Agents Behaviour Part II

 $A = \pi r^2$ $C = 2\pi r$

60° tan (8) 30° 45° $\sin x dx = -\cos x + C$ $\sin \frac{1}{2} \frac{\sqrt{2}}{\sqrt{2}}$ $\cos \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}$ $\tan \frac{\sqrt{3}}{3} \frac{1}{3}$ N 112 = tgx + C, $\cos^2 x$ $tgxdx = -\ln|\cos x| +$ 5 2x $\frac{dx}{\sin x} = \ln tg \frac{x}{2} + C$ $ax^2 + bx + c = 0$ $a(x^2 + \frac{b}{-}x + \frac{c}{-}) = 0$ θ/rad arctg? $x\sqrt{3}$

GROUP 1

Site: <u>www.sli.do</u>

Code: 301384

PROBLEM 1

The Scottish government is planning the next move to fight the next wave of covid-19. The government **expects 12000 people to die** as a consequence of the new wave, and they are **preparing 2 intervention programs**. Which one do you favour?

Program A - if chosen, 4000 people will be saved

Program B - if chosen, there is **1/3 chance that 12000** people will be **saved**, and a **2/3 chance that nobody** will be saved

PROBLEM 2

Suppose that you are asked to participate in one of the following two games, which one would you prefer to play?

Game A - a sure gain of £250 Game B - 25% chance to gain £1000, 75% chance to gain nothing.

GROUP 2

Site: <u>www.sli.do</u>

Code: 243075

PROBLEM 1

The Scottish government is planning the next move to fight the next wave of covid-19. The government **expects 12000 people to die** as a consequence of the new wave, and they are **preparing 2 intervention programs**. Which one do you favour?

Program A - if chosen, 8000 people will die

Program B - if chosen, there is **1/3 chance that nobody** will **die**, and a **2/3 chance that 12000 people will die**

PROBLEM 2

Suppose that you are asked to participate in one of the following two games, which one would you prefer to play?

Learning outcomes

Learn about **decision-making** Understand **risk attitudes** Introduction to **cognitive biases**

Bonus: Become a master of digital marketing

Back to full rationality

Agents are fully informed about the environment Agents have unbounded time and computational power Agents are consistent

Back to full rationality

Agents are fully informed about the environment Agents **Preferences are well defined** al power Agents are consistent

If I prefer a over b, and bover c, I will prefer a over c

PROBLEM 1 (BOTH GROUPS)

Program A - if chosen, **4000 people will be saved** Program B - if chosen, there is **1/3 chance that 12000** people will be **saved**, and a **2/3 chance that nobody** will be saved

Program A - if chosen, **8000 people will die** Program B - if chosen, there is **1/3 chance that nobody** will **die**, and a **2/3 chance that 12000 people will die**

PROBLEM 1 (BOTH GROUPS)

Program A - if chosen, **4000 people will be saved** Program B - if chosen, there is **1/3 chance that 12000** people will be **saved**, and a **2/3 chance that nobody** will be saved **70%** Program A - if chosen, **8000 people will die** Program B - if chosen, there is **1/3 chance that nobody** will **die**, and a **2/3 chance that 12000 people will die**

PROBLEM 1 (BOTH GROUPS)

Program A - if chosen, 4000 people will be saved

Program B - if chosen, there is **1/3 chance that 12000** people will be **saved**, and a **2/3 chance that nobody** will be saved

Program A - if chosen, 8000 people will die

Program B - if chosen, there is **1/3 chance that nobody** will **die**, and a **2/3 chance that 12000 people will die**

PROBLEM 2 (BOTH GROUPS)

Game A - a sure gain of £250 Game B - 25% chance to gain £1000, 75% chance to gain nothing.

PROBLEM 2 (BOTH GROUPS) Game A - a sure gain of £250

Game B - 25% chance to gain £1000, 75% chance to gain nothing.

PROBLEM 2 (BOTH GROUPS)

Game A - a sure gain of £250 Game B - 25% chance to gain £1000, 75% chance to gain nothing.

Utility function

Utility function

Utility function

$v(x) = \begin{cases} x^{\alpha} & \text{if } x \ge 0\\ -\lambda(-x)^{\beta} & \text{if } x < 0 \end{cases}$

$v(x) = \begin{cases} x^{\alpha} & \text{if } x \ge 0\\ -\lambda(-x)^{\beta} & \text{if } x < 0 \end{cases}$

 $\alpha = \beta = 0.88 \qquad \lambda = 2.25$

Financial Example: disposition effect

Traders are more likely to sell stock after they gained value and less likely to do so after they lost value

Heuristics

HEAR NOISE IN THE DARK AFTER Watching Horror Movie

SERAKIER

Availability Representativeness Anchoring

We tend to **overestimate** what's **"available"** in our memory

Availability

Representativeness Anchoring

"When you have a hammer, everything is a nail"

Financial example

Survey in 2012 with thousands of people, who were asked **whether in 2009, 2010, and 2011** the **S&P500 index was profitable**

Financial example

Survey in 2012 with thousands of people, who were asked whether in 2009, 2010, and 2011 the S&P500 index was profitable

Most people said 2009 was not profitable, whereas in reality it saw one of the highest returns ever

We fail at computing conditional probabilities

Availability

Representativeness Anchoring

Steve is very **shy and withdrawn**, invariably **helpful**, but with **little interest in people**. A **meek and tidy** soul, he has a **need for order and structure**, and a **passion for detail**.

Tversky and Kahneman What is Steve's job?

Librarian Farmer

Tversky and Kahneman

Availability Representativeness Anchoring We often choose a reference point

Psychologic plausibility Domain specific Ecological rationality

Psychologic plausibility

The aim is to build a model that **accurately represents the behaviour** of humans

Domain specific

Heuristics should be **specific to the context**, rather than general

Ecological rationality

The success of the heuristic is based on adaptation to the environment

Heuristics are composed of three building blocks

Search rules Stopping rules Decision rules

Jane wants a job within a **reasonable distance** from Edinburgh

Jane wants a wage of at least \mathcal{W}_{i}

Jane wants a job within a **reasonable distance** from Edinburgh

Jane wants a wage of at least $\, \mathcal{W}_{i} \,$

Search: apply for all jobs that offer wage $W_i > W_j + tc$

Jane wants a job within a **reasonable distance** from Edinburgh

Jane wants a wage of at least $\, \mathcal{W}_{i} \,$

Search: apply for all jobs that offer wage $W_i > W_j + tc$ Stopping: search for jobs within 10km from Edinburgh

Jane wants a job within a **reasonable distance** from Edinburgh

Jane wants a wage of at least $\, \mathcal{W}_{i} \,$

Search: apply for all jobs that offer wage $W_i > W_j + tc$ Stopping: search for jobs within 10km from Edinburgh

Decision: maximise $\pi = w_i - (w_j + tc)$ If $\pi \le 0 \forall w_i$ do not get any job

Summary

Overview of decision-making processes Cognitive biases Heuristics