The stylised facts of financial markets

Learning outcomes

Understand financial markets from their patterns Apply stylised facts to ABM validation

Stylised facts

Empirical Regularities

patterns that have been observed so many times they are accepted as truth

Price cannot be compared across different stocks Price time series display trends

Solution: relative (%) changes

Solution: relative (%) changes

Well yes, but actually no

Solution: relative (%) changes **Relative changes also have some "problems"**

Instead, we use log-returns (difference of log of price)

Instead, we use log-returns (difference of log of price)

Price at time t

Instead, we use log-returns (difference of log of price)

S(t)X(t) = ln(S(t))

Price at time t Log price

Instead, we use log-returns (difference of log of price)

S(t)Price at time tX(t) = ln(S(t))Log price Δt Time unit (minutes, hour, day, etc.)

Instead, we use log-returns (difference of log of price)

S(t)Price at time tX(t) = ln(S(t))Log price Δt Time unit (minutes, hour, day, etc.) $r(t, \Delta t) = X(t + \Delta t) - X(t)$ Log return

$r(t, \Delta t) = X(t + \Delta t) - X(t)$

Stationary Time invariant

Approximate relative returns well when returns are small

Time lag (trading days)

Autocorrelation

$C(\tau) = corr[r(t, \Delta t), r(t + \tau, \Delta t)]$

$C(\tau) = 0, \forall \tau$

Autocorrelation $C(\tau)_{\alpha} = corr[|r(t, \Delta t)|^{\alpha}, |r(t + \tau, \Delta t)|^{\alpha}]$ $C(\tau)_{\alpha} = A\tau^{-\beta}$

 $\alpha \in \{1,2\} \implies \beta \in [0.2,0.4]$

Distribution of returns

Distribution of returns

$$\kappa[X] = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right]$$

$\kappa[X] = 0$ Normal distribution $\kappa[X] > 0$ Long tails

Aggregational gaussianity

$\lim_{\Delta t \to \infty} \kappa = 0$

Summary statistics - kurtosis

Data	μ/σ	Skewness	Kurtosis
S&P 500 futures	0.003	-0.4	15.95
Dollar/ DM futures	0.002	-0.11	74
Dollar/ Swiss			
Franc futures	0.002	-0.1	60
IID 95%			
confidence interval	—	0.018	0.036

Gain/loss Asymmetry

Downwards movements are larger but fewer

Upwards movements are more frequent but smaller

This does not apply to forex

Volume

Volume is correlated with all measures of volatility

Calendar effects

Price and volume display regularities based on day of week, week of month, month of year, etc.

These are sometimes called price/volume seasonalities

Weekend effect

January effect

Holiday effect

In the 80s and 90s, positive returns the day before a holiday accounted for 50% of all the yearly price increase.

This effect is now smaller but still present (in the three days before any major holiday)

Long memory

Early 1900s by Hurst

Application to finance in the late 60s by Mandelbrot

Many, many papers after that on price, volume, volatility, etc.

Long memory

 $H = 1 - \frac{\alpha}{2}$

 $\frac{1}{2} < H < 1$

Long memory

Prices were found to have long memory, until they didn't. This led to a more robust reformulation of this statistic by Lo (1991).

Volume, volatility, bid/ask spread were found to exhibit long memory across several different markets and timescales by a number of studies (albeit with some differences)

Summary

Stylised facts are empirical regularities observed in financial time series

They provide powerful summary information that condenses knowledge of markets in a few equations/notions

They can (and should!) be used in abms for validation and estimation