipartite network

\[\forall r, s \quad p_{rr} = p_{rs} = p \] Random network
STOCHASTIC BLOCK MODEL

LIMITS:
NEEDS PRIOR KNOWLEDGE ON NUMBER OF COMMUNITIES

STRENGTHS:
EVERYTHING ELSE
Does not require prior knowledge

Extremely versatile

MICROCANONICAL SBM

Uses Bayesian inference
There's a library that does it all and produces beautiful figures.