Agents

Behaviour
 Part Il

$$
\begin{aligned}
& A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

$\int \sin x d x=-\cos x+c$
$\int \frac{d x}{\cos ^{2} x}=\operatorname{tg} x+C$
$\int \operatorname{tg} x d x=-\ln |\cos x|+$
$\int \frac{d x}{\sin x}=\ln \left|\operatorname{tg} \frac{x}{2}\right|+C$
$\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \operatorname{arctg} \frac{?}{6}$
$\int d x=\frac{1}{n} \ln x-$

$V=\pi$

$$
\begin{aligned}
& x^{2}+b x+c=0 \\
& a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}=0\right. \\
& x^{2}+2 \frac{b}{2 a} x+\left(\frac{b}{2 a}\right)^{2} \\
& \left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}-4 a c}{2 a}
\end{aligned}
$$

GROUP 1

Site: www.sli.do

Code: 301384

PROBLEM 1

The Scottish government is planning the next move to fight the next wave of covid-19. The government expects 12000 people to die as a consequence of the new wave, and they are preparing $\mathbf{2}$ intervention programs. Which one do you favour?

Program A - if chosen, $\mathbf{4 0 0 0}$ people will be saved

Program B - if chosen, there is $\mathbf{1 / 3}$ chance that 12000 people will be saved, and a $\mathbf{2 / 3}$ chance that nobody will be saved

PROBLEM 2

Suppose that you are asked to participate in one of the following two games, which one would you prefer to play?

Game A - a sure gain of $\mathbf{£ 2 5 0}$
Game B-25\% chance to gain $\mathbf{£ 1 0 0 0}, \mathbf{7 5 \%}$ chance to gain nothing.

GROUP 2

Site: www.sli.do

Code: 243075

PROBLEM 1

The Scottish government is planning the next move to fight the next wave of covid-19. The government expects 12000 people to die as a consequence of the new wave, and they are preparing $\mathbf{2}$ intervention programs. Which one do you favour?

Program A - if chosen, $\mathbf{8 0 0 0}$ people will die

Program B - if chosen, there is $\mathbf{1 / 3}$ chance that nobody will die, and a $2 / 3$ chance that $\mathbf{1 2 0 0 0}$ people will die

PROBLEM 2

Suppose that you are asked to participate in one of the following two games, which one would you prefer to play?

Game A - a sure loss of $\mathbf{£ 7 5 0}$
Game B - 75\% chance to lose £1000, 25\% chance to lose nothing

Learning outcomes

Learn about decision-making
Understand risk attitudes
Introduction to cognitive biases

Bonus: Become a master of digital marketing

Back to full rationality

Agents are fully informed about the environment Agents have unbounded time and computational power Agents are consistent

Back to full rationality

Agents are fullvinformed about the environmen Agent Preferences are well defined al power

 Agents are consistent$$
\begin{gathered}
\text { If I prefer } \\
\text { a over b, } \\
\text { and } \\
\text { b over c, } \\
\text { I will prefer } \\
\text { a over c }
\end{gathered}
$$

PROBLEM 1 (BOTH GROUPS)

Program A - if chosen, 4000 people will be saved
Program B - if chosen, there is $\mathbf{1 / 3}$ chance that $\mathbf{1 2 0 0 0}$ people will be saved, and a $\mathbf{2 / 3}$ chance that nobody will be saved

Program A - if chosen, $\mathbf{8 0 0 0}$ people will die
Program B - if chosen, there is $\mathbf{1 / 3}$ chance that nobody will die, and $a / 3$ chance that $\mathbf{1 2 0 0 0}$ people will die

PROBLEM 1 [BOTH GROUPS]

Program A - if chosen, $\mathbf{4 0 0 0}$ people will be saved Program B - if chosen, there is $\mathbf{1 / 3}$ chanc\& hat $\mathbf{1 2 0 0 0}$ people will be saved, and a $\mathbf{2 / 3}$ chance that nobod will be saved 70\%
Program A - if chosen, $\mathbf{8 0 0 0}$ people will die Program B - if chosen, there is $\mathbf{1 / 3}$ chance that nobody will die, and a $2 / 3$ chance that $\mathbf{1 2 0 0 0}$ people will die

PROBLEM 1 [BOTH GROUPS]

Program A - if chosen, 4000 people will be saved
Program B - if chosen, there is $\mathbf{1 / 3}$ chance that $\mathbf{1 2 0 0 0}$ people will be saved, and a 2/3 chance that nobody will be saved

Program A - if chosen, $\mathbf{8 0 0 0}$ people will die
Program B - if chosen, there is $\mathbf{1 / 3}$ chance that nobody will die, and $a / 3$ chance that $\mathbf{1 2 0 0 0}$ people will die

PROBLEM 2 (BOTH GROUPS)

Game A - a sure gain of $\mathbf{£ 2 5 0}$
Game B-25\% chance to gain £1000, 75\% chance to gain nothing.

Game A - a sure loss of $\mathbf{£ 7 5 0}$
Game B - 75\% chance to lose £1000, 25\% chance to lose nothing

PROBLEM 2 (BOTH GROUPS)

Game A - a sure gain of $\mathbf{£ 2 5 0}$ -75\%

Game B-25\% chance to gain $\mathbf{£ 1 0 0 0}, \mathbf{7 5 \%}$ chance to gain nothing.

Game A - a sure loss of $\mathbf{£ 7 5 0}$
Game B - 75\% chance to lose $\mathbf{x} 1000, \mathbf{2 5 \%}$ chance tollose nothing

PROBLEM 2 (BOTH GROUPS)

Game A - a sure gain of $\mathbf{£ 2 5 0}$

Game B-25\% chance to gain $\mathbf{£} 1000, \mathbf{7 5 \%}$ chance to gain nothing.

Game A - a sure loss of $\mathbf{£ 7 5 0}$
Game B - 75\% chance to lose £1000, 25\% chance to lose nothing

Utility function

Risk Neutral

Utility function

Utility function

Prospect theory

Prospect theory

Prospect theory

$$
v(x)= \begin{cases}x^{\alpha} & \text { if } x \geq 0 \\ -\lambda(-x)^{\beta} & \text { if } x<0\end{cases}
$$

Prospect theory

$$
\begin{gathered}
v(x)= \begin{cases}x^{\alpha} & \text { if } x \geq 0 \\
-\lambda(-x)^{\beta} & \text { if } x<0\end{cases} \\
\alpha=\beta=0.88 \quad \lambda=2.25
\end{gathered}
$$

Financial Example: disposition effect

Traders are more likely to sell stock after they gained value and less likely to do so after they lost value

Heuristics

WUICUINALORBOBNOUIE

SERIMLIITEB

Tversky and Kahneman

Availability
Representativeness
Anchoring

Tversky and Kahneman

We tend to overestimate what's "available" in our memory
Availability
Representativeness Anchoring

Tversky and Kahneman

"When you have a hammer, everything is a nail"

Financial example

Survey in 2012 with thousands of people, who were asked whether in 2009, 2010, and 2011 the S\&P500 index was profitable

Financial example

Survey in 2012 with thousands of people, who were asked whether in 2009, 2010, and 2011 the S\&P500 index was profitable

Most people said 2009 was not profitable, whereas in reality it saw one of the highest returns ever

Tversky and Kahneman

We fail at computing
conditional probabilities

Availability

Representativeness
Anchoring

Tversky and Kahneman

Steve is very shy and withdrawn, invariably helpful, but with little interest in people. A meek and tidy soul, he has a need for order and structure, and a passion for detail.

Tversky and Kahneman

What is Steve's job?

Tversky and Kahneman

Availability

Representativeness
Anchoring We often choose a reference point

Tverskv and Kahneman
Anchoring Effect

The adaptive toolbox

Psychologic plausibility Domain specific Ecological rationality

The adaptive toolbox

Psychologic plausibility

The aim is to build a model that accurately represents the behaviour of humans

The adaptive toolbox

Domain specific

Heuristics should be specific to the context, rather than general

The adaptive toolbox

Ecological rationality

The success of the heuristic is based on adaptation to the environment

The adaptive toolbox

Heuristics are composed of three building blocks

Search rules
Stopping rules
Decision rules

Example

Jane wants a job within a reasonable distance from Edinburgh
Jane wants a wage of at least \boldsymbol{w}_{j}

Example

Jane wants a job within a reasonable distance from Edinburgh
Jane wants a wage of at least w_{j}

Search: apply for all jobs that offer wage $w_{i}>w_{j}+t c$

Example

Jane wants a job within a reasonable distance from Edinburgh
Jane wants a wage of at least w_{j}

Search: apply for all jobs that offer wage $w_{i}>w_{j}+t c$ Stopping: search for jobs within 10km from Edinburgh

Example

Jane wants a job within a reasonable distance from Edinburgh
Jane wants a wage of at least w_{j}

Search: apply for all jobs that offer wage $w_{i}>w_{j}+t c$
Stopping: search for jobs within 10km from Edinburgh
Decision: maximise $\pi=w_{i}-\left(w_{j}+t c\right)$
If $\pi \leq 0 \forall w_{i}$ do not get any job

Summary

Overview of decision-making processes Cognitive biases
Heuristics

