Agents Behaviour

 Partifi Bias and learningCouldn't find a decent meme about learning, here's a puppy instead

Learning outcomes

Learn findings from behavioural economics
See cognitive bias examples
Compare different learning mechanisms

"Thinking, fast and slow"

Cognitive psychology says we have two ways of thinking:
Reasoning: slow, voluntary, controlled, effortful, serial Intuition: fast, spontaneous, associative, effortless

What is this?

What's the most common pet after dogs?

"Irrational" individual behaviour

Framing effect and risk preferences

Reference points

We are more susceptible to changes
(And because of this we make the wrong decisions)

$$
\$ 3
$$

$$
\$ 3
$$

\$6.5

\$7

Examples

Examples

£600k

Examples

The economist experiment

The economist experiment

Digital only subscription $\$ 59$

When government spending knows no limits
Print only subscription \$129

Print+digital subscription \$129

The economist experiment

Pricing of the famous magazine "the economist" is changed frequently

Some prices are unreasonable
Prof. Dan Ariely used this setting for an experiment with his students

The economist experiment

Digital only subscription \$59

Print+digital subscription \$129

The 68% chose nent digital only 32\% chose
 print+digital

Print+digital subscription \$129

The 68% chose lent digital only 32\% chose
 print+digital

Total revenue =

 $\$ 8,012$
The economist experiment

Digital only subscription $\$ 59$

Print only subscription \$129

Print+digital subscription $\$ 129$

The
 0\% print only

Print only subscription \$129

Print+digital subscription \$129

The 0% print only ent

16\% digital only
 84\% print+digital

Total revenue = 9

$$
\$ 11,444
$$

The economist experiment

43\% revenue boost!!!

$$
\begin{gathered}
\text { If I prefer } \\
\text { a over b, } \\
\text { and } \\
\text { b over c, } \\
\text { I will prefer } \\
\text { a over c }
\end{gathered}
$$

Beware... the decoy effect

consumers will tend to have a specific change in preference between two options when also presented with a third option that is asymmetrically dominated.

Examples

Candidate A

$+++$
Fresh face in Washington

Chances of winning the election
$+++$

$+++$
Candidate B
$+$
+++
++
Candidate C

$+$
$+$

Examples

Candidate A

$+++$
Fresh face in Washington

Chances of winning the election
$+++$

$+++$
Candidate B
$+$
+++
++
Candidate C

$+$
$+$

Examples

Stock A: long-term growth 20\% - dividend yield 2\% Stock B: long-term growth 10\% - dividend yield 7\%

Examples

Situation 1
Long Term Growth

Dividend Yield

Examples

Stock A: long-term growth 20\% - dividend yield 2\%
Stock B: long-term growth 10\% - dividend yield 7\%

Stock C: long-term growth 15\% - dividend yield 1\%

Examples

Situation 2

Examples

Stock A: long-term growth 20\% - dividend yield 2\% Stock B: long-term growth 10\% - dividend yield 7\%

Stock D: long-term growth 7\% - dividend yield 4.5\%

Examples

Situation 3

Long Term Growth

Mental accounting

We keep "compartments" in our memory

Mental accounting

Imagine that you have decided to see a show where admission is $\mathbf{\$ 1 0}$ per ticket. As you enter the theatre you discover that you have lost a \$10 bill. Would you still pay $\mathbf{\$ 1 0}$ for a ticket for the show?

Imagine that you have decided to see a show and paid the admission price of $\mathbf{\$ 1 0}$ per ticket. As you enter the theatre you discover that you have lost the ticket. Would you pay \$10 for another ticket?

Mental accounting

> Imagine that you have decided to see a show where admission is $\mathbf{\$ 1 0}$ per ticket. As you enter the theatre you discover that you have lost a \$10 bill. Would you still pay \$10 for a ticket for the show?

Imagine that you have decided to see a show and paid the admission price of $\mathbf{\$ 1 0}$ per ticket. As you enter the theatre you discover that you have lost the ticket. Would you pay \$10 for another ticket?

Mental accounting

Imagine that you have decided to see a show where admission is \$10 per V . 8 / the theatre you discover that you hav Y eS: 88% uld you still pay \$10 for a ticket for the show?

Imagine that you have decided to see a show and paid the admission price of $\$ 1 \mathrm{~V}$. you discover that you YeS: 4 O t. Would you pay $\$ 10$ for another ticket?

Example

£50 now or $£ 100$ in six months?

Example

£50 now or $£ 100$ in six months?

£50 in $\mathbf{6}$ months or $£ 100$ in a year?

Hyperbolic discounting

We are not good ad judging time We want everything now Instant gratification

Hyperbolic discounting

Classical
economics

$$
\frac{1}{1+k}^{t}
$$

Hyperbolic discounting

Classical economics
Reality
(Behavioural economics)

$$
\begin{aligned}
& \frac{1}{1+k} \\
& \frac{1}{1+k t}
\end{aligned}
$$

Learning

Agents have a limited or even a wrong comprehension of their environment

They master only a subset of all the actions that can be conceived in order to face a given situation

They have an imprecise understanding of their own goals and preferences.

Objects of Learning

Models of the world
Parameters within a given model Actions
Realised outcomes

Types of Learning

Individual learning Social learning

Types of Learning

 Individual learning Social learning

Econometrics

Likelihood
Fitness learning

Evolutionary algorithms

Reinforcement
learning

Exercise

Can you name a situation where you would need learning agents?

Summary (How to design agents)

Foundations of decision making
Characteristics of Individual behaviour (bounded rationality)

Learning processes

