Interaction and experiments

Networks are back!

Learning outcomes

Understand the different types of **agent interactions** Distinguish **equilibria** Run a **sensitivity analysis**

recap

Nature of agents List of variables describing their state List of actions the agents can perform Structure of their interaction with other agents

Agent design

recap

Nature of agents List of variables describing their state List of actions the agents can perform

Structure of their interaction with other agents

New, exciting things

Interaction

Traditional economic theory overlooks interactions Mathematical modelling of interactions is complicated ABMs are perfect for this

Local vs global

Local if agents interact with "neighbourhood" If **global**, agents take into account all the population

Exogenous vs endogenous

Exogenous if don't change over time **Endogenous** if agents can choose interactions

Deterministic vs stochastic

Deterministic if interactions are between same agents **Stochastic** if interaction involves probability

Direct vs indirect

Direct if agents are affected directly by interaction **Indirect** if interactions affect model only (but the model affects the agents somehow)

Networks

Most direct interactions are modelled by networks

TESC

You have been recruited by Tesco to become their head of data science. Your first project is to make an accurate model of consumer choices within physical supermarkets. Of course, you know ABM is the way to go.

I – nature of agents ii – list of variables lii – list of actions iv – interaction

Local/global Exogenous/endogenous Deterministic/stochastic Direct/indirect

The ABM experiment

Because of their complex nature, often we don't know what to expect from ABMs. We need to study the output of our own model to gain insights into the system.

Equilibrium

Equilibrium in ABMs can only be defined at the **aggregate level**

Equilibrium

Equilibrium in abms can only be defined at the **aggregate level**

Transition equation $X_{t+1} = F(X_t, \theta, s)$ **Measurement equation** $y_t = m(X_t, s)$

State of agents at time t+1

$$\mathbf{y}_t = \boldsymbol{m}(\boldsymbol{X}_t, \boldsymbol{s})$$

State of agents at time t+1

$$\mathbf{y}_t = \boldsymbol{m}(\boldsymbol{X}_t, \boldsymbol{s})$$

State of agents at time t

$$\mathbf{y}_t = \boldsymbol{m}(\boldsymbol{X}_t, \boldsymbol{s})$$

$$\mathbf{y}_t = \boldsymbol{m}(\boldsymbol{X}_t, \boldsymbol{s})$$

Aggregate variables at time t

 $g_t(Z_0,\theta) = m(F(F \dots (F(Z_0,\theta) \dots))) = m(F^t(Z_0,\theta))$

Equilibrium

For each **statistics** y_t , if statistical equilibrium is achieved in a given time window $(\underline{T}, \overline{T})$, then y_t is **stationary**

Long-run vs transient Equilibrium

A model is said to have reached **long-run** equilibrium if y_t

Is stationary in $(\underline{T}, \underline{T} + \tau), \tau \to \infty$

An equilibrium is said to be **transient** if \mathcal{Y}_t is stationary in $(\underline{T}, \overline{T})$ but no longer in $(\underline{T}, \underline{T} + \tau)$, $\tau \to \infty$

Biden

Biden

Biden

Trump

Ergodicity

y_t is **ergodic** if the model reaches the **same** equilibria **irrespective of the initial conditions**

Sensitivity analysis

"the study of how **uncertainty** in the **output** of a model can be apportioned to different sources of **uncertainty** in the model **input**"

Sensitivity analysis

To understand which variables are **useful** To understand the **impact** of each variable on the output

Sensitivity analysis Settings Identify the most influential factors

Factor screening

Local sensitivity analysis

Global sensitivity analysis

Sensitivity analysis Settings Identify the most influential factors Factor screening Fine grained search around predetermined values Local sensitivity analysis **Global sensitivity analysis**

Sensitivity analysis Settings Identify the most influential factors Factor screening Fine grained search around predetermined values Local sensitivity analysis **Global sensitivity analysis** Search around the entire range of values

Factor prioritisation Factor fixingIdentiFactor mappingtheMetamodellingIdention

Identifies factor that is responsible for the most variance of the output

Factor prioritisation

Fixes factors that do not contribute Factor fixing

too much to output

Factor mapping Metamodelling

Factor prioritisation Factor fixing Factor mapping Focus on critical areas (thresholds, phase transitions, etc.)

Factor prioritisation Factor fixing Factor mapping Metamodelling

To identify the relation between input and output

recap

Nature of agents List of variables describing their state List of actions the agents can perform Structure of their interaction with other agents

Definition of output variables of interest Appropriate experimental design Analysis of equilibria Sensitivity analysis

Agent design

Experiment