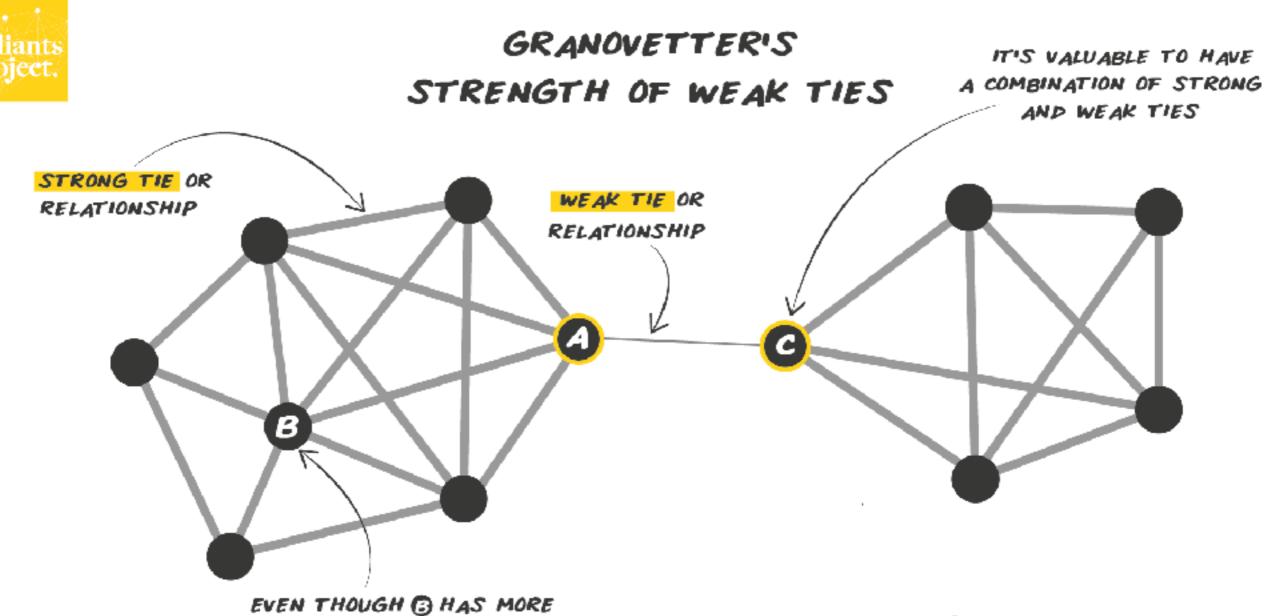
Community detection

LEARNING OUTCOMES

UNDERSTAND WHAT COMMUNITIES ARE

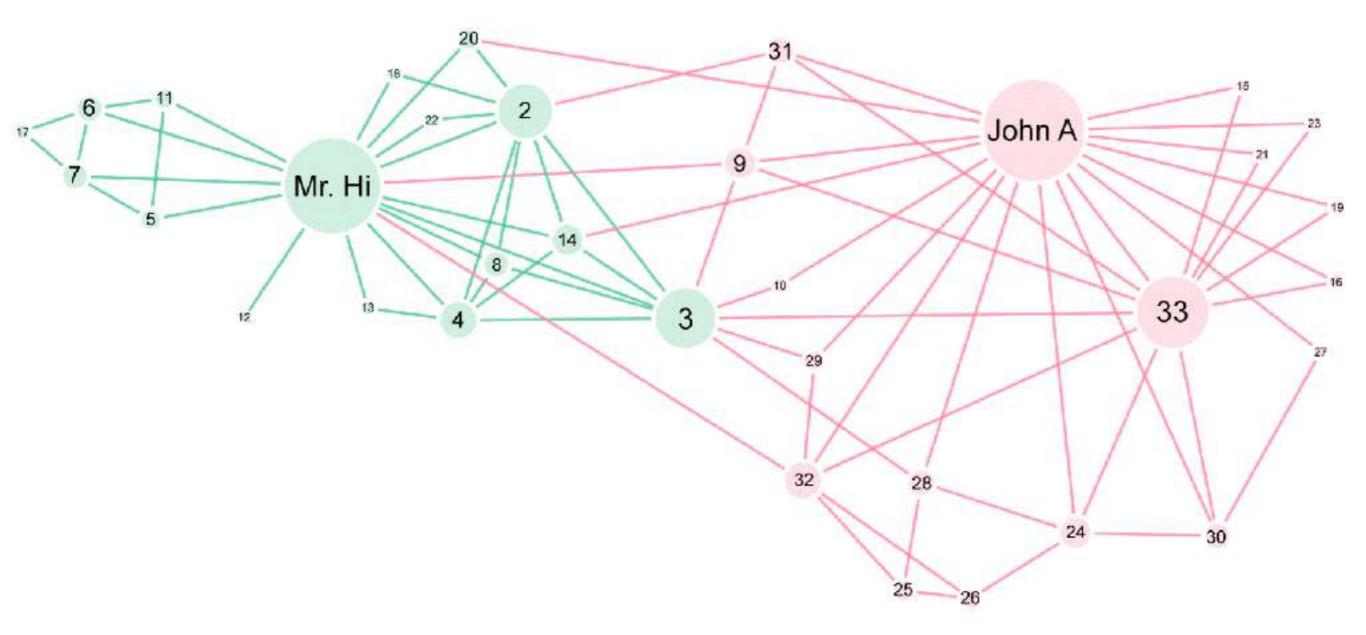
BE ABLE TO DESCRIBE A NETWORK IN TERMS OF COMMUNITIES

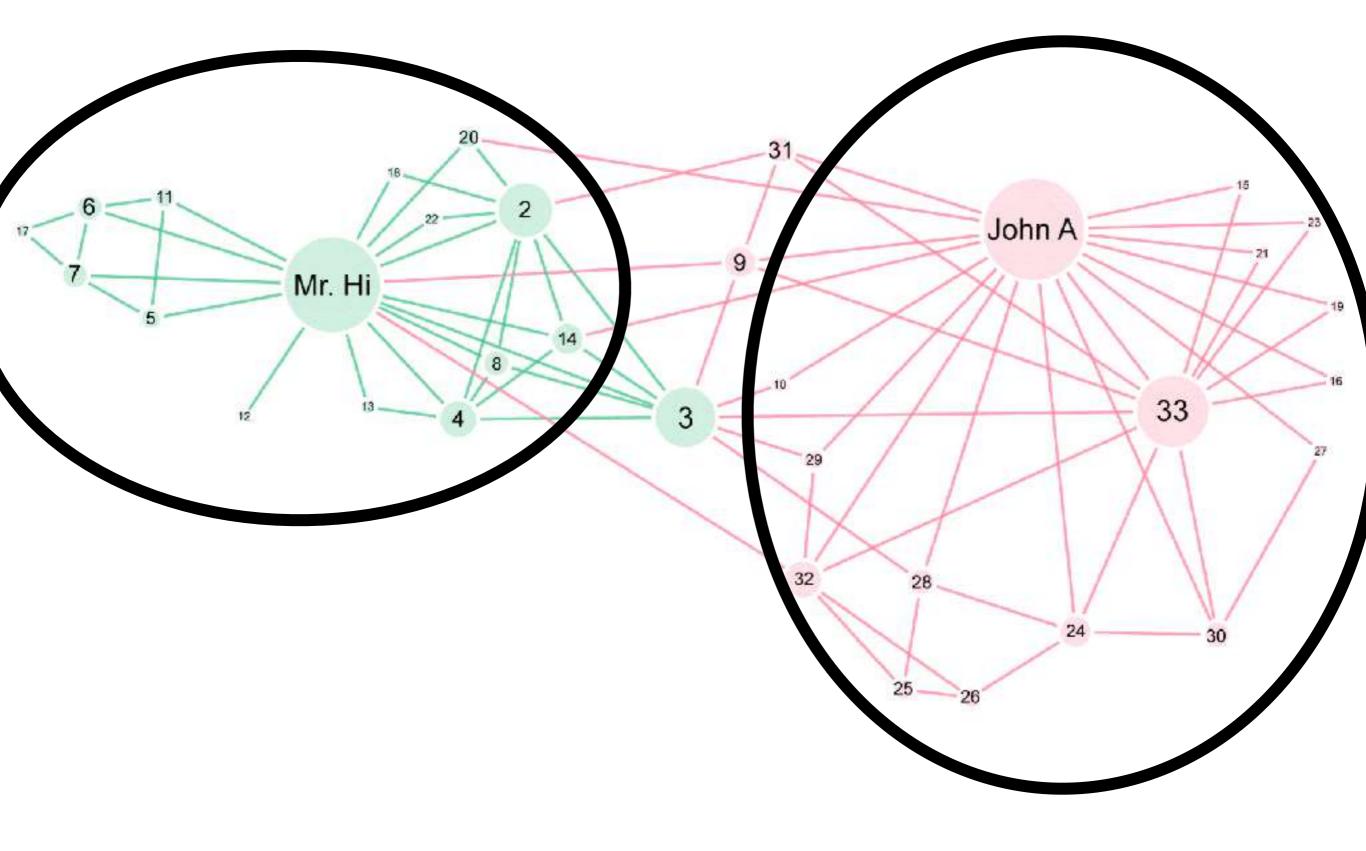
LEARN DIFFERENT TYPES OF COMMUNITY CLASSIFICATIONS



EVEN THOUGH () HAS MORE TIES THAN (), ALL THOSE TIES LIKELY HAVE THE SAME INFORMATION BECAUSE THEY ALL KNOW EACH OTHER WELL

FOR EXAMPLE, O CAN SHARE INFORMATION WITH OTHAT O WOULDN'T GET FROM ANYONE ELSE IN THEIR GROUP, AND VICE VERSA.





INTERNAL AND EXTERNAL DEGREE: THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

INTERNAL AND EXTERNAL DEGREE: THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

$$k_i = k_i^{int} + k_i^{ext}$$

i is called internal node of community **c** if

$$k_i^{ext} = 0$$
 And $k_i^{int} > 0$

i is called boundary node of community **c** if $k_i^{ext} > 0$ And $k_i^{int} > 0$

INTERNAL AND EXTERNAL DEGREE: THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

INTERNAL AND EXTERNAL DEGREE: THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

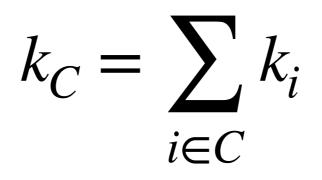
NUMBER OF INTERNAL LINKS: THE NUMBER OF LINKS BETWEEN NODES WITHIN THE COMMUNITY

INTERNAL AND EXTERNAL DEGREE: THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

NUMBER OF INTERNAL LINKS: THE NUMBER OF LINKS BETWEEN NODES WITHIN THE COMMUNITY

COMMUNITY DEGREE: THE SUM OF DEGREE OF ALL THE NODES IN THE COMMUNITY

COMMUNITY DEGREE: THE SUM OF DEGREE OF ALL THE NODES IN THE COMMUNITY



INTERNAL AND EXTERNAL DEGREE: THE NUMBER OF NEIGHBOURS INSIDE AND OUTSIDE THE COMMUNITY

NUMBER OF INTERNAL LINKS: THE NUMBER OF LINKS BETWEEN NODES WITHIN THE COMMUNITY

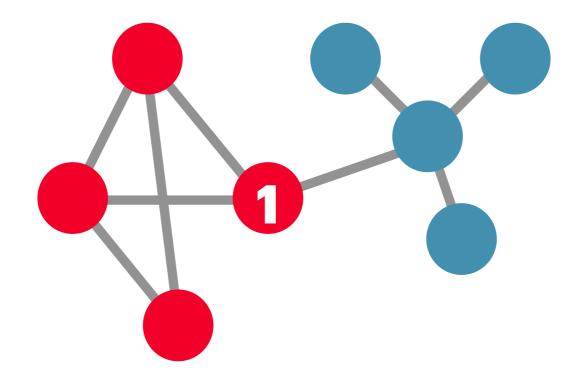
COMMUNITY DEGREE: THE SUM OF DEGREE OF ALL THE NODES IN THE COMMUNITY

INTERNAL LINK DENSITY:

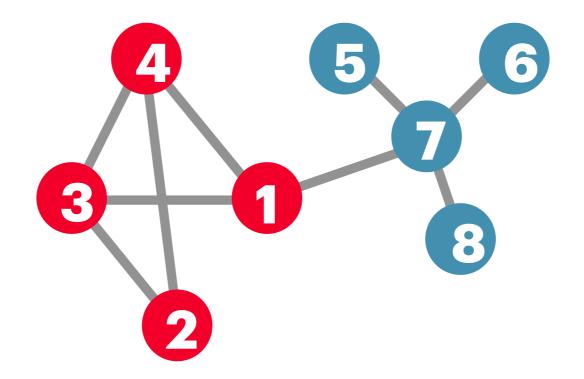
DENSITY THAT CONSIDERS ONLY LINKS BETWEEN MEMBERS OF THE COMMUNITY

INTERNAL LINK DENSITY: DENSITY THAT CONSIDERS ONLY LINKS BETWEEN MEMBERS OF THE COMMUNITY

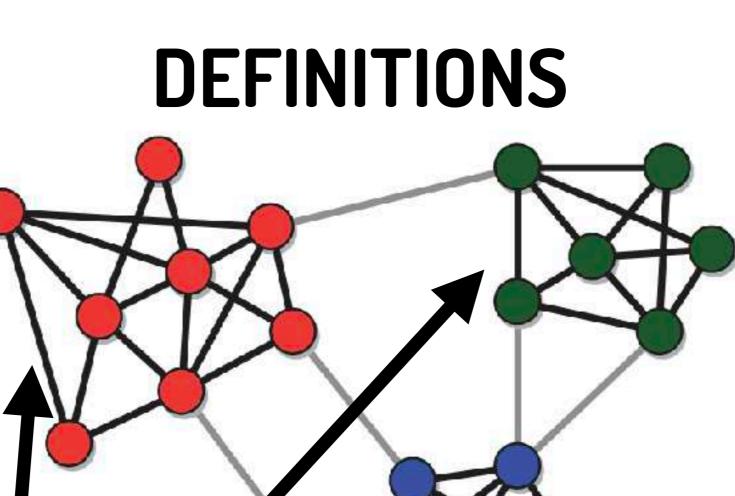
$$\delta_C^{int} = \frac{L_C}{L_C^{max}} = \frac{2L_C}{N_C(N_C - 1)}$$



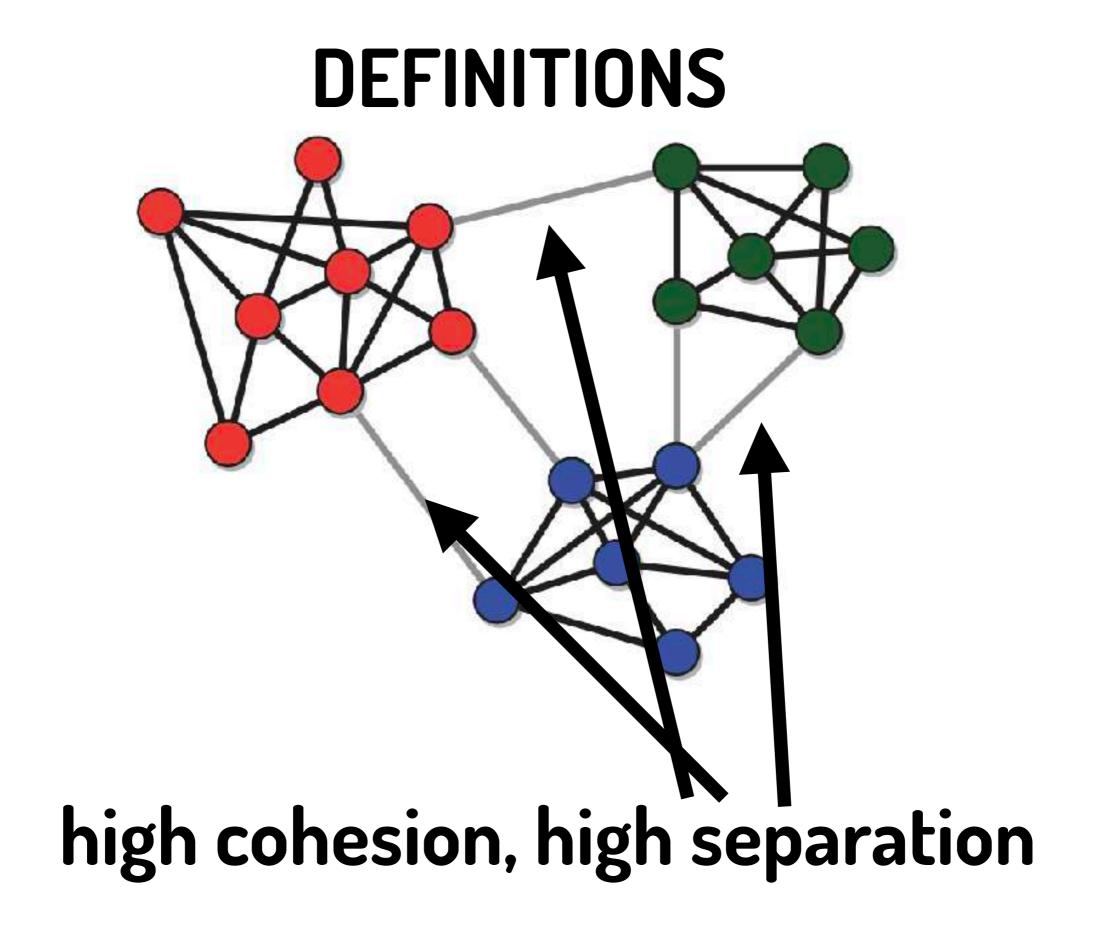
? $k_1^{ext}, k_1^{int}, \delta_{red}^{int}, k_{blue}$

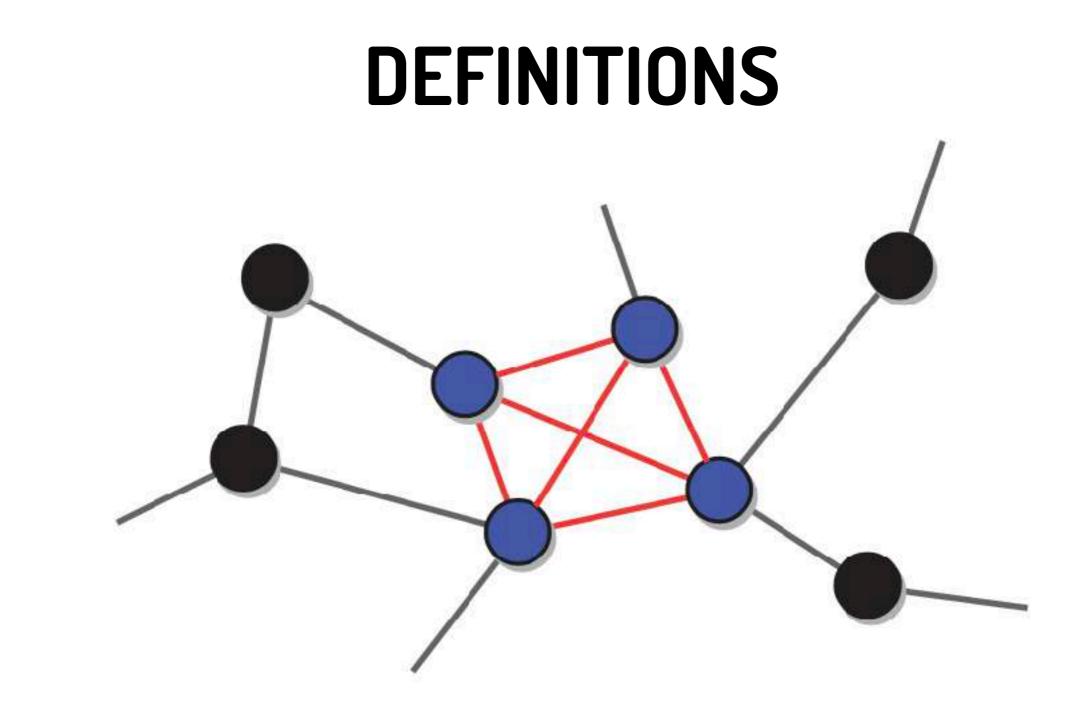


Which are the boundary nodes?



high cohesion, high separation



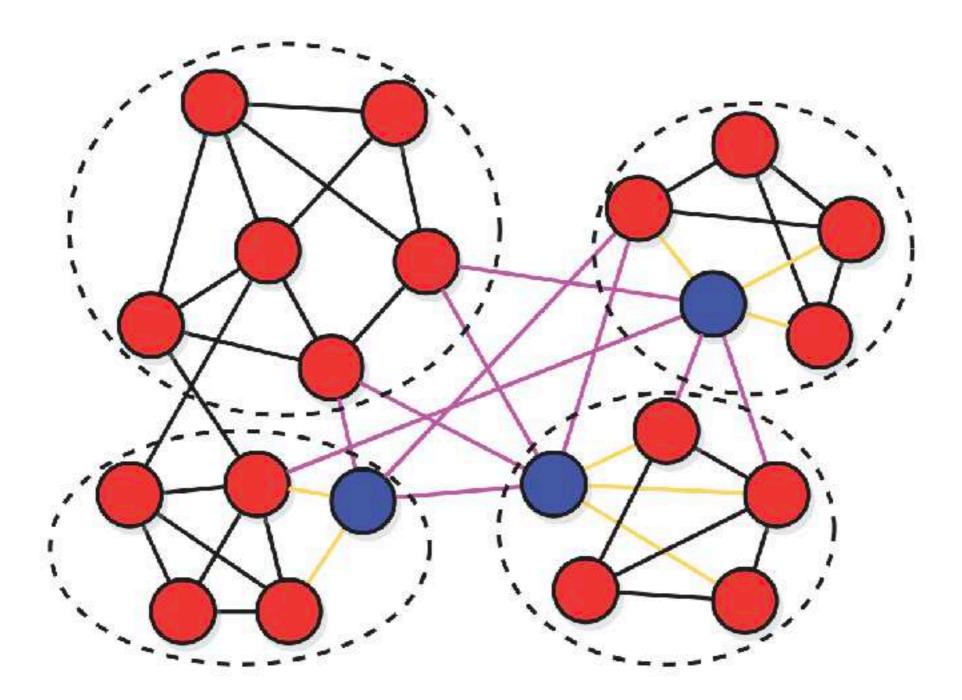


clique (a fully connected subgraph)

Strong community: $\forall i \in C : k_i^{int} > k_i^{ext}$

Strong community:
$$\forall i \in C : k_i^{int} > k_i^{ext}$$

Weak community: $\sum k_i^{int} > \sum k_i^{ext}$ $i \in C$ $i \in C$



Strong and weak communities. The four subnetworks enclosed in the dashed contours are weak communities according to both definitions we have given. They are also strong communities according to the less stringent definition, as the internal degree of each node exceeds the number of links joining the node with those of every other community. However, three of the subnetworks are not strong communities in the more stringent sense, because some nodes (in blue) have external degree larger than their internal degree (the internal and external links of these nodes are colored in yellow and magenta, respectively). Adapted from Fortunato and Hric (2016).

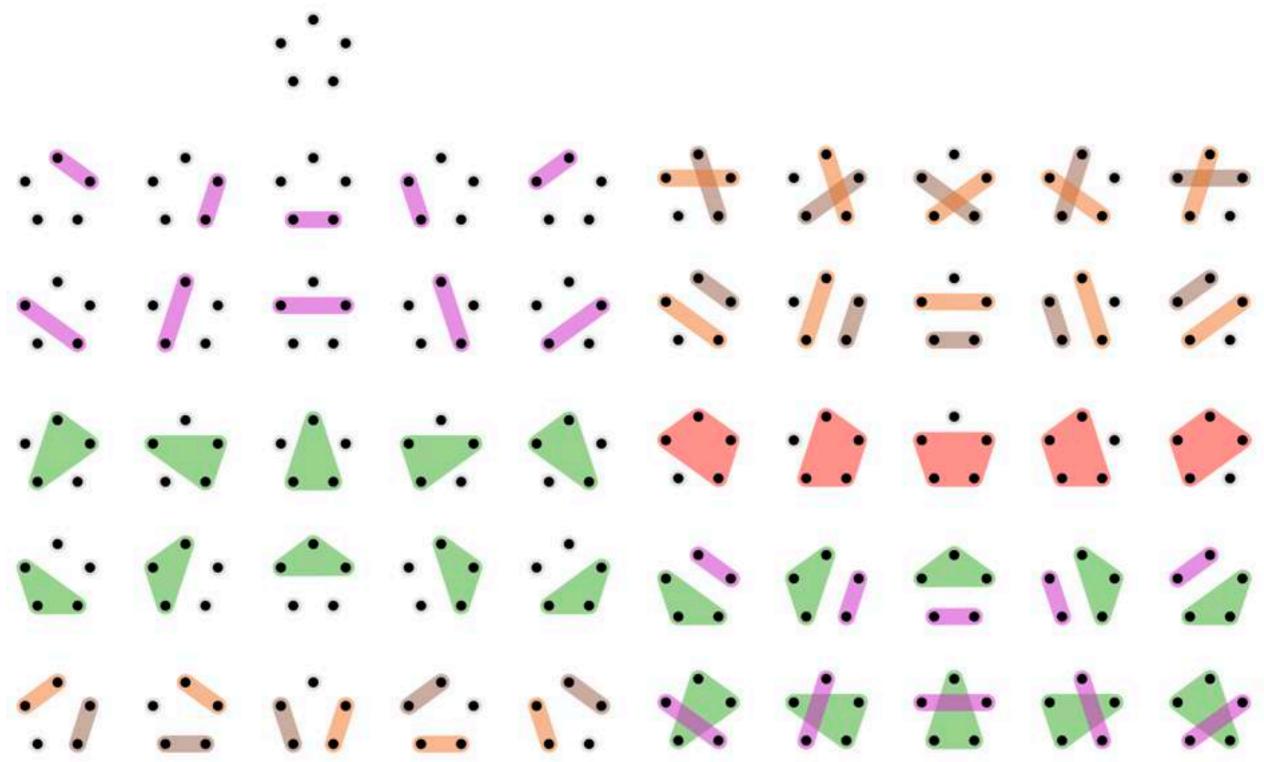
A PARTITION IS A DIVISION OF THE NETWORK IN COMMUNITIES

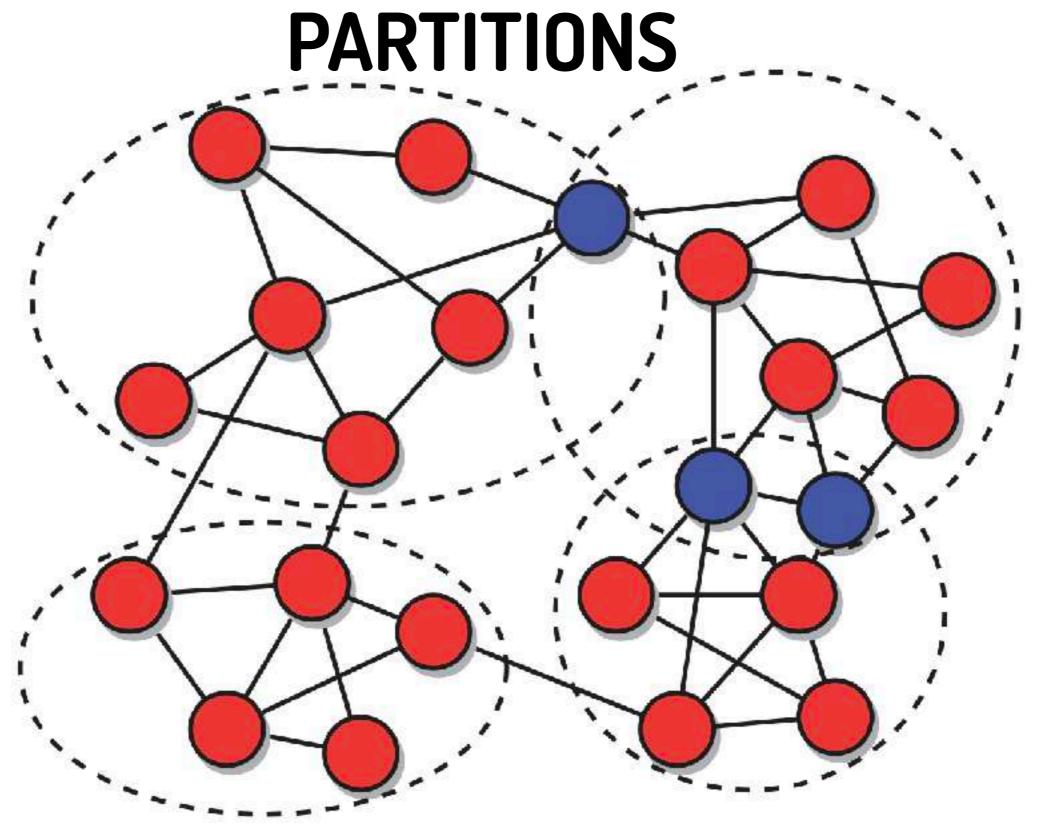
SUPPOSE YOU HAVE A NETWORK **G** WITH **10 NODES** 1,2,...,10

- {1,2,...,10}
- {1} {2} {3} ... {10}
- {1,2} {3,6,9} {5,8,10} {7,4}

THESE ARE ALL VALID PARTITIONS

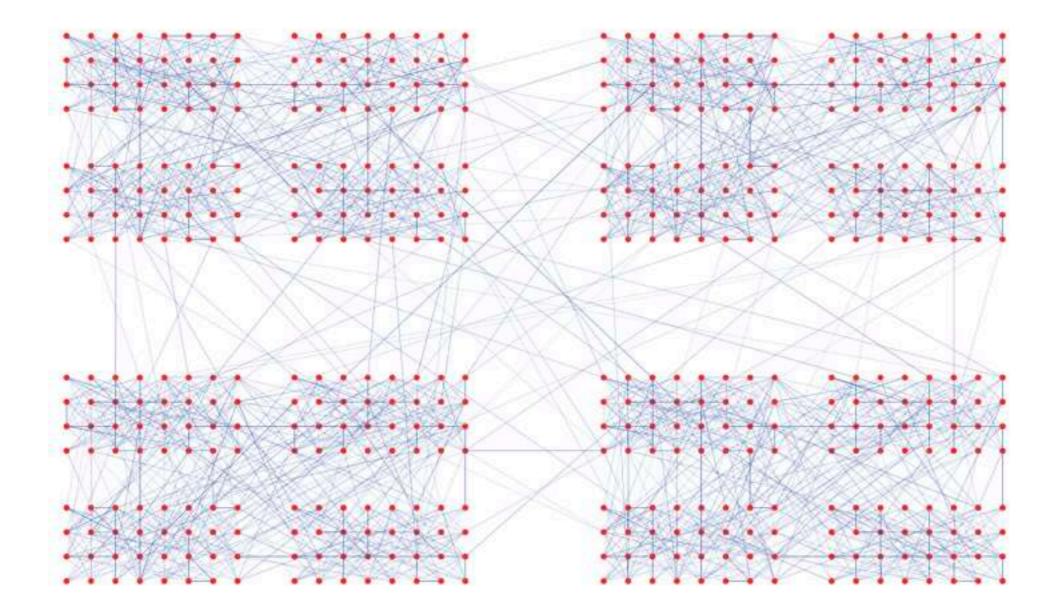
The number of possible partitions grows superexponentially



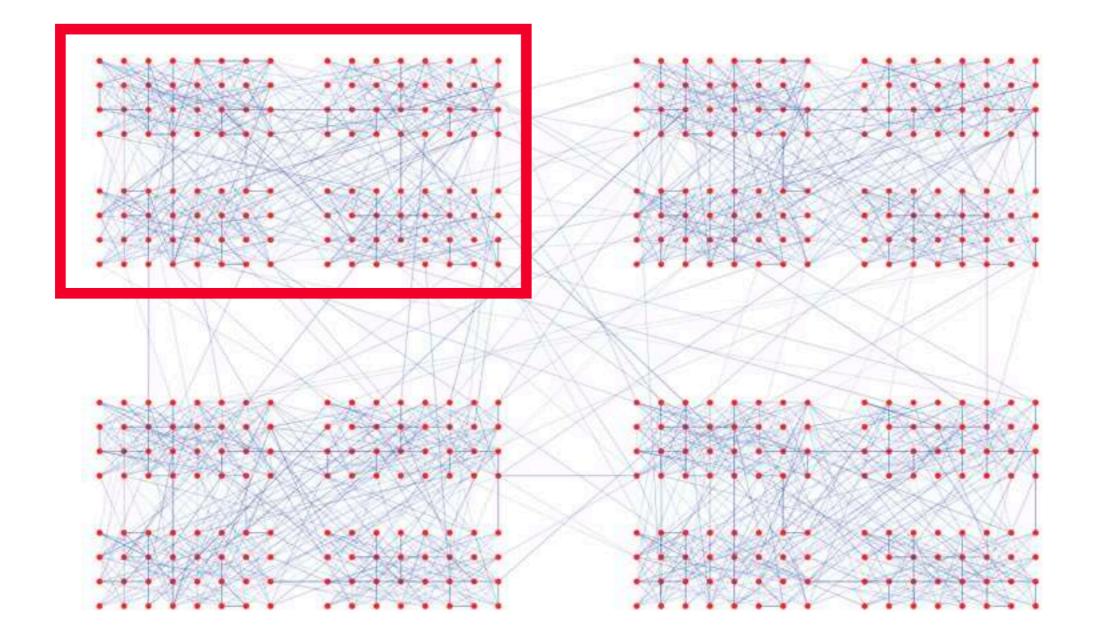


COMMUNITIES CAN OVERLAP

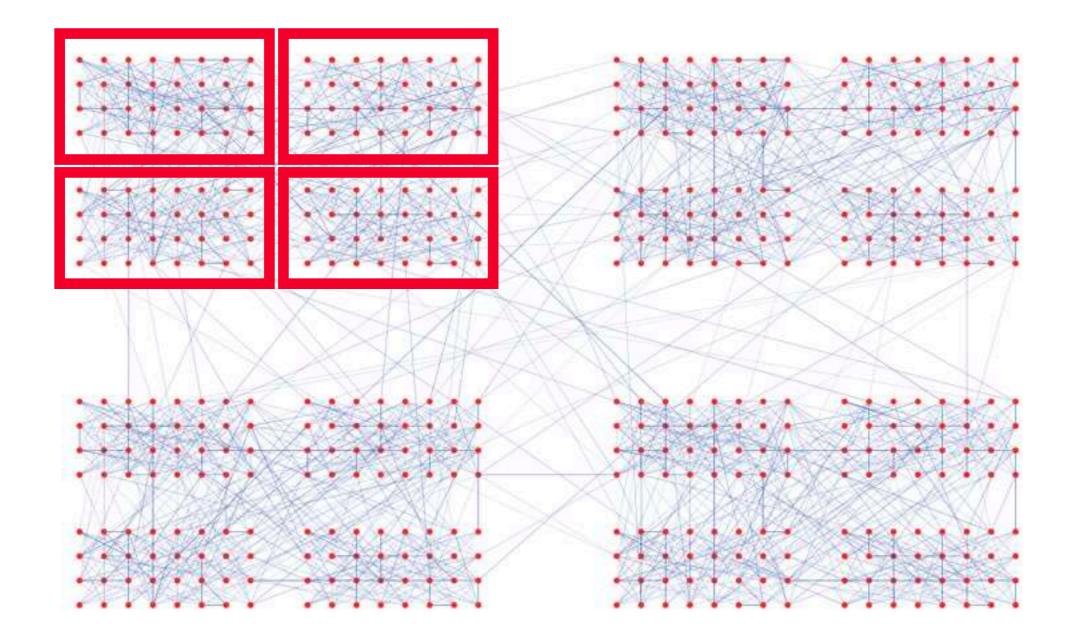
(You are part of different communities, think about it)



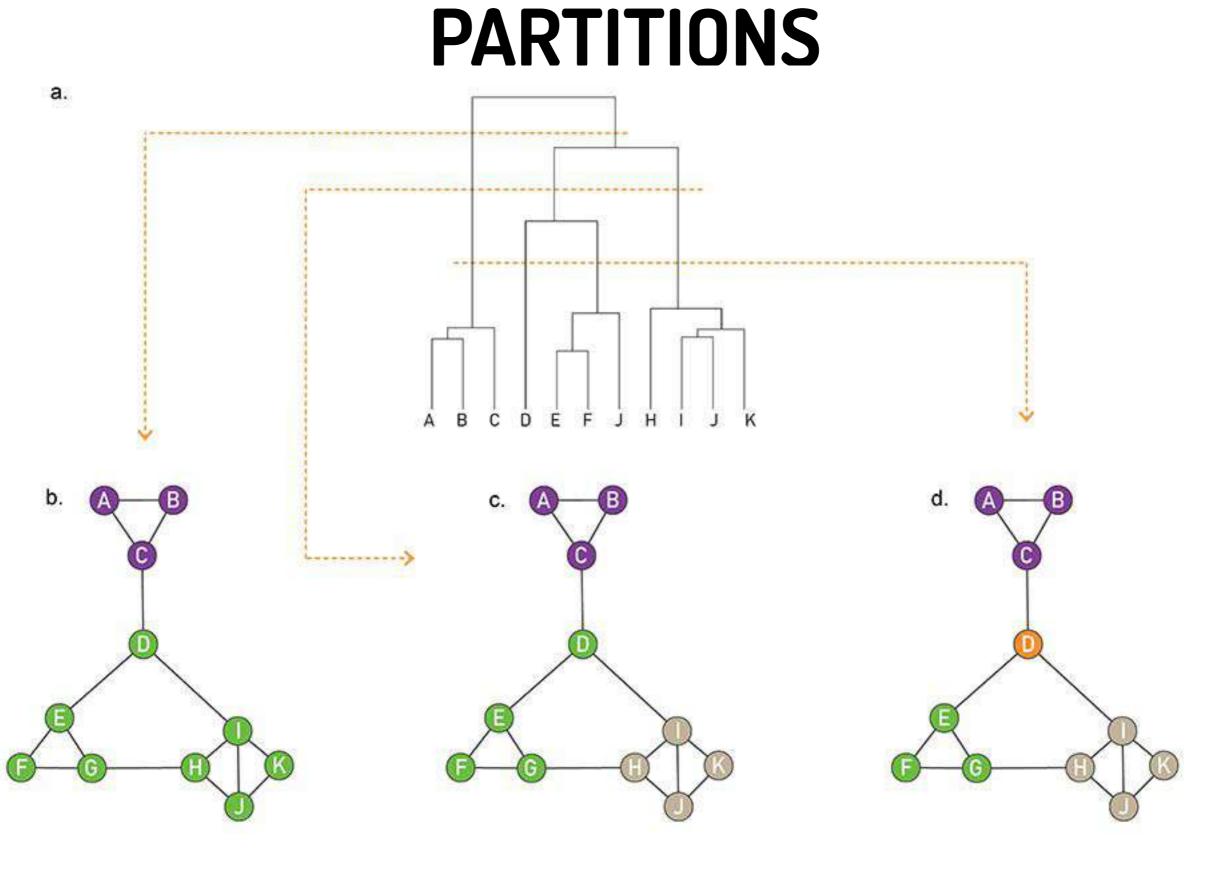
COMMUNITIES CAN BE HIERARCHICAL (There might be communities within communities)



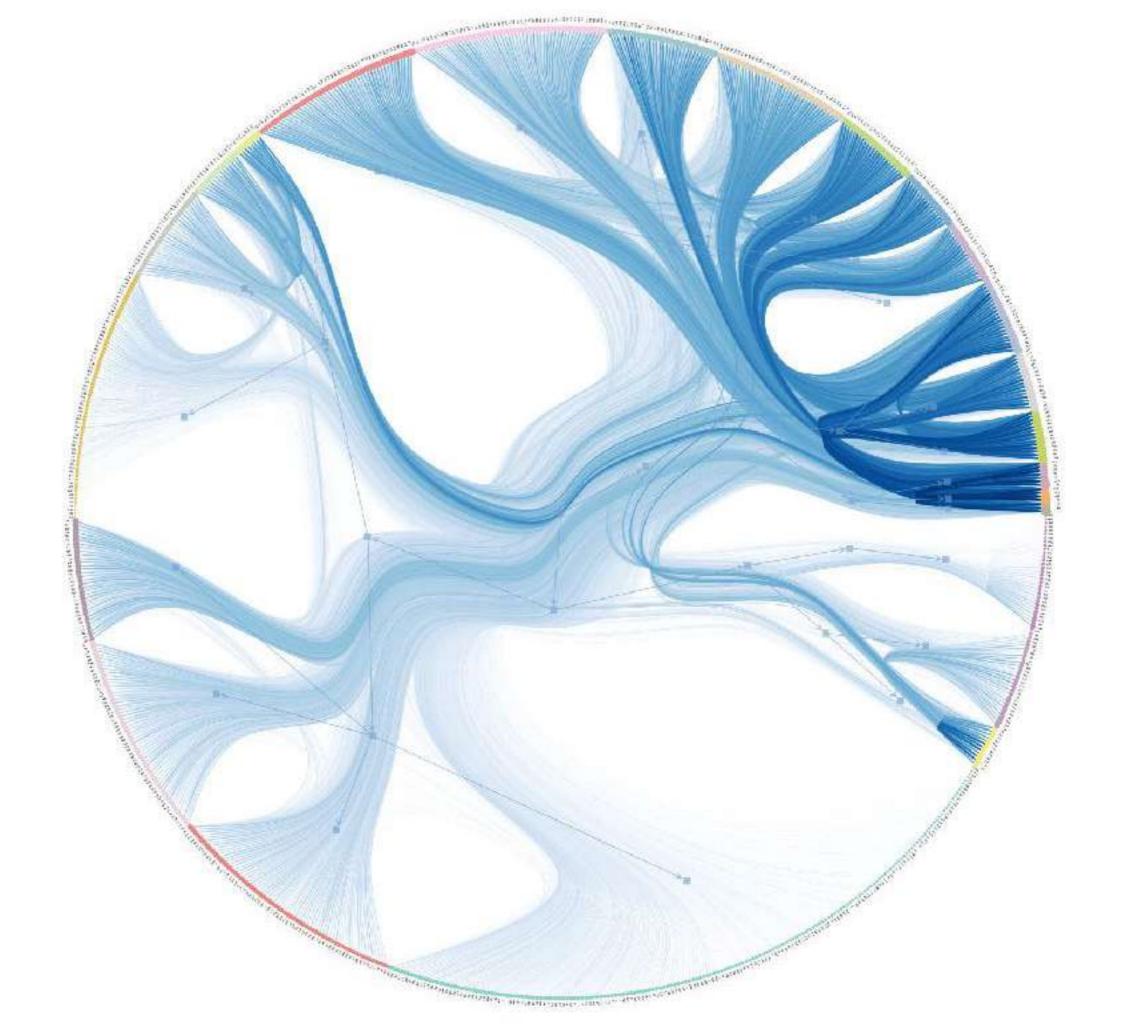
COMMUNITIES CAN BE HIERARCHICAL (There might be communities within communities)



COMMUNITIES CAN BE HIERARCHICAL (There might be communities within communities)



Dendrogram



MAKE SOME EXAMPLES OF SOCIAL AND FINANCIAL NETWORKS WITH COMMUNITIES

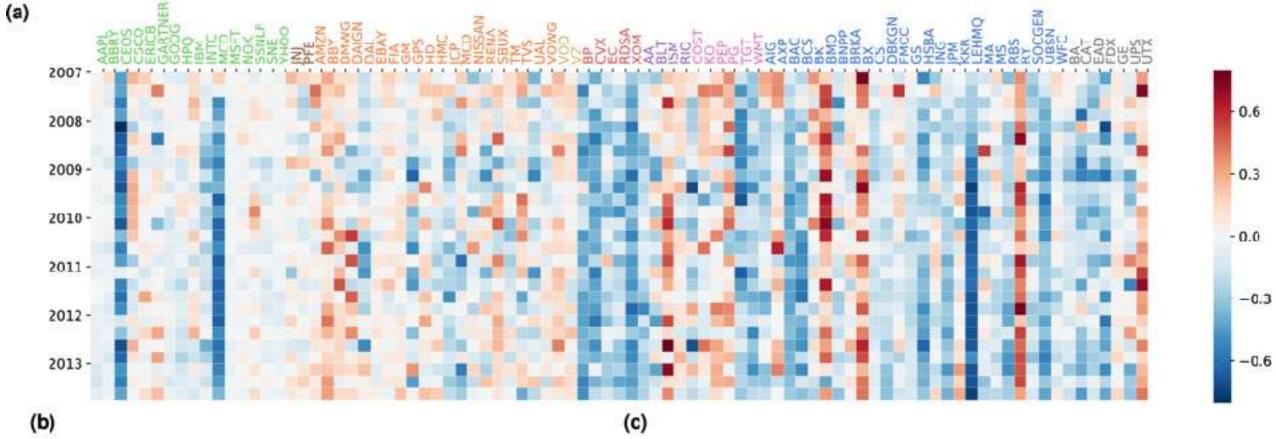
PART I RECAP

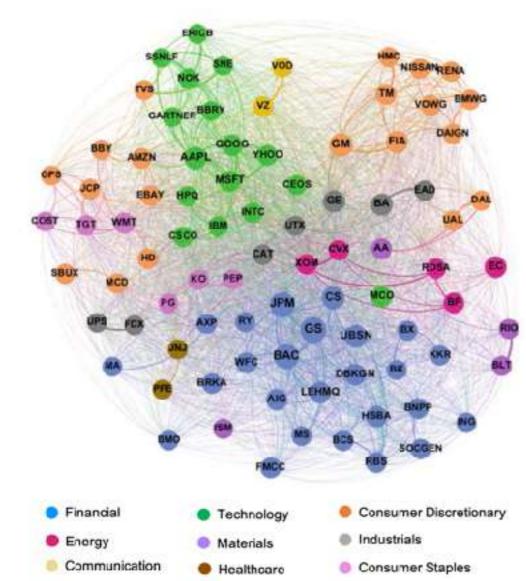
We saw what communities are and how they are

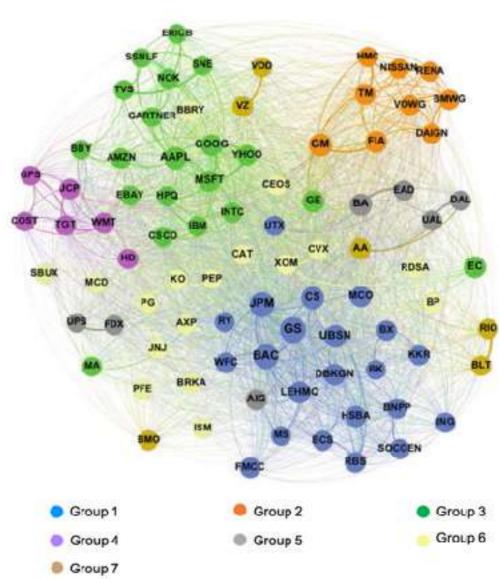
defined

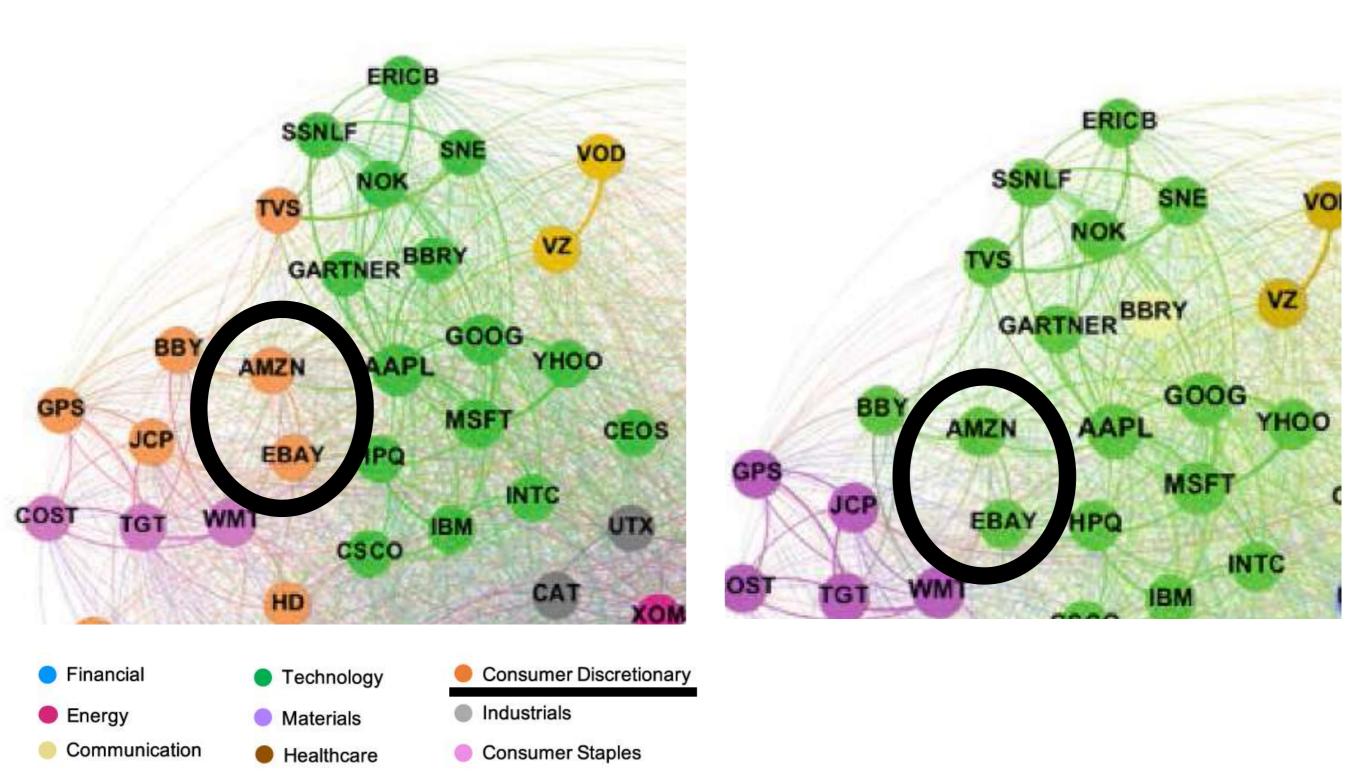
We explored some **examples**

We now have all the tools to learn about **community** detection









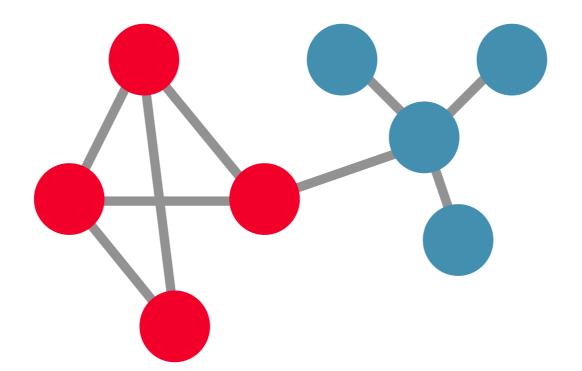
COMMUNITY DETECTION

The task of **finding communities** in a network We now have all the tools to learn about **community detection**

COMMUNITY DETECTION

- FOUR APPROACHES
- **Bridge removal**
- **Modularty maximisation**
- Label propagation
- **Stochastic block modelling**

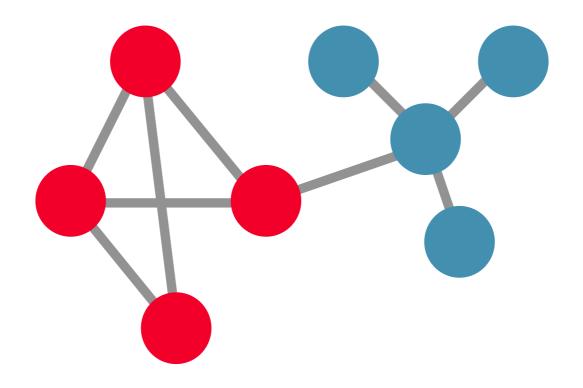




A bridge is a link whose removal breaks the network into two parts

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**



How do we find a bridge?

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

1 - compute link betweenness for all the links

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

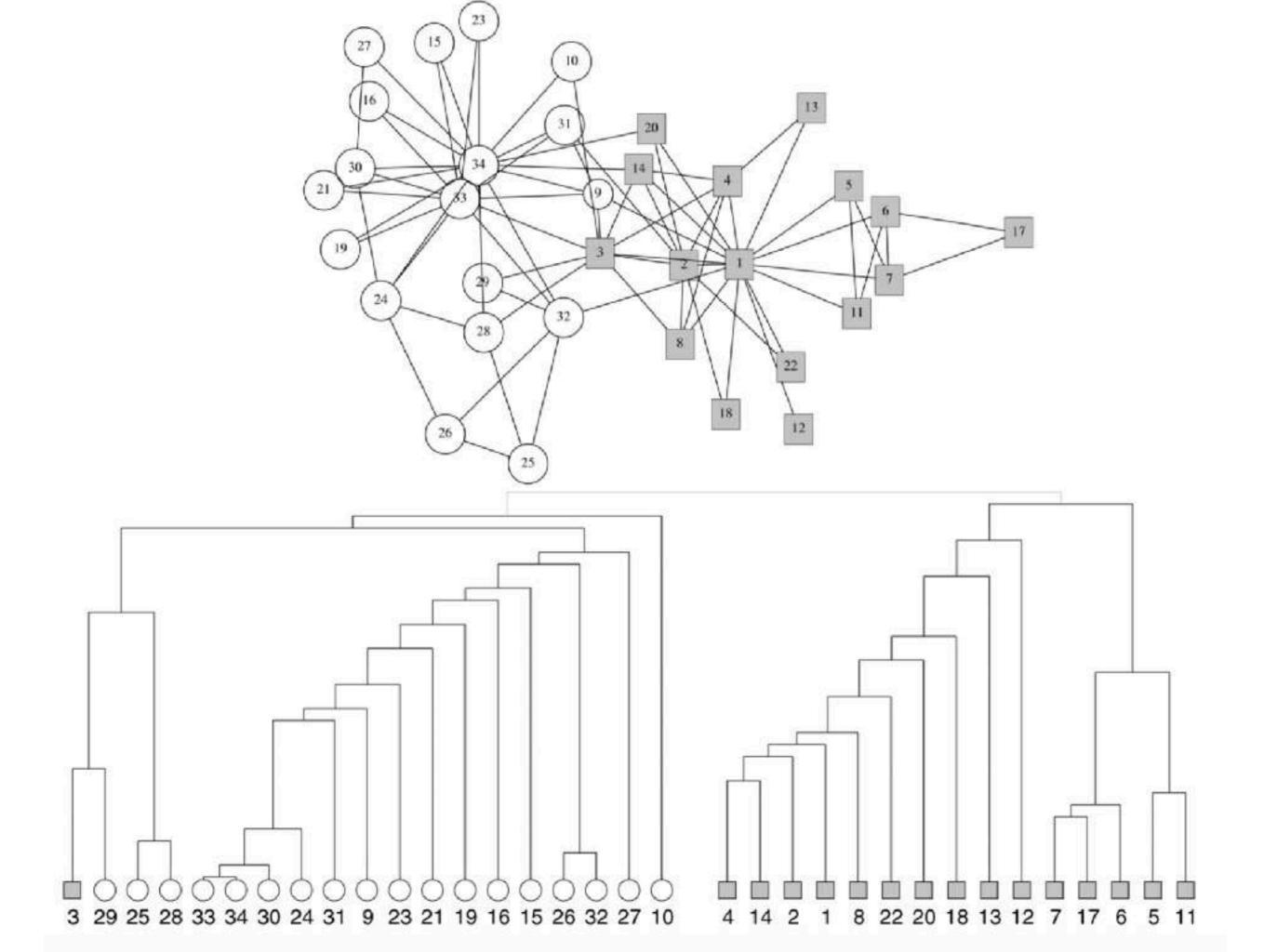
- 1 compute link betweenness for all the links
- 2 remove the link with highest betweenness*

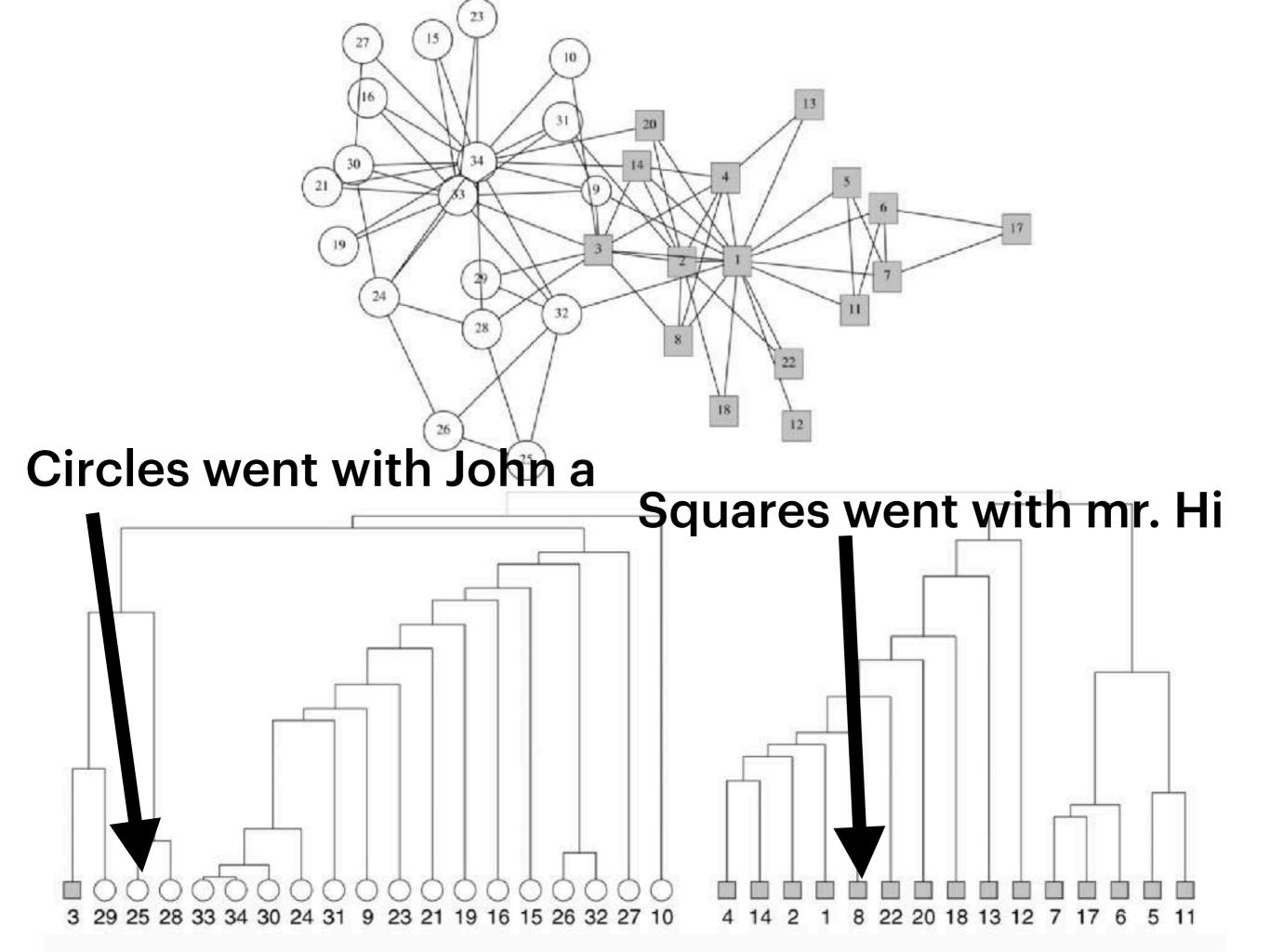
*in case of a tie, pick a random one among those with highest betweenness

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

- 1 compute link betweenness for all the links
- 2 remove the link with highest betweenness*
- 3 repeat 1 and 1 until you have no links left

*in case of a tie, pick a random one among those witl





FINAL VERDICT

GREAT FIRST ATTEMPT, BUT COMPUTING LINK BETWEENNESS FOR LARGE NETWORKS THAT MANY TIMES IS IMPOSSIBLE

MAIN IDEA: WE CALCULATE HOW GOOD A COMMUNITY IS VS RANDOM BASELINE

MAIN IDEA: WE CALCULATE HOW GOOD A COMMUNITY IS VS RANDOM BASELINE

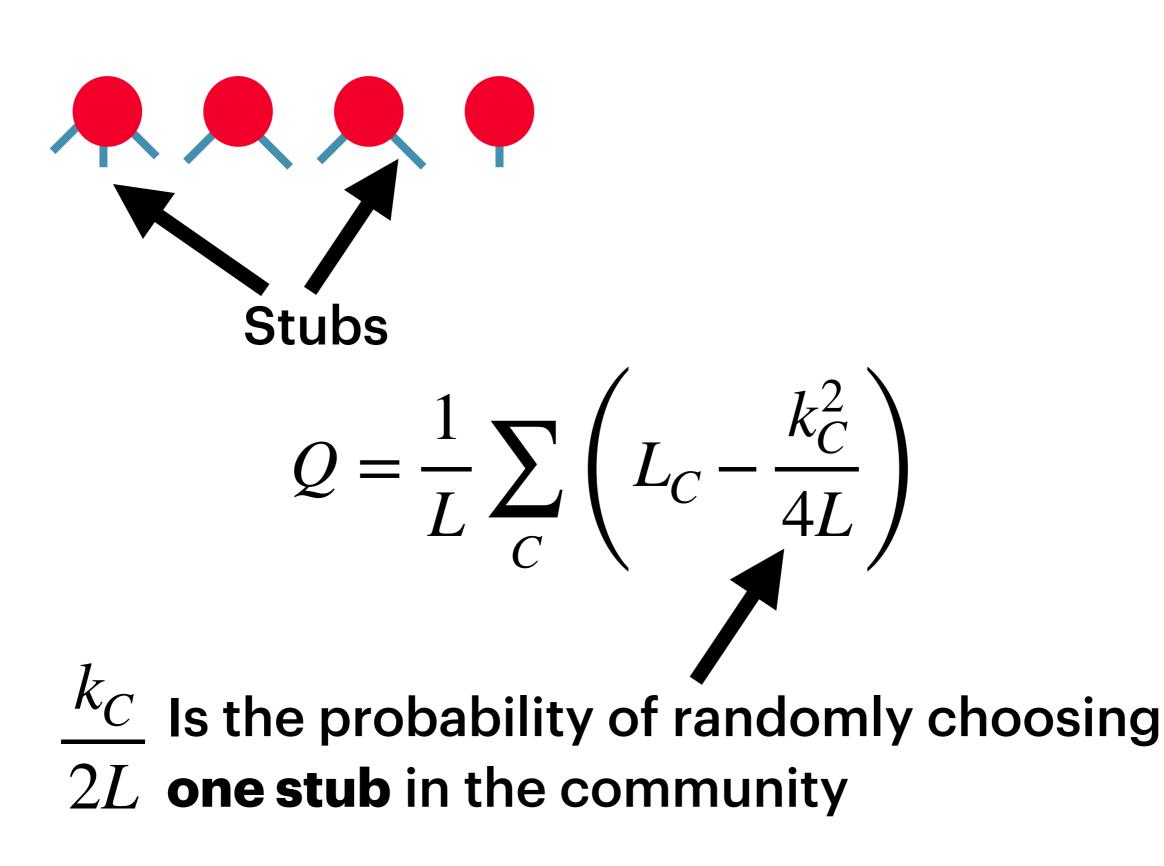
Originally introduced to know **where to cut** the dendrogram in Girvan-Newman

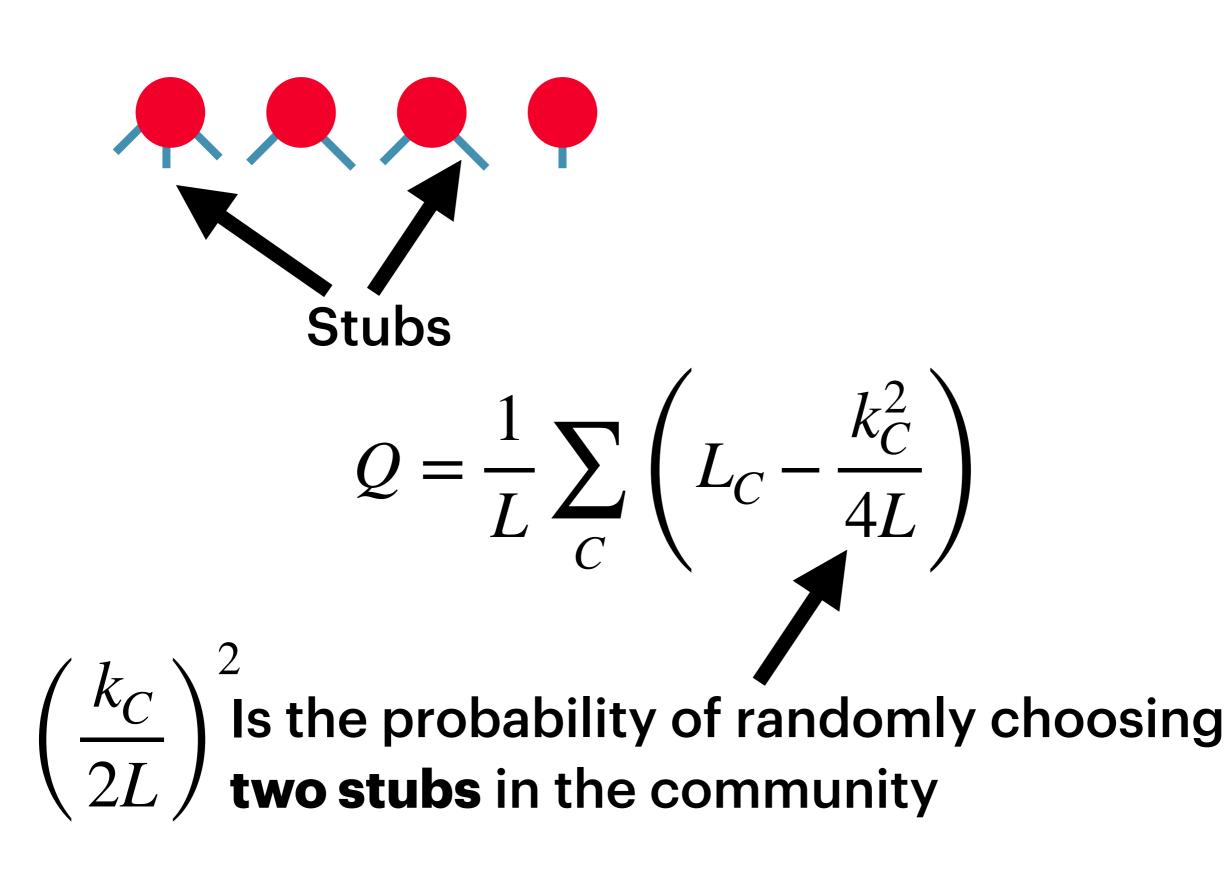
MAIN IDEA: WE COUNT HOW MANY LINKS INSIDE COMMUNITY VS RANDOM NETWORK

$$Q = \frac{1}{L} \sum_{C} \left(L_C - \frac{k_C^2}{4L} \right)$$

 $Q = \frac{1}{L} \sum_{C} \left(L_C - \frac{k_C^2}{4L} \right)$

Difference between links in c and expected links in c with configuration model

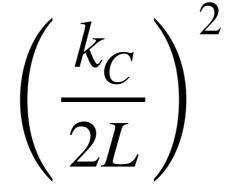




There are L links in the network

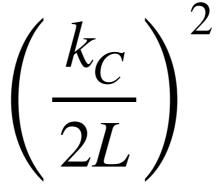
There are **L** links in the network

Each link joins two stubs from community c with probability



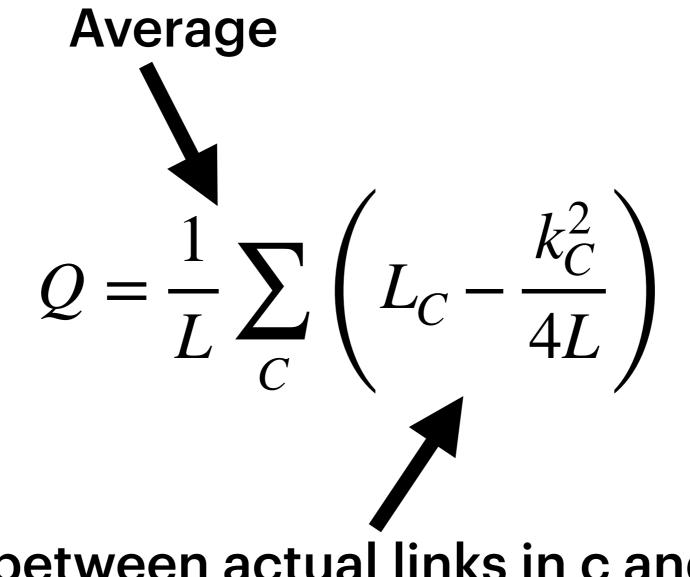
There are **L** links in the network

Each link joins two stubs from community c with probability



Then, the expected number of links in the community is 2 + 12

$$L\left(\frac{k_C}{2L}\right)^2 = \frac{k_C^2}{4L}$$



Difference between actual links in c and expected links in c

Directed
$$Q_d = \frac{1}{L} \sum_C \left(L_C - \frac{k_C^{in} k_C^{out}}{L} \right)$$

Weighted $Q_w = \frac{1}{W} \sum_C \left(W_C - \frac{s_C^2}{4W} \right)$
Weighted and directed $Q_{dw} = \frac{1}{W} \sum_C \left(W_C - \frac{s_C^{in} s_C^{out}}{W} \right)$

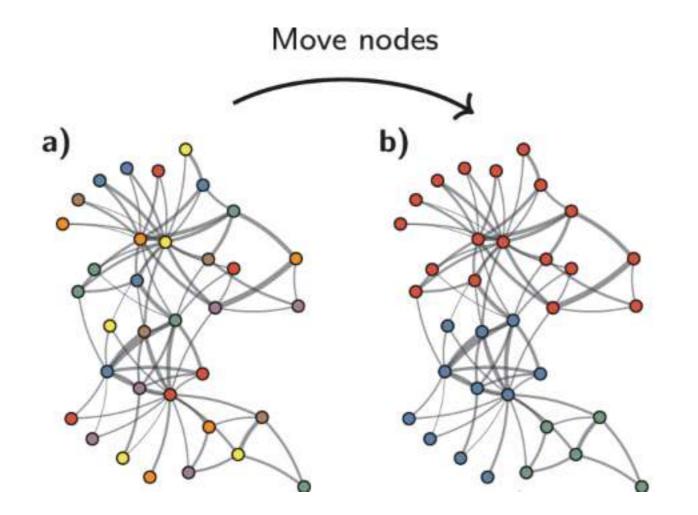
Most famous algorithms: Louvain, Leiden

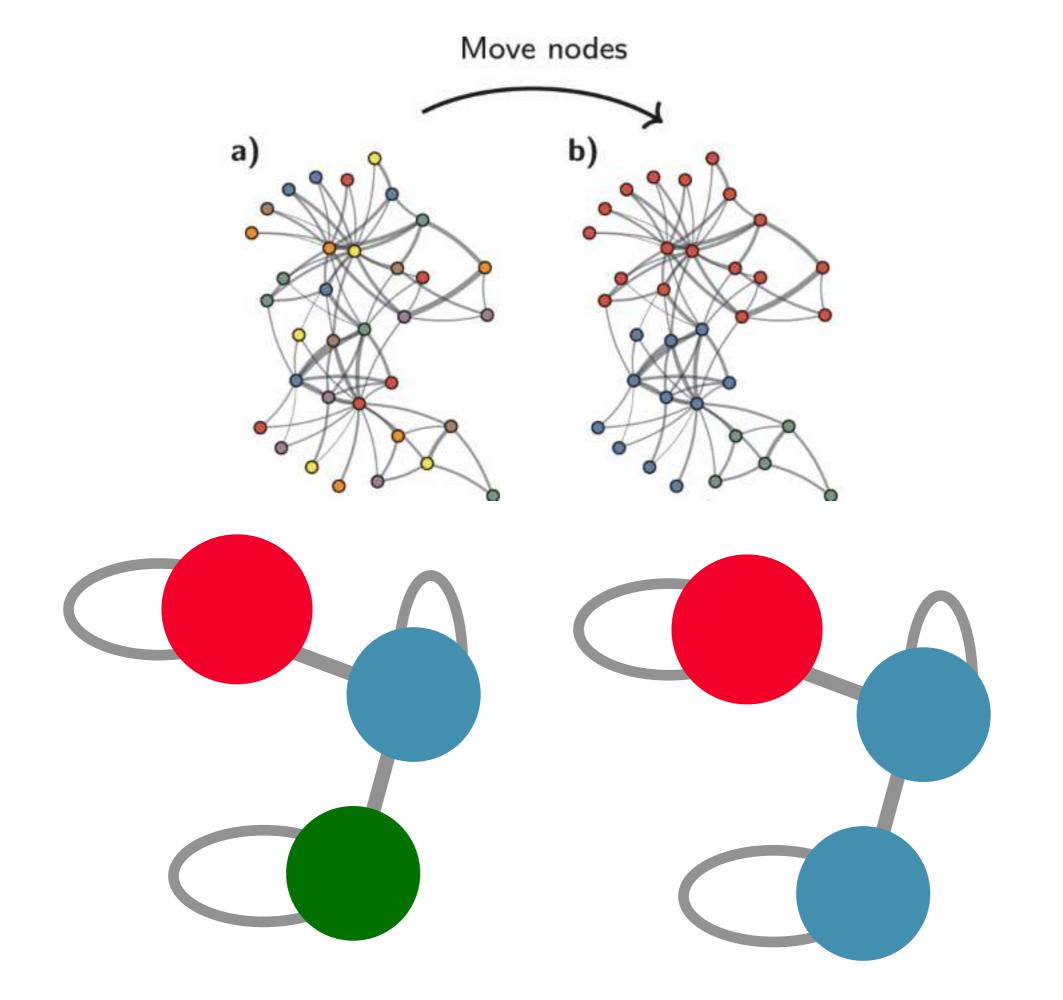
Most famous algorithms: Louvain, Leiden

 start with no communities. Every nodes is moved to a community so that **Q** Is maximised. Repeat until no modularity gain is possible

Most famous algorithms: Louvain, Leiden

- start with no communities. Every nodes is moved to a community so that **Q** Is maximised. Repeat until no modularity gain is possible
- 2) the network becomes a weighted super-network, in which nodes are the communities of the original network, and weights are the number of links between communities (this includes self-loops)





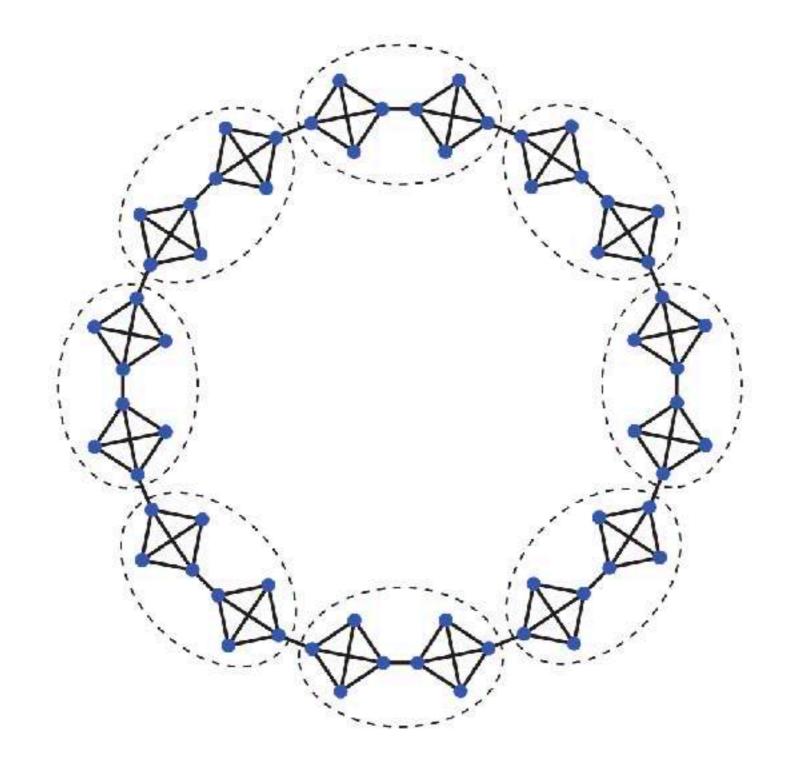
MODULARITY MAXIMISATION PROBLEMS

Comparison: On average Larger networks have larger modularity

Uncertainty: this approach can find positive modularity for random networks

Resolution: cannot find communities whose degree is smaller than

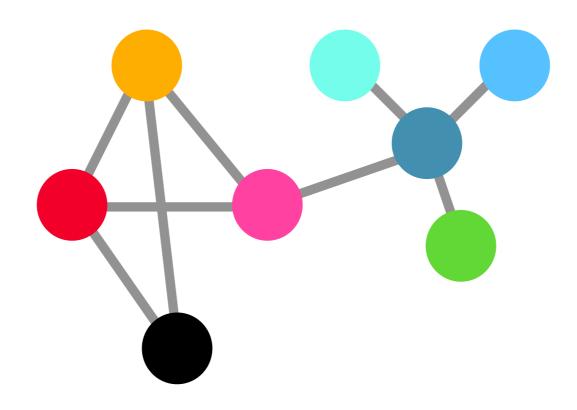
$$\sqrt{2L}$$

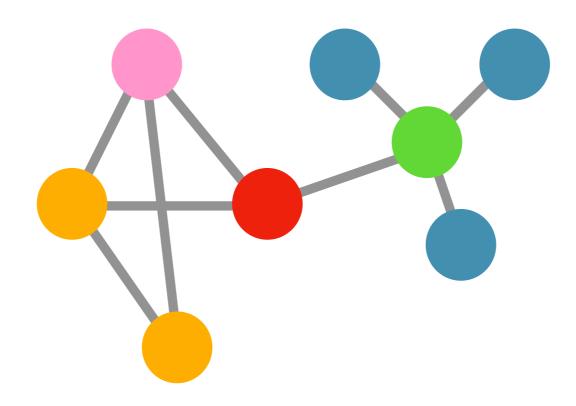


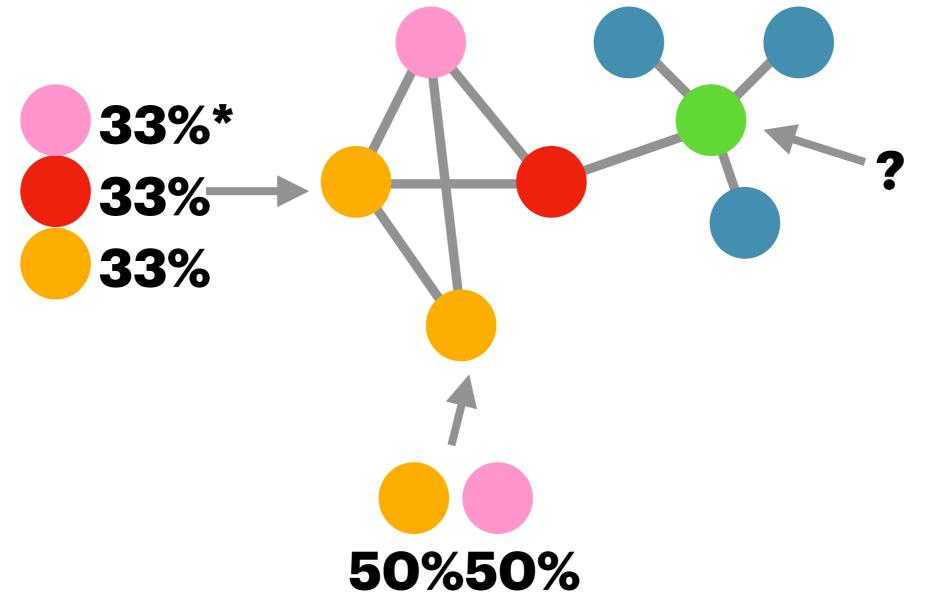
1) WE START WITH SINGLETONS

2) ONE BY ONE, WITH RANDOM ORDER, NODES TAKE THE "LABEL" (IE COMMUNITY MEMBERSHIP) OF THE **MAJORITY OF THEIR NEIGHBOURS**

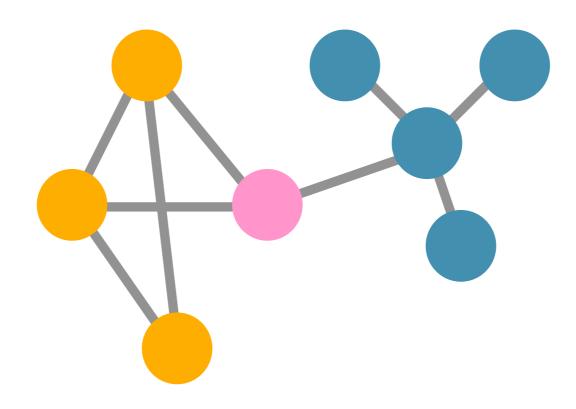
3) WE REPEAT THIS UNTIL THE **PARTITION IS STABLE** (IE THERE ARE NO POSSIBLE CHANGES)

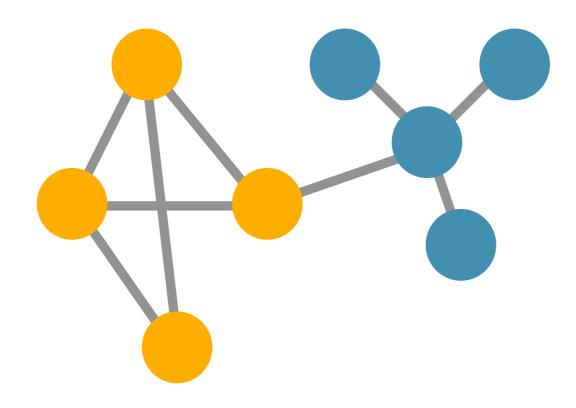






*Actually 1/3!!!





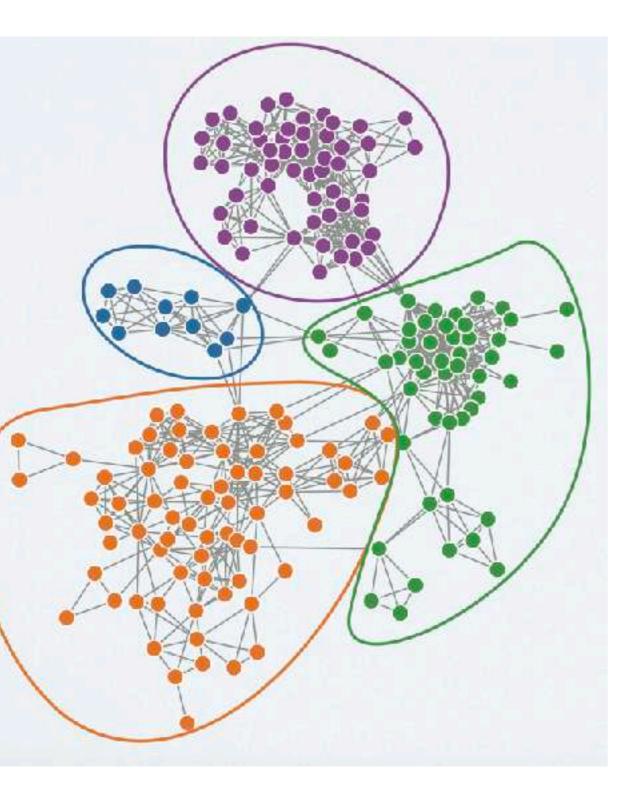
ISSUES DIFFERENT RUNS FIND DIFFERENT COMMUNITIES NEEDS TO BE RUN MULTIPLE TIMES

STRENGTHS

VERY FAST IF SOME MEMBERSHIPS ARE KNOWN, THEY CAN BE USED TO INITIALISE THE NETWORK

Generative algorithm

generates communities with given probabilities, chooses the most likely



P	P	P	P
	P	P	P
		P	P
			P

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES

FOR EXAMPLE: IF $\forall r, p_{rr} = 0$ **THIS REPRESENTS MULTIPARTITE NETWORKS**

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES

And can discover more than just communities

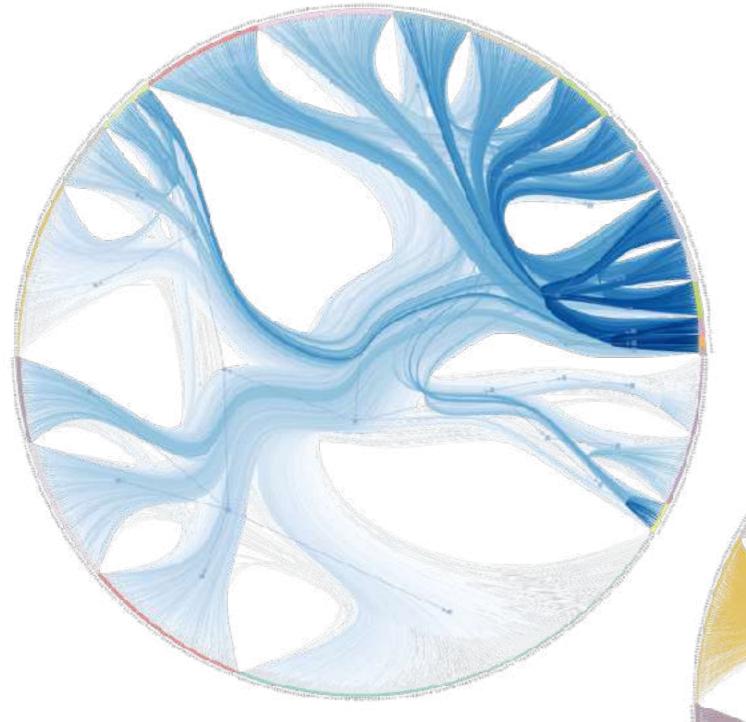
 $\forall r, s \quad p_{rr} > p_{rs}$ Classic communities $p_{rr} < p_{rs}$ Disassortative structure $\forall r \quad p_{rr} = 0$ Multipartite network

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES

And can discover more than just communities

 $\forall r, s \quad p_{rr} > p_{rs} \text{ Classic communities} \\ p_{rr} < p_{rs} \text{ Disassortative structure} \\ \forall r \quad p_{rr} = 0 \text{ Multipartite network} \\ \forall r, s \quad p_{rr} = p_{rs} = p \text{ Random network} \\ \end{cases}$

LIMITS: NEEDS PRIOR KNOWLEDGE ON NUMBER OF COMMUNITIES STRENGHTS: EVERYTHING ELSE



Uses Bayesian inference

Does not require prior knowledge

Extremely versatile

MICROCANONICAL SBM

MICROCANONICAL SBM

Fast and scalable

Explainable

There's a library that does it all and produces beautiful figures

